小学四年级奥数竞赛班讲义 第32讲:容斥原理初步(二)

合集下载

奥数四年级--容斥问题(二)

奥数四年级--容斥问题(二)

练 1.有30名运动员,其中18人会三级跳,16人 习 会撑杆跳高,10人三级跳远、撑杆跳高均不
会。既会三级跳远又会撑杆跳高的运动员有 多少名?
14名
练 2、操场上的学生排成10路纵队做操,毎路 习 纵队人数同样多,小明站在第四纵队,从排
头数他是第13个,从后往前数他是第8人。 操场上有多少人在做操?
200人
练 3、一个年级有120人爱好数学,100人爱好 习 语文,85人爱好美术,30人既爱好数学又爱
好语文,20人既爱好语文又爱好美术,35人 既爱好美术又爱好数学,有18人三门学科都 爱好。请问:这个年级中数学、语文、美术 三门学科中至少爱好一门学科的学生有多少 人?
238人
练 4、某班全体学生进行了数学、语文、英语 习 三个科目的测试,有8名学生在这三个科目
球、蓝球的学生人数分别为10人,10人,6 人,其中手中既有红球又有黄球的有3人, 既有黄球又有蓝球的有2人,既有蓝球又有 红球的有4人。已知全队每人手中都至少有 一种颜色的球,那么,手中三种颜色的球都 有的多少人?
3人
练 6、某班50名同学全部参加数学、语文、美 习 术三个课外兴趣小组,参加数学小组的有29
17人
18人
15人
求全班人数。
这道题目条件比较复杂,可以根据 题意画出示意图,以便形象直观地 显示他们之间的关系。 全班人数=至少有一个项目达到优 秀的人数+三个项目上都没有达到 优秀的人数
篮球15人 6人 短跑 17人
篮球 游泳 短跑 2人
6人 游泳 18人
6人
经 典 题 型
运用容斥定理 至少有一个项目达到优秀的人数=(短跑达 到优秀人数+游泳达到优秀人数+篮球达到 优秀人数)-(短跑、游泳达到优秀人数+ 游泳、篮球达到优秀人数+篮球、短跑达到 优秀人数)+短跑、游泳、篮球都达到优秀 的人数

小学奥数教程之容斥原理

小学奥数教程之容斥原理

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

容斥原理学生姓名授课日期教师姓名授课时长知识定位容斥原理中的知识点比较简单,是计数问题中比较浅的一支。

这个知识点经常和数论知识结合出综合型题目。

这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。

1.充分理解和掌握容斥原理的基本概念2.利用图形分析解决容斥原理问题知识梳理授课批注:本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念定义在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A 的元素个数。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:|A∪B| = |A| + |B| - |A∩B|,我们称这一公式为包含与排除原理,简称容斥原理。

图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

用法:包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)二.竞赛考点1.容斥原理的基本概念2.与数论相结合的综合型题目例题精讲【试题来源】【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

小学四年级奥数 容斥原理

小学四年级奥数 容斥原理

容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思;符号“∩”读作“交”,相当于中文“且”的意思。

),则称这一公式为包含与排除原理,简称容斥原理。

图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

1.先包含——A+B重叠部分A∩B计算了2次,多加了1次;2.再排除——A+B-A∩B把多加了1次的重叠部分A∩B减去。

A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B 类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数。

用符号表示为:A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C图示如下:图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数。

1.先包含——A+B+CA∩B、B∩C、C∩A重叠了2次,多加了1次。

2.再排除——A+B+C-A∩B-B∩C-A∩C重叠部分A∩B∩C重叠了3次,但是在进行A+B+C-A∩B-B∩C-A∩C计算时都被减掉了。

3.再包含——A+B+C-A∩B-B∩C-A∩C+A∩B∩C例1一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积。

例250名同学面向老师站成一行。

老师先让大家从左至右按1、2、3、…、49、50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:现在面向老师的同学还有多少名?求1~2009这2009个自然数既不能被7整除又不能被41整除的自然数有多少个?例3在1到2004所有自然数中,既不是2的倍数又不是3和5的倍数的数有多少个?例4如图,已知甲乙丙三个圆的面积都是30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,三个圆覆盖的总面积为73,求空白部分的面积。

(最新整理)奥数四年级容斥问题(二)

(最新整理)奥数四年级容斥问题(二)
好语文,20人既爱好语文又爱好美术,35人 既爱好美术又爱好数学,有18人三门学科都 爱好。请问:这个年级中数学、语文、美术 三门学科中至少爱好一门学科的学生有多少 人?
238人
10
2021/7/26
练 4、某班全体学生进行了数学、语文、英语 习 三个科目的测试,有8名学生在这三个科目
上都没有达到优秀,其余每人至少有一个科 目达到优秀,这部分学生达到优秀的科目和 人数如下表:
(1)7人;(2)3人;(3)27人
16
2021/7/26
练 10、某班50名同学中,参加体育队的有20人, 习 参加文艺队的有26人,既没有参加体育组也
没有参加文艺队的有12人,那么参加体育队 且没有参加文艺队的有多少人?既参加体育 队又参加文艺队有多少人?
12人,8人
17
2021/7/26
18
为什么呢?
篮球15人
6人
短跑 17人
篮球 游泳 短跑 2人
6人
6人
游泳 18人
因为三个项目都达到优秀的人数在前面的算式中 加了三次,又减了三次。如果不加上去,就少算 了短跑、游泳、篮球都达到优秀的人数。
解:(17+18+15)-(6+6+6)+2
= 50-18+2 = 34(人) 34+4=38(人) 答:全班一共有38人
6人
短跑 17人
篮球 游泳 短跑 2人
6人
6人
游泳 18人
3
2021/7/26
经 运用容斥定理 典 至少有一个项目达到优秀的人数=(短跑达 题 到优秀人数+游泳达到优秀人数+篮球达到
优秀人数)-(短跑、游泳达到优秀人数+

四年级奥数---容斥原理教案

四年级奥数---容斥原理教案

四年级奥数---容斥原理教案奥数:容斥原理教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。

(二)例题精讲例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有Nab NbNa23人,两题都答对的有15人。

问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

小学四年级奥数竞赛:容斥原理

小学四年级奥数竞赛:容斥原理

课题容斥原理年级4授课对象编写人时间学习目标利用抽屉原理1、抽屉原理2解题。

学习重点、难点(1)找出题干中物品对应的量;(2)合理构造抽屉(简单问题中抽屉明显,找出即可);(3)利用抽屉原理1、抽屉原理2解题。

教学过程T (测试)1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?S (归纳)容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=Na+Nb-Nab。

Nab NbNaE (典例)例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

四年级奥数专题-容斥原理

四年级奥数专题-容斥原理

四年级奥数专题-容斥原理专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理.即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分.容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab .例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手.又问:“谁做完数学作业?请举手!”有42人举手.最后问:“谁语文、数学作业都没有做完?”没有人举手.求这个班语文、数学作业都完成的人数.分析 完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数.这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次.所以,这个班语文、数作业都完成的有:79-48=31人.练 习 一1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩.其中语文成绩优秀的有65人,数学优秀的有87人.语文、数学都优秀的有多少人?Nab NbNa2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人.这个文艺组一共有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人.问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人.又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人.所以,两题都答得不对的有36-33=3人.练习二1,五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了.那么,有多少人两个小组都没有参加?2,一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人.两种报纸都没有订阅的有多少人?3,某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖.已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人.练习三1,一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人.两样都会的有多少人?2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人.问这两种棋都会下的有多少人?3,三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人.这两队都没有参加的有10人.请算一算,这个班共有多少人?例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数.从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10).因此,是6或5的倍数的个数是16+20-3=33个,既不是5的倍数又不是6的倍数的数的个数是:100-33=67个.练习四1,在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?2,在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?3,五(1)班做广播操,全班排成4行,每行的人数相等.小华排的位置是:从前面数第5个,从后面数第8个.这个班共有多少个学生?例5:光明小学举办学生书法展览.学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?分析与解答:由题意知,24幅作品是一、二、三、四、六年级参展作品的总数,22幅是一、二、三、四、五年级参展作品的总数.24+22=46幅,这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六两个年级共参展的10幅作品,即得到两个一、二、三、四年级参展作品的总数,再除以2,即可求出其他年级参展作品的总数.(24+22-10)÷2=18幅.练习五1,科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件.其他年级参展的作品共有多少件?2,六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四两个年级参展的画共有8幅.其他年级参展的画共有多少幅?3,实验小学举办学生书法展,学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅.一、二年级参展的作品总数比三、四年级参展作品的总数少4幅.一、二年级参展的书法作品共有多少幅?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例1】(★★★)
在网校50名老师中,喜欢看电影的有15人,不喜欢唱歌的有25人,既喜欢看电影也喜欢唱歌的有5人。

那么只喜欢唱歌的有多少人?
容斥原理初步(二)
【例2】(★★★)
在网校40名老师中,每个人都爱喝橙汁、桃汁、苹果汁中的一种或几种。

其中有10人爱喝橙汁,15人不爱喝橙汁却爱喝桃汁。

请问:只爱喝苹果汁的有几人?
【例3】(★★★)
网校老师组织体育比赛,分成轮滑、游泳和羽毛球三个组进行,参加轮滑比赛的有20人,参加游泳比赛的有25人,参加羽毛球比赛的有30人,同时参加了轮滑和游泳比赛的有8人,同时参加了轮滑和羽毛球比赛的有7人,同时参加了游泳和羽毛球比赛的有6人,三种比赛都参加的有4人,问参加体育比赛的共有多少人?
【例4】(★★★★)
网校老师共有90人,其中有32人参加了专业培训,有20人参加了技能培训,40人参加了文化培训,13人既参加了专业又参加了文化培训,8人既参加了技能又参加了专业培训,10人既参加了技能又参加了文化培训,而三个培训都未参加的有25人,那么三个培训都参加的有多少人?
1
【例5】(★★★★★)
网校共130名老师,其中70人参加了歌唱小组,80人参加了舞蹈小组,60人参加了模特小组,至少参加两个小组的有60人,参加了三个小组的有30人,那么网校老师有多少人没有参加小组?【例6】(★★★★)
在1至100的自然数中,既不能被2整除,又不能被3整除,还不能被5整除的数有多少个?
【例7】(★★★★★)
2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号为l,2, (2006)
将编号为2的倍数的灯的拉线各拉一下;再将编号为3的倍数的灯的拉线各拉一下,最后将编号为5的倍数的灯的拉线各拉一下。

拉完后亮着的灯数为多少盏?本讲总结
三者文氏图:奇层加,偶层减
重点例题:例3,例4,例7
【例5】(★★★★★)
2。

相关文档
最新文档