四年级奥数讲义教学之:容斥原理

合集下载

小学奥数容斥原理教案

小学奥数容斥原理教案

小学奥数容斥原理教案【篇一:四年级奥数讲义:容斥原理(1)】四年级数学讲义奥数:容斥原理(1)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学衔接二、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=na+nb-nab。

(二)例题精讲 nanb例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

奥数容斥原理

奥数容斥原理


4
6+6+4-(3+1)-(0+1)-(1+1)+1=10人
?人
❖ 例3. 某校六年级二班有49
人参加了数学、英语、语文
学习小组,其中数学有30
人参加,英语有20人参加,
语文小组有10人。老师告 诉同学既参加数学小组又参


加语文小组的有3人,既参
30 质 20
加数学又参加英语和既参加 英语又参加语文的人数均为 质数,而三种全参加的只有
69+52-30=91人 91+12=103人
❖ 5、全班有50人,不会骑车的有23人,不会 滑旱冰的有35人,两样都会的有5人。问: 两样都不会的有多少人?
50-5=45人 23+35-45=15人
❖ 6、六年级(2)班有48名学生,其中会骑自 行车的有27个,会游泳的有18人,既会骑自 行车又会游泳的有10人。问两样都不会的有 多少人?
不能被3或5整除的个数: 1000-467=533个
试一试:
❖ 某校选出50名学生参加区作文比赛和 数学竞赛,作文比赛获奖的有16人, 数学比赛获奖的有12人,有5人两项比 赛都获奖了。
❖ (1)共有多少人获奖? ❖ 16+12-5=23人 ❖ (2)两项比赛都没获奖的有多少人? ❖ 50-23=27人
1
3

1人,求既参加英语又参加 数学小组的人数。

10
❖ 分析与解:根据已知条 件画出图。
49人
❖ 三圆盖住的总体为49人,假设既参加数学又 参加英语的有x人,既参加语文又参加英语的 有y人,可以列出这样的方程:30 20 10 x y 31 49 整理后得:x y 9 由于x、y均为质数,因而 这两个质数中必有一个偶质数2,另一个质数 为7。

四年级奥数讲义之:容斥原理(2)

四年级奥数讲义之:容斥原理(2)

四年级数学讲义奥数:容斥原理(2)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学衔接1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?3、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

两样都会的有多少人?二、教学内容例1.五(1)班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目和人数如下表:短跑游泳篮球短跑、游泳游泳、篮球篮球、短跑短跑、游泳、篮球17人18人15人6人6人6人2人求全班人数。

例2.某班有学生50人,参加无线电小组,航模小组和生物小组的人数分别是20人、20人和12人,其中既参加无线电小组又参加航模小组的有4人,既参加航模小组又参加生物小组的有5人,既参加生物小组又参加无线电小组的有3人。

已知全班每人都至少参加了以上三个小组中的某一个,那么,三个小组参加的学生有多少人?例3.一个体育锻炼小组有35名男生,规定他们至少参加篮球、排球、足球三个球队中的一个。

结果参加篮球队的有16人,参加排球队的有11人,参加足球队的有20人,其中有4人既参加了排球队又参加了篮球队,有3人既参加了排球队又参加了足球队,没有人三个球队都参加。

既参加篮球队又参加足球队的有多少人?三、教学练习1.第三小队的学生有20人,手中分别拿有红、黄蓝三种颜色的球,已知手中有红球、黄球、蓝球折学生人数分别为10人、10人、6人,其中手中既有红球又有黄球的有3人,既有黄球又有蓝球的有2人,既有蓝球又有红球的有4人。

小学奥数教程之容斥原理

小学奥数教程之容斥原理

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

容斥原理学生姓名授课日期教师姓名授课时长知识定位容斥原理中的知识点比较简单,是计数问题中比较浅的一支。

这个知识点经常和数论知识结合出综合型题目。

这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。

1.充分理解和掌握容斥原理的基本概念2.利用图形分析解决容斥原理问题知识梳理授课批注:本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念定义在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A 的元素个数。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:|A∪B| = |A| + |B| - |A∩B|,我们称这一公式为包含与排除原理,简称容斥原理。

图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

用法:包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)二.竞赛考点1.容斥原理的基本概念2.与数论相结合的综合型题目例题精讲【试题来源】【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

小学四年级奥数 容斥原理

小学四年级奥数 容斥原理

容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思;符号“∩”读作“交”,相当于中文“且”的意思。

),则称这一公式为包含与排除原理,简称容斥原理。

图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

1.先包含——A+B重叠部分A∩B计算了2次,多加了1次;2.再排除——A+B-A∩B把多加了1次的重叠部分A∩B减去。

A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B 类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数。

用符号表示为:A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C图示如下:图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数。

1.先包含——A+B+CA∩B、B∩C、C∩A重叠了2次,多加了1次。

2.再排除——A+B+C-A∩B-B∩C-A∩C重叠部分A∩B∩C重叠了3次,但是在进行A+B+C-A∩B-B∩C-A∩C计算时都被减掉了。

3.再包含——A+B+C-A∩B-B∩C-A∩C+A∩B∩C例1一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积。

例250名同学面向老师站成一行。

老师先让大家从左至右按1、2、3、…、49、50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:现在面向老师的同学还有多少名?求1~2009这2009个自然数既不能被7整除又不能被41整除的自然数有多少个?例3在1到2004所有自然数中,既不是2的倍数又不是3和5的倍数的数有多少个?例4如图,已知甲乙丙三个圆的面积都是30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,三个圆覆盖的总面积为73,求空白部分的面积。

趣味奥数之容斥原理

趣味奥数之容斥原理

趣味奥数之容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。

例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

二、练习练习一1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?【答案】1.65+87-122=30(人)2.54-45+13=22(人)3.24-8+17=33(人)例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

奥数四年级--容斥问题(一)

奥数四年级--容斥问题(一)
一种都没订的55-7-5-4=39人。
经 例2、有62名学生,其中会弹钢琴的有11人,会吹竖笛的有56人,
典 两样都不会的有4人,两样都会的有多少人?
题 依题意,画圈框图。
总人数62人
型 依图可知,会弹钢琴+会竖笛
=11+56=67人, 67 > 总人数62人
会弹钢琴的 会两样 会吹竖笛
有11人
?人
既不是5的倍数,也不是7的倍数??。
(3)求既是5的倍数又是7的倍数的数量: 1000÷35 = 28...20
总1--1000的自然数
(4)根据容斥原理: 是5或7的倍数的数有: 200+142-28=314
(5)既不是5,也不是7的倍数的: 1000-314=686
5的倍数 有200
5和7的 公倍数
容斥问题(一)
容斥问题就是包含与排除原理。当两个计数 部分有重复包含时,为了不重复计数,应从他们 的和中排除重复部分。
这一讲我们先介绍容斥原理1: 对n个事物,如果采用两种不同的分类标准:按性 质a分类与性质b分类,那么具有性质a或性质b的 事物的总数= Na+Nb-Nab
Na Nab Nb
画圈圈图: 分析包含和排除关系,是解决这类问题的捷径 !
48名
练 9、有一根36cm长的绳子,从一端开始每隔3 习 厘米做一个记号,每隔4厘米也做一个记号,
然后把标有记号的地方剪断。绳子共被剪成 了多少段?
18段
练 10、科技节那天,学校的科技室里展出了每 习 个年级学生的科技作品,其中有114件不是
一年级的,有96件不是二年级的,一、二年 级参展的作品共32件。其他年级参展的作品 共有多少件?
分析搞清数量关系,是解决数学问题的不二法门。

【小学四年级奥数讲义】 容斥原理

【小学四年级奥数讲义】 容斥原理

【小学四年级奥数讲义】容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。

Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。

那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。

两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级数学讲义
奥数:容斥原理(2)
教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学衔接
1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?
2、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?
3、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

两样都会的有多少人?
二、教学内容
例1.五(1)班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目和人数如下表:
短跑游泳篮球短跑、游泳游泳、篮球篮球、短跑短跑、游泳、篮球
17人18人15人6人6人6人2人
求全班人数。

例2.某班有学生50人,参加无线电小组,航模小组和生物小组的人数分别是20人、20人和12人,其中既参加无线电小组又参加航模小组的有4人,既参加航模小组又参加生物小组的有5人,既参加生物小组又参加无线电小组的有3人。

已知全班每人都至少参加了以上三个小组中的某一个,那么,三个小组参加的学生有多少人?
例3.一个体育锻炼小组有35名男生,规定他们至少参加篮球、排球、足球三个球队中的一个。

结果参加篮球队的有16人,参加排球队的有11人,参加足球队的有20人,其中有4人既参加了排球队又参加了篮球队,有3人既参加了排球队又参加了足球队,没有人三个球队都参加。

既参加篮球队又参加足球队的有多少人?
三、教学练习
1.第三小队的学生有20人,手中分别拿有红、黄蓝三种颜色的球,已知手中有红球、黄球、蓝球折学生人数分别为10人、10人、6人,其中手中既有红球又有黄球的有3人,既有黄球又有蓝球的有2人,既有蓝球又有红球的有4人。

已知全队每人手里都至少有一种颜色的球,那么,手中三种颜色的球都有多少人?
2.某班50名同学全部参加数学、语文、美术三个课外兴趣小组,参加数学小组的有29人,参加语文小组的有21人,参加美术小组的有25人,有17人既参加数学小组又参加美术小组,有15人既参加数学小组又参加语文小组,有10人既参加语文小组又参加美术小组。

三个小组都参加的有多少人?
3.有学生30名,他们中有部分学生参加了乒乓球,羽毛球、排球三个训练小组,各组人数分别为14人、12人、10人,其中既参加羽毛球小组又参加排球小组的有4人,既参加羽毛球小组又参加乒乓球小组的有6人,既参加乒乓球小组又参加排球小组的有5人,三个小组都参加的有1人。

这些学生中这三个小组都没有参加的有几人?
4.某外语学习班有40名学员,规定他们至少学习英语、日语、德语中的一咱。

结果学习英语的有20人,学习日语的有12人,学习德语的有18人,其中有5人既学习了英语又学习了日语,有2人既学习了日语又学习了德语,没有人同时学习三咱语言。

既学习英语又学习德语的有多少人?
四、教学小结
今天我们学习了什么?你都能掌握吗?让我们一起动笔归纳一下吧!
五、教学拓展
例4.松山小学45名学生参加数学、作文、美术竞赛。

有21人参加数学竞赛,15人参加作文竞赛,其中7人既参加作文竞赛又参加数学竞赛,3人既参加作文竞赛又参加美术竞赛,但没有一人既参加数学竞赛又参加美术竞赛。

(1)只参加数学竞赛的有多少人?(2)只参加作文竞赛的有多少人?
(3)只参加美术竞赛的有多少人?
练习:四(1)班有55名学生参加音乐、美术、体育兴趣组。

有22人参加美术组,有21人参加音乐组,其中15人既参加音乐组又参加美术组,3人既参加音乐组又参加体育组,但没有一人既参加美术组又参加体育组。

(1)只参加美术组的有多少人?(2)只参加音乐组的有多少人?
六、课后练习
1.有30名运动员、其中18人会三级跳远,16人会撑杆跳高,10人三级跳远、撑杆跳高都不会。

既会三级跳远又会撑杆跳高的运动员有多少名?
2.操场上的学生排成10路纵队做操,每路纵队的人数同样多,小明站在第4路纵队,从排头数他是第13人,从后往前数他是第8人。

操场上有多少人在做操?
3.一个年级有120人爱好数学,100人爱好语文,85人爱好美术,30人既爱好数学又爱好语文,20人既爱好语文又爱好美术,35人既爱好美术又爱好数学,有18人三个学科都爱好。

请问:这个年级中数学、语文、美术三个学科至少爱好一个学科的学生有多少人?
4.某班全体学生进行了数学、语文、英语三个科目的测试,有8名学生在这三个科目上都没有达到优秀,其余每人至少有一个科目达到优秀,这部分学生达到优秀的科目和人数如下表:
数学语文英语数学、语文语文、英语英语、数学数学、语文、英语
20 16 16 4 4 5 3
全班一共有多少名学生?。

相关文档
最新文档