非参数检验--非参数检验的过程

合集下载

非参数检验的基本原理

非参数检验的基本原理

非参数检验的基本原理非参数检验是一种利用统计方法来检验假设的一种方法,与参数检验相比,非参数检验不需要对总体的分布做出假设,更为灵活。

本文将介绍非参数检验的基本原理。

一、概述非参数检验是一种统计方法,既不要求数据符合特定分布,也不对总体参数做出假设。

与之相反,参数检验通常假设数据服从特定的分布,例如正态分布。

非参数检验的主要优点是可以更全面地处理数据,更适用于复杂的情况。

然而,非参数检验的统计效率通常较低,需要更多的样本来达到相同的置信水平。

二、基本原理1. 秩次转换非参数检验通常使用秩次转换来处理数据。

所谓秩次转换是将原始的数值转换为它们在样本中的秩次,从而消除数值的大小差异。

对于同一组数据,秩次转换后,可以应用更广泛的统计方法。

2. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数检验方法,主要应用于配对样本或者两组独立样本之间的差异比较。

它的基本思想是对每个观测值计算它们的符号秩,然后通过比较两组样本的秩和来判断差异是否显著。

3. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于比较两组独立样本之间的差异。

它的基本原理是将两组样本中的所有观测值汇总,然后对这些观测值进行秩次转换,并计算两组样本排名和。

通过比较两组样本排名和的大小来判断差异是否显著。

4. Kruskal-Wallis H检验Kruskal-Wallis H检验是一种非参数的方差分析方法,用于比较三组或以上独立样本之间的差异。

它的基本原理是将所有样本的观测值汇总,然后进行秩次转换,并计算各组样本排名和的平均值。

通过比较平均排名和的大小来判断差异是否显著。

三、案例研究为了更好地理解非参数检验的原理,我们以某家公司销售部门的两个月销售额作为例子进行案例研究。

假设第一个月公司销售额为[100, 80, 120, 90, 110],第二个月公司销售额为[95, 85, 115, 100, 105]。

非参数检验的检验方法

非参数检验的检验方法

非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。

相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。

非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。

下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。

它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。

2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。

它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算每个样本的秩次和,以及总体的秩次和。

根据这些秩次和的差异来进行推断。

3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。

这两种方法都是用来比较两个相关样本的总体中位数是否相等。

基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。

然后根据秩次和的大小来进行推断。

4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。

它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。

然后根据秩次和的差异来进行推断。

在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。

如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。

2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。

参数检验和非参数检验

参数检验和非参数检验

统计推断是从总体中抽取部分样本,通过对抽取部分所得到的带有随机性的数据进行合理的分析,进而对总体作出科学的判断,它是伴随着一定概率的推测,特点是:由样本推断总体,统计推断是数理统计的核心部分,统计推断的基本问题可以分为两大类:一类是参数估计问题;另一类是假设检验问题。

其中假设检验方法可以分为参数检验和非参数检验两大部分。

1.参数检验:
是在给定或假定总体分布形式的基础上,对总体的未知参数进行估计或检验。

它一方面以明确的总体分布为前提,另一方面需要满足某些总体参数的假定条件
2.非参数检验:
对总体分布不做严格假定,统计过程不涉及总体参数,完全依靠样本数据的顺序、秩等信息进行分析,通常在不符合参数检验的条件下使用。

参数检验的优点是针对性较强,每种方法都有其特定的使用环境,并且利用数据信息充分,一旦符合使用条件,得出的结论会非常准确。

缺点是,对总体的分布要求较高,实际工作中有时无法满足使用条件。

非参数检验的优点是对总体分布没有严格要求,对样本数据类型也没有过多要求,非正态、方差不齐等都能做,适应性较强,计算方法也比较简单。

缺点是对数据信息利用不充分,会降低功效。

由于检验的功效是我们选择分析方法的首要因素,因此在实际工作中,我们还是优先使用参数检验,只有在数据特征不符合参数检验要求时,才考虑使用非参数检验。

非参数检验方法

非参数检验方法

非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。

二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。

2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。

3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。

4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。

三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。

2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。

3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。

4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。

5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。

SPSS的非参数检验

SPSS的非参数检验
非参数检验可以提供更准确的统计推断,特别是在 数据特征不明或数据量较小的情况下。
02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。

第6章 非参数检验

第6章 非参数检验

第六章非参数检验在前面的章节中我们介绍了多种假设检验的方法,例如单个总体的t检验、基于两个独立样本的t检验、基于两个匹配样本的t检验、方差分析等。

在这些检验都需要对总体的分布特征作出某些假设(例如在t检验和方差分析中都需要假设总体服从正态分布),然后根据检验统计量的抽样分布对总体参数(如均值、比率等)进行检验。

这类检验方法称为参数检验。

我们前面强调过,在需要的假设条件不满足的情况下,特别是小样本的情况下,t检验、F检验都是不适用的。

那么,如何检验数据是否来自正态分布或者其他分布?在参数检验假设条件不满足的情况下如何对相应的问题进行分析?非参数检验方法可以帮助我们回答这类问题。

在这一章中,我们将首先简要说明非参数检验的概念和优缺点,然后介绍几种常见的非参数检验方法及其在SPSS中的实现方法。

第一节非参数检验概述非参数检验(nonparametric tests)也称为与总体分布无关的检验(distribution free tests),与参数检验相比,在非参数检验中不需要对总体分布的具体形式作出严格假设,或者只需要很弱的假设。

大部分非参数检验都是针对总体的分布进行的检验,但也可以对总体的某些参数进行检验。

与参数检验相比,非参数检验主要有以下几个方面的特点:(1)非参数检验不需要严格假设条件,因而比参数检验有更广泛的适用面。

(2)非参数检验几乎可以处理包括定类数据和定序数据在内的所有类型的数据,而参数检验通常只能用于定量数据的分析。

(3)虽然对于满足参数检验的假设条件的数据也可以采用非参数检验法进行分析,但在参数检验和非参数检验都可以使用的情况下,由于非参数检验没有充分利用样本内所有的数量信息,因此其检验的功效(power)要低于参数检验方法。

也就是说,在备择假设为真的情况下,采用参数检验方法拒绝原假设的概率要高于非参数检验的方法,从而更容易发现显著的差异。

在假设检验中,犯取伪错误的概率记为β,则1-β越大,意味着当备择假设为真时,拒绝原假设的概率越大,检验的判别能力就越好;1-β越小,意味着当备择假设为真时,拒绝原假设的概率越小,检验的判别能力就越差。

8非参数检验

8非参数检验

②正态近似法:
u | T n0 ( N 1) / 2 | n1n2 ( N 1) / 12
本例u 2.205 0.05/ 2 1.96
N3 N ; 3 3 N N (ti ti )
i
*校正公式(当相同秩次较多时)
uc u c; c
ti为第i个相同秩号的数据个数
假定:两组样本的总体分布形状相同
如果两总体 分布相同
基本思想
两样本来自同一总体 任一组秩和不应太大或太小
T 与平均秩和 n0 (1 N ) / 2 应相差不大
较小例数组的秩和, n1 n2 T min( R1 , R2 ), n1 n2
N n1 n2 n0 min( n1 , n2 )
控制 显效 有效 近控
65 18 30 13 126
107 24 53 24
1-107 108-131 132-184 185-208
54 119.5 158 196.5
编号 1 2
病情 单纯型 单纯型合并肺气肿
疗效 控制 显效
3
4 … 206 207
单纯型合并肺气肿
单纯型 … 单纯型 单纯型合并肺气肿
10 12(12 1) / 4 | R n(n 1) / 4 | u 2.275 n(n 1)(2n 1) / 24 12(12 1)(2 12 1) / 24
查标准正态分布表,得 P 值 校正公式: (当相同秩次个数较多时)
u
| R n(n 1) / 4 | n(n 1)(2n 1) / 24 (ti3 ti ) / 48 10 12(12 1) / 4
第一节 非参数检验的概念

非参数检验

非参数检验

两种方法治疗扁平足效果观察
建立假设
病例号
原始记录 A法 B法
量化值 A法 B法
差值
秩次
H0:两法疗效差值的总体中位数
1 2
为0;
3
4
H1:差值的总体中位数不为0。
5
6
=0.05
7
8
计算检验统计量
9
10
编秩:
11
12
求秩和:T+=61.5,T-
13
=4.5
14 15
















秩和(rank sum): 同组秩次之和;在一定程度上反映了等级 的分布位置。
秩和检验:就是通过秩次的排列求出秩和,进行假设检验。
11
非参数检验 (nonparametric test )
非参数检验的最常用方法——秩和检验( rank test ) 利用秩的大小进行推断就避免了不知道背景分布的
困难。这也是非参数检验的优点。 多数非参数检验明显地或隐含地利用了秩的性质;
但也有一些非参数方法没有涉及秩的性质。 掌握对数据进行编秩的方法是学习秩和检验的基本
要求。
12
非参数检验 (nonparametric test )
非参数检验的最常用方法——秩和检验( rank test )
A组: - 、、+、+、+、+、++、++、++、++、+++、+++
适用条件: (1)上述两种设计类型的资料不满足参数检 验条件。 (2)配对设计等级资料的比较。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Test Variable:死亡日期 Expected Values: 2.8:1:1:1:1:1:1

比较有用的结果:sig=.256>0.5,不能拒绝零假设,认为心脏病 人猝死人数与日期的关系为2.8:1:1:1:1:1:1 。
来自 中国最大的资料库下载
12.2 二项分布检验 Binomial test
Analyze-> Nonparametric Tests-> Runs

Test Variable: tbh Cut Point:Custom:2

比较有用的结果: 总case数(31)、
Runs T est TBH
游程Run数(21)、
T est V alue a
2

sig=.142>0.5, 不能拒绝零假设,
知 二项分布:在现实生活中有很多的取值是两类的,如人
群的男和女、产品的合格和不合格、学生的三好学生和

非三好学生、投掷硬币的正面和反面。这时如果某一类
出现的概率是P,则另一类出现的概率就是1-P。这种分

布称为二次,变量tbh,1为出

现A面、2为出现A面,试问这挑边器是否均匀。数据

品和个数,Cases 2个:1 19 和0 4) 加权:Data->Weight Cases:个数

Analyze-> Nonparametric Tests-> Binomial
Test Variable:一等品

Test Proportion:0.9 比较有用的结果:两组个数和sig=.193>0.5,不能拒绝零假设,

测数据。其中用1、2、3、4、5、6、7表示是星期几死 的。而人数分别为55、23、18、11、26、20、15。推断

心 脏 病 人 猝 死 人 数 与 日 期 的 关 系 是 否 为 2.8:1:1:1:1:1:1 。 (变量2个:死亡日期和死亡人数,Cases 7个)

加权:Data->Weight Cases:死亡人数 Analyze-> Nonparametric Tests->Chi Square

分别代表六面的六个点,试问这骰子是否均匀。数据
data12-01(300个cases)。

Analyze-> Nonparametric Tests->Chi Square
Test Variable: lmt 想要检验的变量

由于这是一个均匀分布检测,使用默认选择(Expected Values: All categories equal作为零假设);
这类方法的假定前提比参数性假设检验方法少的多,
变 也容易满足,适用于计量信息较弱的资料且计算方法
也简单易行,所以在实际中有广泛的应用。


来自 中国最大的资料库下载
非参数检验的过程

1. Chi-Square test 卡方检验
识 2. Binomial test 二项分布检验
改 3. Runs test 游程检验
4. 1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫

哥洛夫-斯米诺夫检验

5. 2 independent Samples Test 两个独立样本检验 6. K independent Samples Test K个独立样本检验
运 7. 2 related Samples Test 两个相关样本检验
T otal C ases
31
N umber of Runs
21
认为挑边器出现AB面是随机的。 Z
1.469
A symp. S ig. (2-tailed)
.142
a. U ser-specified.
来自 中国最大的资料库下载
12.4 一个样本柯尔莫哥洛夫-斯米诺夫检验 1-Sample Kolmogorov-Smirnov test

认为该批产品的一等品率达到了90% 。
来自 中国最大的资料库下载
12.3 游程检验Runs test
知 单样本变量随机性检验是对某变量值出现是否随机进行
检验。
识 实例1(同二项分布检验) :掷一枚比赛用的挑边器31
次,变量tbh,1为出现A面、2为出现A面,试问这挑边

器出现AB面是否随机。数据data12-03(31个cases)。
data12-03(31个cases)。

Analyze-> Nonparametric Tests-> Binomial
Test Variable: tbh

由于这是一个均匀分布检测,使用默认选择(Test Proportion: 0.5);
比较有用的结果:两组个数和sig=1.00>0.5,不能拒绝零假设,
8 . K related Samples Test 两个相关样本检验
来自 中国最大的资料库下载
12.1 卡方检验 Chi-Square test
知 这里介绍的卡方检验可以检验列联表中某一个变量的各
个水平是否有同样比例或者等于你所想象的比例(如
识 5:4:1)
实例1:掷骰子300次,变量LMT,1、2、3、4、5、6
非参数检验
说明:非参数检验这章,请看下面吴喜之教授 的讲义,更为具体的可参看《统计分析与SPSS 的应用》薛薇 编著 人大出版社,2002.7第二次 印刷
来自 中国最大的资料库下载
非参数检验的概念


是指在总体不服从正态分布且分布情况不明时,用来 检验数据资料是否来自同一个总体假设的一类检验方
改 法。由于这些方法一般不涉及总体参数故得名。
认为挑边器是均匀。
实例1的数据可以组织成:两个变量(side面和number
次数),2个cases。但在二项分布检验前要求用number
加来权自。中结国果最同大。的资料库下载
补充:二项分布检验实例
知 实例:为验证某批产品的一等品率是否达到90%,现从

该批产品中随机抽取23个样品进行检测,结果有19个一 等品(1-一等品,0-非一等品)。(变量2个:一等
比较有用的结果:sig=.111>0.5,不能拒绝零假设,认为均匀。
运 实例1的数据可以组织成:两个变量(side面和number
次数),6个cases。但在卡方检验前要求用number加权。
结果同。
来自 中国最大的资料库下载
补充:卡方检验实例
知 实例:心脏病人猝死人数与日期的关系,收集168个观
相关文档
最新文档