2020年高考数学模拟试卷(含答案)-普通用卷

合集下载

2020高考数学模拟试卷含答案

2020高考数学模拟试卷含答案

2020⾼考数学模拟试卷含答案2020⾼考虽然延迟,但是练习⼀定要跟上,加油,少年!第1卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分 1.若全集U=R,集合M ={}24x x >,N =301x xx ?-?>??+??,则()U M N I e=( )A.{2}x x <-B. {23}x x x <-≥或C. {3}x x ≥D.{23}x x -≤<2.若21tan(),tan(),544παββ+=-=则tan()4πα+=()A.1318B.318C.322D.13223.条件p :“直线l 在y 轴上的截距是在x 轴上的截距的两倍” ;条件q :“直线l 的斜率为-2” ,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.⾮充分也⾮必要4.如果212nx x ??-的展开式中只有第4项的⼆项式系数最⼤,那么展开式中的所有项的系数和是()A.0B.256C.64D.1645.12,e e u r u u r 为基底向量,已知向量121212,2,3AB e ke CB e e CD e e =-=+=-u u u r u r u u r u u u r u r u u r u u u r u r u u r,若A,B,D 三点共线,则k 的值为() A.2 B.-3 C.-2 D.36.⼀个单位有职⼯160⼈,其中有业务员120⼈,管理⼈员24⼈,后勤服务⼈员16⼈.为了了解职⼯的⾝体健康状况,要从中抽取⼀定容量的样本.现⽤分层抽样的⽅法得到业务⼈员的⼈数为15⼈,那么这个样本容量为() A.19 B.20 C.21 D.227.直线1y kx =+与曲线3y x ax b =++相切于点A (1,3),则b 的值为()A.3B.-3C.5D.-58.在⼀个45o 的⼆⾯⾓的⼀平⾯内有⼀条直线与⼆⾯⾓的棱成45o ⾓,则此直线与⼆⾯⾓的另⼀个⾯所成的⾓为() A.30oB.45oC.60oD.90o9.只⽤1,2,3三个数字组成⼀个四位数,规定这三个数必须同时使⽤,且同⼀数字不能相邻出现,这样的四位数有()t A.6个 B.9个 C.18个 D.36个10.若椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,线段12F F 被22y bx =的焦点分成53?的两段,则此椭圆的离⼼率为()A.1617B. 17C. 45D. 511.对任意两实数,a b ,定义运算“*”如下:()(),,a a b a b b a b ≤??*=?>??,则函数122()log (32)log f x x x =-*的值域为()xA.(,0]-∞B.22log ,03C.22log ,3??+∞D.R 12.⼀种专门占据内存的计算机病毒,开机时占据内存2KB ,然后每3分钟⾃⾝复制⼀次,复制后所占据内存是原来的2倍,那么开机后,该病毒占据64MB (1MB =102KB )内存需经过的时间为() A.15分钟 B.30分钟 C.45分钟 D.60分钟第II 卷(⾮选择题共90分)⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分. 13.若指数函数()()x f x a x R =∈的部分对应值如下表:则不等式1()0f x -<的解集为 . 14.数列{}n a 满⾜11200613,,,1nn na a a n N a a *++==∈-则= .15.已知实数x,y 满⾜约束条件1020()1x ay x y aR x ì--+澄í??£,⽬标函数3z x y =+只有当1x y ì=??í=时取得最⼤值,则a 的取值范围是 . 16.请阅读下列命题:①直线1y kx =+与椭圆22124x y +=总有两个交点;②函数3()2sin(3)4f x x p=-的图象可由函数()2sin 3f x x =按向量(,0)4a p=-r 平移得到;③函数2()2f x x ax b =-+⼀定是偶函数;④抛物线2(0)x ay a =?的焦点坐标是1(,0)4a.回答以上四个命题中,真命题是_______________(写出所有真命题的编号).三、解答题(共6⼩题,17—21题每题12分,第22题14分,共74分)17.已知向量,cos ),(cos ,cos ),a x x b x x c ===v v v(I )若//a c v v,求sin cos x x ×的值;(II) 若0,3x p18.在⼀次历史与地理两门功课的联合考试中,备有6道历史题,4道地理题,共10道题⽬可供选择,要求学⽣从中任意选取5道作答,答对4道或5道即为良好成绩.(I )设对每道题⽬的选取是随机的,求所选的5道题中⾄少选取2道地理题的概率;(II) 若学⽣甲随机选定了5道题⽬,且答对任意⼀道题的概率均为0.6,求甲没有取得良好成绩的概率(精确到⼩数点后两位).19.已知:如图,直三棱柱111ABC A B C -中,AC BC ^,D 为AB 的中点,1AC BC BB ==(I )求证:11BC AB ^; (II) 求证:1//BC 平⾯1CA D ;(III )求异⾯直线1DC 与1AB 所成⾓的余弦值.20.设12,x x 是函数322()(0)32a b f x x x a x a =+->的两个极值点,且122x x +=.(I )求证:01a(II) 求证:9b £.21.已知数列{}n a 的前n 项和为n S ,且n S =22(1,2,3)n a n L -=,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(I )求数列{}{},n n a b 的通项n a 和n b ;(II) 记1122n n n S a b a b a b =+++…,求满⾜167n S <的最⼤正整数n .22.⼀条斜率为1的直线l 与离⼼率为的双曲线E:22221(0,0)x y a b a b -=>>交于 ,P Q 两点,直线l 与y 轴交于R ,且3,4OP OQPQ RQ ?-=u u u r u u u r u u u r u u u r,求直线l 与双曲线E的⽅程.⾼三联考数学(⽂科)参考答案⼀、选择题:(每⼩题5分,共60分)⼆、填空题:(每⼩题4分,共16分)13.(0,1); 14.-2; 15.a>0; 16.①④. 14.提⽰:归纳法得到{}n a 是周期为4的数列,200622a a ==- 15.提⽰:直线10x ay --=过定点(1,0),画出区域201x y x +≥??≤?后,让直线10x ay --=绕(1,0)旋转得到不等式所表⽰的平⾯区域,平移直线30x y +=观察图象可知,必须满⾜直线10x ay --=的斜率10a>才符号题意.故a 的范围是0.a > t三、解答题:17.解:(I ),,tan 23a c x x x ==r rQ L L ∥分222sin cos tan 2sin cos 6sin cos 1tan 5x x x x x x x x ∴===++L L 分(II)21(cos cos 2(1cos 2)2f x a b x x x x x ?=+=++r r )=1sin(2)926x π=++L L 分50,2,3666x x ππππ<≤<+≤Q 则x13sin(2)1,1(262x f x π∴≤+≤≤≤于是:),故函数(f x )的值域为31122??L L ,分18.解: (I )法⼀:所选的5道题中⾄少有2道地理题的概率为5041646455101011031116424242C C C C P C C -L L =-=--=分法⼆:所选的5道题中⾄少有2道地理题的概率为3223146464645551010101020131642424242C C C C C C P C C C =++=++=L L 分(II)甲答对4道题的概率为:44150.60.40.25928P C =??L L =;分甲答对5道题的概率为:550150.60.40.0777610P C =??L L =分故甲没有获得良好成绩的概率为:121()1(0.25920.07776)P P P =-+=-+ 0.6612≈L 分19.⽅法⼀:(I )证明:111,,.AC BC AC CC AC CC B B ⊥⊥⊥则平⾯四边形11CC B B 为正⽅形,连1B C ,则11C B B C ⊥由三垂线定理,得114BC AB ⊥L L 分(II )证明:连11.AC CA E DE 交于,连在△1AC B 中,由中位线定理得1DE BC ∥. ⼜11111,.8DE CA D BC CA D BC CA D ??∴L L 平⾯平⾯,∥平⾯分(III )解:取1111,.,BB F DF C F DF AB C DF ∠的中点连和则∥或它的补⾓为所求. 令1 2.,AC BC BB ===111在直⾓△FB C 中可求出C F=5在直⾓△1AB B 中可求出221123, 3.2(2) 6.AB DF DC ==+=则=在△1DFC 中,由余弦定理,得12cos 12236C DF ∠==??L L 分⽅法⼆:如图建⽴坐标系.设12,AC BC BB ===则(I )证:11(0,2,2),(2,2,2),BC AB =--=--u u u u r u u u r11110440..4BC AB BC AB ?=-+=∴⊥u u u u r u u u rL L 分(II )证:取1AC 的中点E ,连DE.E(1,0,1),则(0,1,1),ED =u u u r 1(0,2,2).BC =--u u u u r有112..ED BC ED BC =-u u u r u u u u r1⼜与不共线,则DF ∥AB⼜11111,,.8DE CA D BC CA D BC CA D ??L L 平⾯平⾯则∥平⾯分(III )()11,(1,1,2)AB DC =---u u u r u u u u r=-2,2,-2 112242cos ,12444114DC AB -+∴=++?++u u u u r u u u rL L 分<>=20.(I )证明:22(),1f x ax bx a '=+-L L 分32212,((0)32a bx x f x x x a x a +->Q 是函数)=的两个极值点,221212120,2bx x ax bx a x x x x a a∴+-=?=-L L ,是的两个根,于是+=-分212121220,0,424b a x x a x x x x a a>∴=-<∴+=-=+=Q L L ⼜分 2223244,440,016b a b a a a a+=∴=-≥∴<≤L L 即:分 111(2,0,2),(0,2,2),(0,0,2),(2,0,0),(0,2,0),(0,0,0),(1,1,2),2A B C A B C D L L L L 分(II )证明:设232()44,()8124(23)7g a a a g a a a a a '=-=-=-L L 则分220()0,()0933a g a g a '<<>∴L L 当时,在(,)上是增函数;分21()0,(),1113a g a g a ??'<≤<∴L L 2当时,在上是减函数;分3max 216()(),12327g a g b ∴==∴≤L L L 分21.解(1)*11122,22,2,)n n n n n n n S a S a S S a n n N ---=-=-≥∈Q ⼜-=,({}*1122,0,2,(2,),nn n n n n n a a a a a n n N a a --∴=-≠∴=≥∈Q 即数列是等⽐数列. 11111,22,223n n a S a a a a =∴=-∴=Q L L 即=,分11,)20n n n n P b b b b ++∴-Q 点(在直线x-y+2=0上,+={}112,1216n n n n b b b b b n +∴-=∴=-L L 即数列是等差数列,⼜=,分(II )231122123252(21)2,n n n n S a b a b a b n +++=?+?+?++-L L =23121232(23)2(21)2n n n S n n +∴=?+?++-+-L因此:23112222222)(21)2n n n S n +-=--L +(+++即:341112(222(21)2n n n S n ++-=?++++--L 1(23)2610n n S n +∴=-+L L 分111516167,23)26167,(23)21614(23)2(24321605(23)2(2532448167412n n n n n n S n n n n n n S n ++++<-+<-<=-=?=-=?""故满⾜条件的最⼤正整数为分22.解:由222222231(),2,12b x y b a a a a=+=-=L 2=e 得双曲线的⽅程设为①2L 分设直线l 的⽅程为y x m =+,代⼊①,得:2222()2x x m a -+=,即:2222(2)0x mx m a --+=221,1221212(),(,),2,25P x y Q x y x x m x x m a +=?=--L L 设则分222222212121212()()()222()6y y x m x m x x m x x m m a m m m a =++=+++=--++=-L 分2222121234,430OP OQ x x y y m a a m ∴?=+=-∴--=u u u r u u u rL -=②7L 分4,30PQ RQ R PQ R m =∴u u u r u u u r u u u rQ 点分所成的⽐为,点的坐标为(,),则:12121233()391344y y x m x m x x m m +++++===++L L 分 1212123,2,3,10x x x x m x m x m ∴=-+===-L L 代⼊得分代⼊2222222122,32,,12x x m a m m a m a =--=--∴=L L 得-分代⼊②得21,1a m ==±从⽽221,1142y l y x x ∴=±-=L L 直线的⽅程为双曲线的⽅程为分。

2020年高考数学模拟试卷(附答案)

2020年高考数学模拟试卷(附答案)

2020年高考数学模拟试卷(附答案)姓名:__________ 班级:__________考号:__________一、选择题:本卷共8小题,每小题5分,共40分。

(共8题;共40分)1.设A={x,y},集合B={x+1,5},若A∩B={2},则A∪B=()A. {1,2}B. {1,5}C. {2,5}D. {1,2,5}2.若实数x,y满足不等式组:则该约束条件所围成的平面区域的面积是()A. 3B.C. 2D.3.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.执行如图所示的程序框图,若输入x的值为2,则输出的y值为()A. 2B. 3C. 4D. 55.已知定义在R上的函数f(x)满足(x1-x2)[f(x1)-f(x2)]>0,设,则()A. B. C. D.6.设双曲线C: (a,b>0)的一条渐近线与抛物线y2=x的一个交点为A,若点A到直线的距离大于,则双曲线C的离心率e的取值范围是( ).A. B. C. D.7.(2019•天津)已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则()A. B. C. D.8.已知函数是上的减函数,那么的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。

(共6题;共30分)9.若( 为虚数单位),则________,的实部________10.若不等式与关于x不等式<0的解集相同,则=________11.曲线在点处的切线与坐标轴所围成三角形的面积等于________.12.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为、面积为,则该圆锥的体积为________.13.若正实数x,y满足x+y=1,则xy的最大值等于________;xy+ 的最小值为________.14.已知| |=1,,则向量在方向上的投影是________.三、解答题:本大题共6小题,共80分.(共6题;共80分)15.去年“十•一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速()分成六段:,,,,,后,得到如图的频率分布直方图.(I)调查公司在抽样时用到的是哪种抽样方法?(II)求这40辆小型汽车车速的众数和中位数的估计值;(III)若从这40辆车速在的小型汽车中任意抽取2辆,求抽出的2辆车车速都在的概率.16.已知、、为的三内角,且其对边分别为、、,若.(1)求角的大小;(2)若,求的面积.17.如图,在四棱锥中,棱底面,且, ,, 是的中点.(1)求证: 平面;(2)求三棱锥的体积.18.在数列中,,。

2020年普通高等学校招生全国统一考试理科数学模拟测试试题(二)(含答案)

2020年普通高等学校招生全国统一考试理科数学模拟测试试题(二)(含答案)

2020年普通高等学校招生考试数学模拟测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5}B.{0,1,4,5}C.{2,3}D.{0,1,2,3,4,5}2.i 是虚数单位,z=2—i,则|z|=B.23.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1B.1C.-2D.24.设命题p:∀x ∈R ,x 2>0,则p ⌝为A.∀x ∈R ,x 2≤0B.∀x ∈R ,x 2>0C.∃x ∈R ,x 2>0D.∃x ∈R ,x 2≤05.51(1)x-展开式中含x -2的系数是 A.15B.-15C.10D.-106.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53,点P(b,0),为则12||||PF PF =A.6B.8C.9D.107.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于32(3d d 为球的直径),并得到球的体积为16V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式中最精确的一个是A.d ≈3B .d ≈√2V 3C.d≈√300157V3D .d≈√158V 38.已知23cos cos ,2sin sin 2αβαβ-=+=则cos(a+β)等于 A.12B.12-C.14D.14-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是A.第一场得分的中位数为52 B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等10.已知正方体的外接球与内切球上各有一个动点M 、N,若线段MN 1,则 A.正方体的外接球的表面积为12π B.正方体的内切球的体积为43πC.正方体的边长为2D.线段MN 的最大值为11.已知圆M 与直线x 十y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列 结论正确的是A.圆M 的圆心在定直线x-y-2=0上B.圆M 的面积的最大值为50πC.圆M 的半径的最小值为1D.满足条件的所有圆M 的半径之积为1012.若存在m,使得f(x)≥m 对任意x ∈D 恒成立,则函数f(x)在D 上有下界,其中m 为函数f(x)的一个下界;若存在M,使得f(x)≤M 对任意x ∈D 恒成立,则函数f(x)在D 上有上界,其中M 为函数f(x)的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是A.1不是函数1()(0)f x x x x=+>的一个下界 B.函数f(x)=x l nx 有下界,无上界C.函数2()xe f x x=有上界有,上无界下,界无下界D.函数2sin ()1xf x x =+有界 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设f(x)是定义在R 上的函数,若g(x)=f(x)+x 是偶函数,且g(-2)=-4,则f(2)=___. 14.已知函数f(x)=sin(ωx+φ)(ω>0),点2(,0)3π和7(,0)6π是函数f(x)图象上相邻的两个对称中心,则ω=___.15.已知F 1,F 2分别为椭圆的221168x y +=左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点F 2作∠F 1MF2的角平分线的垂线,垂足为N,若|ON|=2(О为坐标原点),则|MF 2|-|MF 1|=___,|OM|=__.(本题第一空2分,第二空3分)16.在正三棱柱ABC-A 1B 1C 1中,AB =1=2,E,F 分别为AB 1,A 1C 1的中点,平面α过点C 1,且平面α∥平面A 1B 1C ,平面α∩平面A 1B 1C 1=l ,则异面直线EF 与l 所成角的余弦值为__·四、解答题:本题共6小题,共70分。

2020年高考数学模拟试卷1(附详细答案)

2020年高考数学模拟试卷1(附详细答案)

ABC(第7题)2020年高考数学模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合{}11A x x =-<<,{}102B =-,,,则A B =I ▲ .2. 复数2i1iz =-(i 为虚数单位)的实部是 ▲ . 3. 甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为 ▲ .4. 某地区连续5天的最低气温(单位:°C )依次为8,-4,-1,0,2,则该组数据的方差为 ▲ .5. 根据如图所示的伪代码,当输出y 的值为12时,则输入的x 的值为 ▲ .6. 在平面直角坐标系xOy 中,圆224440x y x y +-++=被直线50x y --=所截得的弦长为 ▲ .7. 如图,三个相同的正方形相接,则tan ABC ∠的值为 ▲ .8. 如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥底面ABCD ,E 为PD 上一点,且2PE ED =.设三棱锥P ACE -的体积为1V ,三棱锥P ABC -的体积为2V ,则12:V V = ▲ .9. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 是FN 的中点,则FN 的长度为 ▲ .10.若函数()f x 为定义在R 上的奇函数,当0x >时,()ln f x x x =,则不等式()e f x <-的解集为 ▲ .11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图).现将99根相同的圆钢Read xIf x ≤0 Then y ←x 2+1 Else y ← End If Print y(第5题)( 第8题 )ABCD PE(第10题)ABCB 1C 1A 1MN (第16题)A BCMN(第12题)捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为 ▲ .12.如图,在△ABC 中,点M 为边BC 的中点,且2AM =,点N 为线段AM 的中点,若74AB AC ⋅=u u u r u u u r ,则NB NC ⋅u u u r u u u r 的值为 ▲ .13.已知正数x y ,满足11910x y x y +++=,则1x y+的最小值是 ▲ . 14.设等比数列{a n }满足:12cos 3sin n n n a a θθ==,其中π02n θ⎛⎫∈ ⎪⎝⎭,,*n ∈N .则 数列{}n θ的前2 018项之和是 ▲ . 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)已知31sin cos θθ-+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,已知M ,N 分别为线段1BB ,1A C 的中点,MN 与1AA 所成角的大小为90°,且1MA MC =.求证:(1)平面1A MC ⊥平面11A ACC ; (2)//MN 平面ABC .O xyABP E F(第18题)17.(本小题满分14分某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为 1万元,每生产x (百套)的销售额(单位:万元)20.4 4.20.805()914.7 5.3x x x P x x x ⎧-+-<⎪=⎨->⎪-⎩≤,,, (1)该厂至少生产多少套此款式服装才可以不亏本?(2)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :222210x y a b a b+=>>()的离心率为32,且过点312⎛⎫⎪⎝⎭,.设P 为椭圆C 在第一象限上的点,A ,B 分别为椭圆C 的左顶点和 下顶点,且PA 交y 轴于点E ,PB 交x 轴于点F . (1)求a b ,的值;(2)若F 为椭圆C 的右焦点,求点E 的坐标; (3)求证:四边形ABFE 的面积为定值.19.(本小题满分16分)设数列{a n }的前n 项和为n S ,且满足:()()2*0n n n a S a p n p >=+∈∈N R ,,.(1)若29p =,求a 1的值; (2)若123a a a ,,成等差数列,求数列{a n }的通项公式.20.(本小题满分16分)已知函数()e (1)xf x a x =-+,其中e 为自然对数的底数,a ∈R . (1)讨论函数()f x 的单调性,并写出相应的单调区间;(2)已知0a >,b ∈R ,若()f x b ≥对任意x ∈R 都成立,求ab 的最大值; (3)设()(e)g x a x =+,若存在0x ∈R ,使得00()()f x g x =成立,求a 的取值范围.2018年高考模拟试卷(1)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定两题,并在相应的答题区域内作答.................. A . [选修4—1:几何证明选讲](本小题满分10分)如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E , 交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .B . [选修4-2:矩阵与变换](本小题满分10分)BDCA PE(第21—A 题)ABCDP(第22题)已知2143-⎡⎤=⎢⎥-⎣⎦M ,4131-⎡⎤=⎢⎥-⎣⎦N .求满足方程=MX N 的二阶矩阵X .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为13232x t y ⎧=⎪⎪⎨⎪=⎪⎩, (t 为参数),圆C 的参数方程为2cos 22sin x a y θθ=+⎧⎨=+⎩,(θ为参数).设直线l 与圆C 相切,求正实数a 的值.D .[选修4-5:不等式选讲](本小题满分10分)设0x y z >,,,证明:222111x y z y z x x y z++++≥. 【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.(本小题满分10分)如图,在四棱锥P ABCD -中,棱AB ,AD ,AP 两两垂直,且长度均为1,BC AD λ=u u u r u u u r(01λ<≤). (1)若1λ=,求直线PC 与平面PBD 所成角的正弦值; (2)若二面角B PC D --的大小为120°,求实数λ的值.23.(本小题满分10分)甲,乙两人进行抛硬币游戏,规定:每次抛币后,正面向上甲赢,否则乙赢.此时, 两人正在游戏,且知甲再赢m (常数m >1)次就获胜,而乙要再赢n (常数n >m ) 次才获胜,其中一人获胜游戏就结束.设再进行ξ次抛币,游戏结束.(1)若m 2=,n 3=,求概率()4P ξ=;(2)若2n m =+,求概率()P m k ξ=+(23k =,,…1m +,)的最大值(用m 表示)2020年高考数学模拟试卷(1)参考答案数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.1.{}0 2. -1 3.0.5 4. 16 5.6.7. 17【解析】设最右边的正方形的右下角顶点为D ,则()11tan tan 123tan tan 1tan tan 117123BCD BAD ABC BCD BAD BCD BAD -∠-∠∠=∠-∠===+∠∠+⨯.8. 23【解析】因为2PE ED =,所以三棱锥E ACD -的体积是三棱锥P ACD -体积的13,所以三棱锥P ACE -的体积是P ACD -体积的23.因为三棱锥P ABC -与三棱锥P ACD -体积相等,所以12:V V =23.9. 6【解析】如图,过点M 作准线的垂线,垂足为T ,交y 轴于点P ,所以112MP OF ==,3MF MT ==,所以26FN MF ==.10. (,e)-∞-【解析】11()ln 1,(0,),(,),(e)e e ef x x f '=++∞=为减区间为增区间.由于()f x 是奇函数,结合函数图像得,不等式的解集是(,e)-∞-.11. 8【解析】设99根相同的圆钢捆扎成的尽可能大的1个正六边形垛的边长为n 根,则这个正六边形垛的层数是21n -,每一层的根数从上往下依次为: 12(2)(1)(2)21n n n n n n n n n n n n ++⋅⋅⋅+-+-+-⋅⋅⋅++,,,,,,,,,,,则圆钢的总根数为:()222(1)2(21)33 1.2n n n n n n +--⨯+-=-+由题意2331n n -+≤99即2993n n --≤0,设函数299()3f x x x =--,则299()3f x x x =--在[)1+∞,上单调递增. 因为(6)0(7)0f f <>,,所以6n =.此时剩余的圆钢根数为299(36361)8-⨯-⨯+=.12. 54-【解析】由极化恒等式知,22AB AC AM BM ⋅=-u u u r u u u r ,则32BM ==,所以()222235124NB NC MN BM ⋅=-=-=-u u u r u u u r . 13. 2【解析】设1a x y =+,19b y x=+,则10a b +=.因为ab =()1x y+⋅()1191091016y xy x xy +=+++≥ (当且仅当19xy xy =时取“=”),所以()1016a a -≥,解得28a ≤≤,所以1x y +的最小值是2.14. 1009π6【解析】因为()π02n θ∈,,所以()(]πcos 2sin 126n n n n a θθθ=+=+∈,,所以等比数列{a n }的公比0q >.若1q >,由1a n 充分大,则2n a >,矛盾;若01q <<,由1a n 充分大,则1n a <,矛盾,所以1q =,从而1n a a ==π12n θ=.则数列{}n θ的前2 018项之和是1009π6.二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)解:(1)由sin cos θθ+=2(sin cos )1θθ+=-,即22sin 2sin cos cos 1θθθθ++=-sin 2θ=.因为()ππ44θ∈-,,所以()ππ222θ∈-,,所以π23θ=-,即π6θ=-. (2)由(1)知,()22π()sin sin 6f x x x =--,所以()()11π()1cos21cos 2223f x x x ⎡⎤=----⎢⎥⎣⎦ABCB 1C 1A 1MN()1πcos 2cos223x x ⎡⎤=--⎢⎥⎣⎦3112cos222x x ⎫=-⎪⎭()1πsin 226x =-.令πππ2π22π+262k x k --≤≤,得ππππ+63k x k -≤≤,所以函数()f x 的单调增区间是ππππ+63k k ⎡⎤-⎢⎥⎣⎦,,Z k ∈.16.(本小题满分14分证明:(1)因为MN 与1AA 所成角的大小为90°,所以MN ⊥1AA , 因为1MA MC =,且N 是A 1C 的中点,所以MN ⊥1A C . 又111AA AC A =I ,1AC ,1AA ⊂平面11A ACC , 故MN ⊥平面11A ACC ,因为MN ⊂平面1A MC ,所以平面1A MC ⊥平面11A ACC .(2)取AC 中点P ,连结NP ,BP .因为N 为A 1C 中点,P 为AC 中点,所以PN //AA 1,且PN 12=AA 1.在三棱柱111ABC A BC -中,BB 1 // AA 1,且BB 1=AA 1. 又M 为BB 1中点,故BM // AA 1,且BM 12=AA 1.所以PN // BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN // BP .又MN ⊄平面ABC ,BP ⊂平面ABC ,故//MN 平面ABC . 17.(本小题满分14分 解:(1)考虑05x <≤时,利润()()22()20.4 4.20.820.4 3.2 2.8y P x x x x x x x =-+=-+--+=-+-.令20.4 3.2 2.80y x x =-+-≥得,17x ≤≤,从而15x ≤≤,即min 1x =. (2)当05x <≤时,由(1)知()220.4 3.2 2.80.44 3.6y x x x =-+-=--+, 所以当4x =时,max 3.6y =(万元).当5x >时,利润()()()99()214.729.7333y P x x x x x x =-+=--+=--+--.因为()99323633x x x x -+-⋅--≥(当且仅当933x x -=-即6x =时,取“=”), 所以max 3.7y =(万元).综上,当6x =时,max 3.7y =(万元).答:(1)该厂至少生产1百套此款式服装才可以不亏本;(2)该厂生产6百套此款式服装时,利润最大,且最大利润为3.7万元. 18.(本小题满分16分)解:(1)依题意,221314a b +=,c a =222(0)c a b c =->,解得2241a b ==,. 因为0a b >>,所以21a b ==,. (2)由(1)知,椭圆C的右焦点为)0F,椭圆C 的方程为2214x y +=,①所以()()2001A B --,,,.从而直线BF1y =. ②由①②得,)17P ,.从而直线AP的方程为:2)y x =+.令0x =,得7y =-E的坐标为(07-,. (3)设()00P x y ,(0000x y >>,),且220014x y +=,即220044x y +=.则直线AP 的方程为:00(2)2y y x x =++,令0x =,得0022y y x =+. 直线BP 的方程为:0011y y x x ++=,令0y =,得001xx y =+. 所以四边形ABFE 的面积S =()()00002121212x y y x ++++00000022221212x y x y y x ++++=⋅⋅++ ()2200000000004222441222x y x y x y x y x y +++++=⋅+++00000000224422x y x y x y x y +++=+++ 2=. 19.(本小题满分16分)解:(1)因为29p =,所以()211129a S a ==+,即211540981a a -+=,解得119a =或49.(2)设等差数列123a a a ,,的公差为d . 因为()()2*n n S a p n p =+∈∈N R ,,所以()211a a p =+, ①()2122a a a p +=+, ②()21233a a a a p ++=+. ③②-①,得()()22221a a p a p =+-+,即()2122a d a a p =++, ④③-②,得()()22332a a p a p =+-+,即()3232a d a a p =++, ⑤ ⑤-④,得()()32231222a a d a a p a a p ⎡⎤-=++-++⎣⎦,即22d d =. 若0d =,则230a a ==,与0n a >矛盾,故12d =. 代入④得()1111112222a a a p +=+++,于是14p =.因为()()2*14n n S a n =+∈N ,所以()21114n n S a ++=+, 所以()()221111144n n nn na S S a a +++=-=+-+,即()()221111044n n n a a a +++--+=,整理得()()22111044n na a +--+=,于是()()11102n n n na a a a +++--=.因为0n a >,所以1102n n a a +--=,即112n n a a +-=.因为()21114a a =+,所以114a =.所以数列{a n }是首项为14,公差为12的等差数列. 因此,*1121(1)()424n n a n n -=+-=∈N .20.(本小题满分16分)解:(1)由()e (1)x f x a x =-+,知()e x f x a '=-.若0a ≤,则()0f x '>恒成立,所以()f x 在()-∞+∞,上单调递增; 若0a >,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以()f x 在(ln )a -∞,上单调递减;在(ln )a +∞,上单调递增. (2)由(1)知,当0a >时,min ()(ln )ln f x f a a a ==-.因为()f x b ≥对任意x ∈R 都成立,所以ln b a a -≤, 所以2ln ab a a -≤.设2()ln t a a a =-,(0a >),由21()(2ln )(2ln 1)t a a a a a a a '=-+⋅=-+,令()0t a '=,得12e a -=,当120e a -<<时,()0t a '>,所以()t a 在()120e-,上单调递增;当12e a ->时,()0t a '<,所以()t a 在()12e -∞,+上单调递减,所以()t a 在12e a -=处取最大值,且最大值为12e.所以21ln 2e ab a a -≤≤,当且仅当12e a -=,121e 2b -=时,ab 取得最大值为12e. (3)设()()()F x f x g x =-,即()e e 2x F x x ax a =--- 题设等价于函数()F x 有零点时的a 的取值范围.① 当0a ≥时,由(1)30F a =-≤,1(1)e e 0F a --=++>,所以()F x 有零点. ② 当e 02a -<≤时,若0x ≤,由e 20a +≥,得()e (e 2)0x F x a x a =-+->;若0x >,由(1)知,()(21)0F x a x =-+>,所以()F x 无零点. ③ 当e 2a <-时,(0)10F a =->,又存在010e 2a x a -=<+,00()1(e 2)0F x a x a <-+-=,所以()F x 有零点.综上,a 的取值范围是e 2a <-或0a ≥.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答.............题区域内作答.......若多做,则按作答的前两题评分. A . [选修4—1:几何证明选讲](本小题满分10分)证明:因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE . 又∠PEA =∠BED ,故△P AE △△BDE . B . [选修4-2:矩阵与变换](本小题满分10分)21B.【解】设1 -⎡⎤=⎢⎥⎣⎦a c b d A ,因为12 -1 1 02 1 0 1-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a cb d AA , 所以2a b 1,2c d 0,2a b 0,2c d 1,-=⎧⎪-=⎪⎨+=⎪⎪+=⎩A BCDPxzy解之得1a 41b 21c 41d 2⎧=⎪⎪=-⎪⎪⎨⎪=⎪⎪=⎪⎩ ,所以A -1=11 4411- 22⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 所以12131111 16164444()111131- - 222288-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A .C .[选修4-4:坐标系与参数方程](本小题满分10分)解:直线l 的普通方程为33y x =+,圆C 的参数方程化为普通方程为22()(2)4x a y -+-=.因为直线l 与圆C 223232(3)(1)a -+=+-.解得3a =53a =,又0a >,所以3a = D .[选修4-5:不等式选讲](本小题满分10分)证明:由柯西不等式,得()()2222222111111...y y x z x z x y zx y z y z x y z x ++++≥,即()()()2222111111y x z x y zx y z y z x ++++++≥,所以222111yx z x y z y z x++++≥.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)解:(1)以{}AB AD AP u u u r u u u r u u u r,,为一组基底建立如图所示的空间直角坐标系A —xyz .因为1λ=,所以BC AD =u u u r u u u r.依题意,()110C ,,,()001P ,,,()100B ,,,()010D ,,, 所以()111PC =-u u u r ,,, ()101PB =-u u u r ,,,()11PD =-u u u r0,,. 设平面PBD 的一个法向量为n ()x y z =,,,则00PB PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r,,n n 所以00x z y z -=⎧⎨-=⎩,. 取1z =得,n ()111=,,.所以1 cos 3PC PC PC ⋅〈〉===⋅u u u ru u u r u u u r,n n n . 所以直线PC 与平面PBD 所成角的正弦值为13.(2)依题意,()10C λ,,,()101PB u u u r ,,=-,()11PC λu u u r ,,=-,()011PD u u u r,,=-. 设平面PBC 的一个法向量为1n ()111x y z ,,=,则1100PB PC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r,,n n 即1111100x z x y z λ-=⎧⎨+-=⎩,,取11z =得,()1101=,,n . 设平面PCD 的一个法向量为2n ()222x y z ,,=,则2200PC PD ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r,,n n 即2222200x y z y z λ+-=⎧⎨-=⎩,,取21z =得,2n ()111λ=-,,.所以121212 cos⋅〈〉=⨯,n n n n n n 1 cos120 2==o , 解得1λ=或5λ=,因为01λ<≤,所以1λ=. 23.(本小题满分10分)解:(1)依题意, ()()31343128P ξ==⨯⨯=.(2)依题意,()()()11111C C2m km m m k m k P m k ξ+-++-+-=+=+⋅(23k =,,…1m +,). 设()()()11111CC2m km m m k m k f k +-++-+-=+⋅()()()()()()1!1!121!!1!2!m km k m k m k m k ++-+-⎡⎤=+⋅⎢⎥-+-⎣⎦()()()()()1111!21!!m km m k k m k m k +++-=⋅⋅+-+则()()1f k f k +()()()()()()()()()()()1111!21!1!1111!21!!m k m k m m k k m k m k m m k k m k m k ++++++⋅⋅+++=++-⋅⋅+-+()()()()()()112111m k m m k k k m m k k ++++⎡⎤⎣⎦=+++-⎡⎤⎣⎦. 而()()()()()()1112111m k m m k k k m m k k ++++⎡⎤⎣⎦+++-⎡⎤⎣⎦≥ (*) ()()()32221220k m k m k m m m ⇔-++----≤()()2220k m k k m m ⇔--+--≤.(#) 因为2220k k m m -+--=的判别式()21420m m ∆=---<2704m m ⇔--<(显然在*1m m >∈N ,时恒成立), 所以2220k k m m -+-->.又因为k m ≤,所以(#)恒成立,从而(*)成立. 所以()()11f k f k +≥,即()()1f k f k +≥(当且仅当k m =时,取“=”), 所以()f k 的最大值为()()()()21112211C C2m m m mmf m f m +-+=+=+⋅,即()P m k ξ=+的最大值为()()2111221CC2m m m mm+-++⋅.。

2020高考数学模拟试卷含答案

2020高考数学模拟试卷含答案

P 到直线 A1B1 与直线 BC 的距离相等,则动点 P 所在曲线的形
状为


30 千米内的地区为危险区,城市 B 在 A 的正东 40 千米处, B 城市处
于危险区内的时间为


P
A.0.5 小时
B.1 小时
C.1.5 小时
D.2 小时
的,则通电后不断路的概率为
.
16. 同住一间寝室的四名女生,她们当中有一人在修指甲,一人在看书,
⑤C 不在看书,也不在听音乐
的一项的值
为 5 , 则 x 在 [0,2 ) 内的值为

2
14 .为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化
为标准分,转化关系式为: Z x x (其中 x 是某位学生的考试分数,
s
x 是该次考试的平均分, s 是该次考试的标准差, Z 称为这位学生的标
分数为
.
15. 如图:电路中五个方框均为保险匣。框 内数字为通电时保险丝被烧断的概率, 假定通电后保险丝是否烧断是相互独立
18. (本小题满分 12 分)如图,正四棱柱 ABCD — A1B1C1D 1 的底面边长
是 3 ,侧棱长是 3,点 E、F 分别在 BB1、DD 1 上,且 AE⊥A1B,AF⊥A1D,
设甲独立解出此题的概率为 P1,乙为 P2. ……(2 分)
则 P(A)=P 1=0.6,P(B)=P 2
P( A B) 1 P ( A B ) 1 (1 P1)(1 P2 ) P1 P2 P1P2 0.92
0.6 P2 0.6P2 0.92
则 0.4P2 0.32即 P2 0.8
(6分 )
(2)P( 0) P( A) P(B) 0.4 0.2 0.08

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

A. 210
B. 120
C. 120
D. 210
4.B 【解析 】由二项 展开式, 知其通项 为 Tr1
C1r0
(
1 x
)10r
(
x)r
(1)r C1r0 x2r10
,令
2r 10 4 ,解得 r 7 .所以 x4 的系数为 (1)7 C170 120. 选 B.
5.已知三棱锥 S ABC 中, SAB ABC π , SB 4, SC 2 13, AB 2, BC 6 , 2
,得
x
2.
由 0 x 2 时, g(x) 0 , g(x) 单调递闰;
当 x 2 时, g(x) 0 , g(x) 单调递增.
从 而 g(x) 在 x 2 时 取 得 最 小 值 为 g(2) 16 , 从 而 点 A 到 圆 心 C 的 最 小 值 为
g(2) 16 4 ,所以| AB | 的最小值为 4 1 3. 选 A.
C. {(1,1), (2, 4)}
D.
x y 2
x 1
1.C【解析】
首先注意到集合 A 与集合 B 均为点集,联立 y
x2
,解得
y
1
,或
x 2
y
4
பைடு நூலகம்
,从而集合
A
B
{(1,1),
(2,
4)}
,选
C.
2.已知 a bi(a, b R) 是 1 i 的共轭复数,则 a b 1 i
A. 1
2
2
SA AC
.所以
SA
平面
ABC
.又由于
SABC
1 26 2
6
,从而

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。

2020年普通高等学校招生考试全国统一考试(模拟卷) 数学 含答案

按秘密级事项管理★启用前2020年普通高等学校招生考试全国统一考试(模拟卷)数 学试卷满分150分 考试用时120分钟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{(,)|2}A x y x y =+=,{}2(,)|B x y y x ==,则A B =A.{(1,1)}B.{(2,4)}−C.{(1,1),(2,4)}−D.∅2.已知(,)a bi a b +∈R 是11i i −+的共轭复数,则a b += A.1− B.12− C.12D.1 3.设向量(1,1)=a ,(1,3)−b ,(2,1)=c ,且()λ−⊥a b c ,则λ=A.3B.2C.2−D.3− 4.101()x x −的展开式中4x 的系数是 A.210− B.120− C.120 D.2105.已知三棱锥S ABC −中,,4,2,62SAB ABC SB SC AB BC π∠=∠====, 则三棱锥S ABC −的体积是A.4B.6C.D.6.已知点A 为曲线4(0)y x x x=+>上的动点,B 为圆22(2)1x y −+=上的动点,则||AB 的最小值是A.3B.4C.D.7.设命题P :所有正方形都是平行四边形。

则p ¬为A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8.若1a b c >>>,且2ac b <,则 A.log log log a b c b c a >> B.log log log c b a b a c >>C.log log log b a c c b a >>D.log log log b c a a b c >>9.下图为某地区2006年 2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年 2018年A.财政预算内收入、城乡居民储蓄年末余额均呈增长趋势B.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C.财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D.10.已知双曲线C 过点且渐近线为y x =,则下列结论正确的是A.C 的方程为2213x y −= B.C C.曲线2+1x y e −=经过C 的一个焦点 D.直线10x −=与C 有两个公共点11.正方体1111ABCD A B C D −的棱长为1,E ,F ,G 分别为BC ,1CC ,1BB 的中点.则A.直线1D D 与直线AF 垂直B.直线1AG 与平面AEF 平行C.平面AEF 截正方体所得的截面面积为1D.点C 与点G 到平面AEF 的距离相等12.函数()f x 的定义域为R ,且(1)f x +与(2)f x +都为奇函数,则A.()f x 为奇函数B.(1)f x +为周期函数C.(4)f x +为奇函数D.(4)f x +为偶函数二、填空题:本题共4小题,每小题5分,共20分。

2020年高考数学模拟试题(附答案)

2020年高考数学模拟试题(附答案)姓名:__________ 班级:__________考号:__________一、选择题:本卷共8小题,每小题5分,共40分。

(共8题;共40分)1.设集合,则()A. B. C. D.2.若实数满足则的最小值是()A. B. C. D.3.设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4.执行如图所示的程序框图,则输出的值为()A. 5B. 12C. 27D. 585.已知奇函数是定义在上的减函数,且,,,则的大小关系为()A. B. C. D.6.已知P为双曲线上一点,为双曲线C的左、右焦点,若,且直线与以C的实轴为直径的圆相切,则C的渐近线方程为()A. B. C. D.7.将函数的图像向右平移个单位长度后,得到函数的图像,则函数的单调增区间为()A. B.C. D.8.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。

(共6题;共30分)9.已知复数,其中为虚数单位,则复数的模是________.10.集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为________11.已知为奇函数,当时,,则曲线在点处的切线方程为________.12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.13.若,,,则的最小值为________.14.在△ABC中,tanA=﹣3,△ABC的面积S△ABC=1,P0为线段BC上一定点,且满足CP0=BC,若P为线段BC上任意一点,且恒有,则线段BC的长为________.三、解答题:本大题共6小题,共80分.(共6题;共80分)15.某单位开展“党员在线学习” 活动,统计党员某周周一至周日(共天)学习得分情况,下表是党员甲和党员乙学习得分情况:党员甲学习得分情况党员乙学习得分情况(1)求本周党员乙周一至周日(共天)学习得分的平均数和方差;(2)从本周周一至周日中任选一天,求这一天党员甲和党员乙学习得分都不低于分的概率;(3)根据本周某一天的数据,将全单位名党员的学习得分按照,, ,,进行分组、绘制成频率分布直方图(如图)已知这一天甲和乙学习得分在名党员中排名分别为第和第名,请确定这是根据哪一天的数据制作的频率分布直方图.(直接写结果,不需要过程)16.如图四边形中,分别为的内角的对边,且满足.(1)证明:;(2)若,设, 求四边形面积的最大值.17.如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正方形,AE=1,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)线段AD上是否存在一点M,使平面ABE与平面MCE所成二面角的余弦值为?若存在,试确定点M的位置;若不存在,请说明理由.18.已知数列满足.(Ⅰ)若成等差数列,求的值;(Ⅱ)是否存在,使数列为等比数列?若存在,求出所有这样的;若不存在,说明理由.19.已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.20.已知函数f(x)=kx,(1)求函数的单调递增区间;(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求k的取值范围;(3)求证:.答案一、选择题:本卷共8小题,每小题5分,共40分。

2020年普通高等学校招生全国统一考试(模拟卷)数学附解析

2020年普通高等学校招生全国统一考试(模拟卷)数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合(){}(){}2,2,,A x y x y B x y y x A B =+===⋂=,则A.(){}11, B.(){}24-,C.()(){}1124-,,, D. ∅2. 已知()1,1ia bi ab R i -+∈+是的共轭复数,则a b += A. 1-B. 12-C. 12D.13. 设向量()()()1,1,1,3,2,1a b c ==-=,且()a b c λ-⊥,则λ= A.3B.2C. 2-D. 3-4. 101x x ⎛⎫- ⎪⎝⎭的展开式中4x 的系数是(理科生做) A. 210-B. 120-C.120D.2104. 函数f (x )=x 2-5 x +6的定义域为(文科生做) A. {x | x ≤ 2 或x ≥ 3}B.{x | x ≤ - 3 或 x ≥ -2}C. {x | 2 ≤ x ≤ 3}D. {x | -3 ≤ x ≤-2} 5. 已知三棱锥S ABC -中,,4,213,2,62SAB ABC SB SC AB BC π∠=∠=====,则三棱锥S ABC-的体积是 A.4B.6C. 3D. 36. 已知点A 为曲线()40y x x x=+>上的动点,B 为圆()2221x y -+=上的动点,则AB 的最小值是 A.3B.4C. 32D. 427. 设命题p :所有正方形都是平行四边形,则p ⌝为 A.所有正方形都不是平行四边形 B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8. 若21a b c ac b >>><且,则 A. log log log a b c b c a >>B. log c b > log b a > log a cC. log log log b a c c b a >>D. log log log b c a a b c >>二、多项选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档