ZKFJ自控飞机(B级)设计计算书

合集下载

QB20-19.5桥式起重机计算书

QB20-19.5桥式起重机计算书

QB20-19.5 A3dⅡBT4防爆桥式起重机产品编号:09278计算说明书计算:审核:批准年月日QB20-19.5A3桥式起重机一、主梁设计计算1、主要参数起重量:20t跨度:19.5m轮距:4m粗选主梁截面:上下盖板δ=11.75mm 材料:Q235B 腹板δ=5.75mm 材料:Q235B 腹板δ=5.75mm 材料:Q235B两腹板中心距:260mm主梁腹板高:1000mm2、主梁刚度计算:主梁截面性质:主梁截面面积:S=500*11.75*2+1000*5.75*2=27300主梁质量:m=k*p*s*1m=1.4*7.85*10-6*27300*19500=4549kg主梁均布载荷集度Fq=p*g*k*l=7.85*10-6*9.8*1.4*19500=6.7N/mm主梁形心位置的确定形心为几何中心主梁惯心距的确定对于X轴:I Y=2*(500*5.753/12+500*5.75*1752)+2*(11.75*10003/12)=8.7*108mm4对于Y轴:I Y=2*(5.75*5003/12)+2*(1000*11.753/12+1000*11.75*1502) =6.7*108mm43、跨中截面的最大应力计算:MC1max=(p1+p2)LK(1-2b1/Lk)/4=29*103*19500*(1-2*4400/19500)/4=38*107N·mmMC2max=Fq[LK(LK-X)]/2+RaXφ=1*4750*4750/2+3.9*106=15.2*106N·mm则:MC max= MC2max+ MC1max=72.2*106N·mmMS max=0.8* MS max*Aqj/g=0.8*72.2*106*0.12/9.8=0.71*106N·mm4、强度校核对于所以级别的起重机按Ⅱ类载荷进行强度校核σmax=Mcmax/Wxmin+2Msmax/Wy=72.2*106*175/1.3*108+2*1.42*106*150/1*108mm4 =101.46N/mm2σΨ=0.1σmax=10.146N/mm2σω=0.5σmax=5.073 N/mm2σ=1.15(σmax+σΨ+σω)=134.2 N/mm2σm=p/Cσ1= 21*103/(50+2*30)*5=38.2 N/mm2σ0=101.46 N/mm2考虑约束扭转核约束弯曲应力及各种动载冲击系数,一系数计入:σzk=1.15(σ02+σm2-σ0σm)0.5=1.15(101.46²+38.2²-104.46*38.2)0.5=102.1 N/mm2﹤[σ] Ⅱ=170 N/mm2强度校核通过二、刚度校核主梁刚度校核(按简支梁计算)主梁静刚度计算(满载小车位于跨中)计算如下:Fmax=(p1+p2)*(0.75L2-12)/12EIX≤[f]=(16000+13000)*(0.75*19.52-42)/12*210*106*1.3*108*10-12 =39mm﹤[f]主梁静刚度通过。

飞机总体设计参数估算(精)

飞机总体设计参数估算(精)

1 = 0.124 =1- 1.142
算例:单通道客机重量估算
燃油系数的计算
算例:单通道客机重量估算
算例:单通道客机重量估算
算例:单通道客机重量估算
算例:单通道客机重量估算
最终求得的重量数据:
计算燃油系数的简化方法
燃油系数公式:
WFuel ln Wto
ESAR = ⎛ a ⎞⎛ L ⎞ ⎜ ⎟⎜ M ⎟ ⎝ C ⎠⎝ D ⎠
关键:性能~翼载和推重比的计算模型
计算模型(起飞距离)
• 起飞距离
– 正常起飞情况(发动机正常工作)的计算公式:
k ToL = e CLUS ⎛ T ⎞ ⎜ ⎟ ⎝ Mg ⎠
−1.35
⎛ Mg 0 ⎞ ⎛ Mg ⎞ 6 + ⎜ ⎟ ⎜ ⎟ SC ⎝ S ⎠0 ⎝ LUS ⎠
1/ 2
⎡ ⎛ T ⎞ ⎤ + H1 ⎢1 − ⎜ ⎟ ⎥ Mg ⎝ ⎠0 ⎦ ⎣
升阻比
16.0 15.3 18.5 17.2 15.6 18.2 13.0 15.6
关于发动机耗油率
涡扇发动机的耗油率
装机后 耗油率
涵道比
算例:单通道客机重量估算
设计要求
算例:单通道客机重量估算
飞行任务剖面图
算例:单通道客机重量估算
• 在重量估算中,关键是估算巡航阶段燃油系数。 • 根据设计要求:
军用喷气运输机/轰炸机的重量统计数据
军用喷气运输机/轰炸机重量统计数据拟合
运输机的统计数据
拟合出的统计关系
燃油系数的计算
• 燃油系数主要由任务剖面中巡航阶段确定,其它阶段 巡航阶段以外)的燃油系数为:
• 巡航阶段燃油系数可用Breguet航程方程确定

汽车起重机总体设计计算书

汽车起重机总体设计计算书

汽车起重机总体设计(计算书)一、整机主要技术性能参数二、总体计算参数的确定三、坐标系的建立四、行驶状态整机重心及轴荷计算五、变幅机构三铰点计算六、起重作业吊臂仰角、起升高度计算七、吊臂伸缩机构计算八、吊臂强度起重量计算九、稳定性起重量计算十、吊臂强度校核计算十一、支腿反力计算十二、回转支承计算十三、回转机构计算十四、起升机构计算十五、整机作业稳定性及行驶稳定性计算十六、活动支腿危险截面强度校核计算一、整机主要性能参数1.最大额定起重量(t) 162.最大额定起重力矩(t·m) 603.基本臂最大起升高度(m) 9.84.全伸臂最大起升高度(m) 305.主臂加副臂最大起升高度(m) 37.56.支腿跨距(纵向×横向)(m) 4.7×5.67.主钩满载最大起升速度(m/min)(单绳) 708.副钩满载最大起升速度(m/min) 659.额定回转速度(r/min) 2.510.底盘型号 CA5241JQZ11.驱动型式 6×412.发动机型号 CA6DE2-22额定功率kw/rpm: 162/240013.轴距(mm) 4065+127014.接近角° 16.215.离去角° 10.316.最小转弯直径(m) 2017.最高行驶速度(km/h) 7018.最大爬坡度% 2419.整机外型尺寸(m)(长×宽×高) 11.971×2.490×3.220.整机重量(t) 23.42底盘主要技术性能参数:车辆长(m) 9.532 车辆宽(m) 2.490 车辆高(m) 2.342 前轮距(m) 2.024 后轮距(m) 1.854 底盘整备质量(kg) 8570前轴(kg) 3820中后桥(kg) 4750厂定最大总质量(kg) 24000 前轴允许最大载重质量(kg) 6000后轴允许最大载重质量(kg) 18000 最小离地间隙(mm) 250车架满载上平面距地高度(mm) 1345二、 总体计算参数的确定1、 整机行驶状态下车部分重量、重心参数注:底盘整备质量其中: G 前 =3820kg G 底 =8570kg G 后 =4750kg 行驶状态下车重量、重心计算下车总重G 下 = ∑Gi =12708kg 重心至双后桥中心线水平距离X 下 =∑∑×GiXi Gi =166cm重心至地面的垂直距离Y 下 =∑∑×GiYi Gi =84cm重心至纵向中心线右侧的距离 Z 下 =∑∑×GiZiGi =02、 上车固定部分重量、重心参数上车固定部分坐标系为回转支承下平面与回转中心之交点为原点 行驶状态上车固定部分重量、重心计算:上车固定部分总重 G 上固 = ∑Gi =5020kg上车固定部分重心至回转中心水平距离 X 上固 =∑∑×GiXiGi =166cm (上车坐标原点后方)上车固定部分重心至回转支承下平面垂直距离 Y 上固 =∑∑×GiYiGi =41cm (上车坐标原点上方)上车固定部分重心至整机纵向中心线距离Z 上固 =∑∑×GiZi Gi =8cm (整机行驶方向左侧)3、整机行驶状态上车活动部分重量、重心参数上车活动部分坐标系原点为吊臂后铰点中心 行驶状态上车活动部分重量、重心计算:上车活动部分重量 G 上活 = ∑Gi =4896kg上车活动部分重心距吊臂后铰点水平距离 X 上活 =∑∑×GiXiGi =477cm (上车坐标系)上车活动部分重心距吊臂后铰点垂直距离Y 上活 =∑∑×Gi Yi Gi =151cm 上车活动部分重心距整机纵向中心线距离Z 上活 =∑∑×GiZi Gi =48cm4、整机上、下车几何参数的确定上车回转中心距双后桥中心的水平距离 X 0 回转支承下平面中心距双后桥轮胎中心垂直距离 Y 0 变幅油缸后铰点中心距上车回转中心的水平距离 X 1 变幅油缸后铰点中心距回转支承下平面中心垂直距离 Y 1 吊臂后铰点中心距回转中心的水平距离 X 2 吊臂后铰点中心距回转支承下平面中心垂直距离 Y 2 伸缩油缸后铰点距吊臂后铰点的水平距离 X 3 伸缩油缸后铰点距吊臂后铰点的垂直距离 Y 3 后支腿中心距回转中心的水平距离 X 4 后支腿中心距回转支承下平面的垂直距离 Y 4 吊臂后铰点距吊臂轴线的距离 C 1 吊臂头部滑轮中心距吊臂轴线距离 C 2 副臂根部中心到吊臂轴线距离 C 3 变幅油缸上铰点距吊臂轴线距离 C 4 吊臂头部滑轮中心距吊钩中心距离 C 5钢丝绳到吊臂后铰点的力臂 C6吊臂初始状态仰角 A0副臂工作时吊臂轴线距副臂轴线夹角 A1底盘轴距 L2底盘轮距 L L 支腿横向跨距 H K 支腿纵向跨距 Z K 基本臂长 L0吊臂上两铰点距离 L1副臂臂长 L2中长臂长 L Z 全伸臂长 L M 动载系数 K2静载系数 K1水平力影响系数 K3液压油密度 M0基本臂额定仰角 A A 中长臂额定仰角 A B A C A D 全伸臂额定仰角 A E 基本臂额定起重量 Q A 中长臂额定起重量 Q B Q C Q D 全伸臂额定起重量 Q E 主臂+副臂额定起重量 Q b 下车重量 G下上车固定部分重量 G上固上车活动部分重量 G上活全车重量 G全变幅油缸重量 G变变幅油缸缸筒重量 G变筒变幅油缸缸杆重量 G变杆伸缩油缸重量 G伸伸缩油缸缸筒重量 G伸筒伸缩油缸缸杆重量 G伸杆副臂重量 G副吊钩重量 G钩基本臂重心(包括伸缩油缸及副臂) l b1中长臂重心 l b2 l b3 l b4全伸臂重心 l b5三、坐标系的建立O下车坐标系 O0上车坐标系O1吊臂坐标系 O2变幅铰点坐标系在下车坐标系内的上车坐标位置 X0 Y0 Z0在上车坐标系内变幅油缸后铰点位置 X1 Y1 Z1在上车坐标系内吊臂后铰点位置 X2 Y2 Z2在吊臂坐标系内伸缩油缸后铰点位置 X3 Y3 Z3上车坐标系(回转支承上平面原点)下车坐标系(双后桥中心原点)四、行驶状态整机重心及前后轴荷计算行驶状态上车重量、重心计算: G 上 = G 上固 +G 上活 =5020+4896=9916kg X 上 =上上活上活上固上固G X G X G ′×+× (其中X ′上活=130- X 上活)=10648)477130(48961665020−×+×=-81cm (负号表示在上车坐标原点左侧)行驶状态整机重心及前后轴荷计算(以全车坐标系双后桥中心线左侧为正) X 全 =车下下上上G X G X G ×+×=()车下下上上G X G X X G ×+−×0=()234201661270830819916×+−×=112cm行驶状态整机重量: G 车=23420kg 整车重心: X 车=112cm 前轴轴荷: P 前 后桥桥荷: P 后 轴距: L L =470cmP 后 ×L L = G 车 ×(L L – X 全 )P 后=()LL L X L G 全车−×=()47011247023421−×=17839kgP 前=G 车 - P 后=23421-17839=5582kg Y 全=全下下上上G Y G Y G ×+×=234218412708959916×+×=85cm五、 变幅机构三铰点计算1、 变幅机构三铰点的合理确定几何参数的计算L 0=980cm Y 01=63.5cmL 1=468cm a 2=69.5° a 角的变化范围 -3°~80° X 1=40cm a 0=20.5° X 2=130cm O 1O 2=181.5cm2、 变幅油缸安装长度及油缸行程的计算变幅油缸安装长度′32O O =a O O O O O O O O ′×′××−′+cos 23121231221= 5.14cos 7.4685.18127.4685.18122×××−+ =296.4cm (其中o 30−=′a a )3、 变幅油缸行程HH =′32O O -H ′=227.6cm (其中H ′=68.8cm) 4、 变幅油缸全伸长度32O O =′32O O + H =524cm 5、 变幅油缸最大仰角max a =arccos min 31212322312212a O O O O O O O O O O −××−+ =80° (其中min a 取-3°)6、 变幅油缸推力计算F =()LaS G X R Q B B cos 2××++×L =′×′×323121sin O O a O O O O i式中: F :变幅油缸推力 kg Q :额定起重量 kg R :额定工作幅度 m X 2: 回转中心至吊臂后铰点的距离 m G B :吊臂自重 kgS B :吊臂重心至吊臂后铰点的水平距离 mi a :吊臂任意位置时′3121O O O O 与之夹角 L :变幅油缸力臂 m a :额定起重量工况下吊臂仰角L =739.45.80sin 78.486.1××=1.85m其中 i a =60°+20.5°=80.5° ′32O O =4.739m 基本臂工况下变幅油缸推力计算:F =()4640085.160cos 345.243023.175.316000=××++×kg式中: Q =16000kg R =3.75m G B =3919kg S B =2.345m a =60° L =1.85m S B ′=15.67m W =50kg L 0=1.79m 变幅油缸最大工作压力P 变 P 变=42DFπ=36346400=12.8Mpa 主臂全伸、副臂展开处于水平位置时,且空载工况下变幅油缸最大推力F 0=3537579.167.153********=×+×=′×+×L S G L W B B B kg六、 起重作业、吊臂仰角、起升高度计算吊臂仰角:()LC C arctgC C L X R a 2122122arccos−−−++= 起升高度:H=()()21222212H H X R C C L −++−−+ 式中: R :额定工作幅度. L :臂长C 1:吊臂后铰点到吊臂轴线的垂直距离(205) C 2: 吊臂端部滑轮中心到吊臂轴线的垂直距离(485) H 1: 吊臂后铰点到地面的高度(2572)H 2:吊钩中心到吊臂端部滑轮组中心的垂直距离(1200) X 2:吊臂后铰点到回转中心的水平距离(1500) 其中: C 1=0.205m C 2=0.485m H 1=2.427cm H 2=1.3m 基本臂工况:取臂长L=9.8m 额定工作幅度R=3~8m 中长臂工况(Ⅰ):取臂长L=16.7m 额定工作幅度R=4~14m 中长臂工况(Ⅱ):取臂长L=23.6m 额定工作幅度R=5~20m 全伸臂工况:取臂长L=30.05m 额定工作幅度R=6~22m工作幅度-----吊臂仰角-----起升高度计算表七、吊臂伸缩机构计算伸缩机构伸缩力分析图1、计算参数Q=4000kg (限吊臂带载伸缩4000kg)a=70°(全伸臂工况)Q×sin a=3760kgQ×cos a=1368kgG4 =489kgG3 =585kgG2 =780kgG1 =1045kgG4×sin a=460kgG4×cos a=167kgG3×sin a=550kgG3×cos a=200kgG2×sin a=733kgG2×cos a=267kg⑴四节臂受力分析已知:L=8329mm;L1=4939mm;L″=1071mm;C=151mm;C″=95mm; e=287mm; a=602mm;H4=483mm; G1=483mm;α=70°Q=4000kg;f=0.05; S=2000kg⑵三节臂受力分析已知:L2=1188mm;L′2=4092mm;H3=534mm;b2=180mm;C2=185mm;d2=80mm;f=0.05;Z′1=14996kg;G2=586kg;α=70°⑶二节臂受力分析已知:H2=575mm;E=4mm;e=18mm;L B=1790mm;L G=4100mm;G2=778mmZ ′2=3150kg ;α=70°;f=0.05;α=70° ⑷ 四节臂伸缩力Z 1 计算: Z 1- F 1- E 1 –S-(G 4+Q)sin a =0B 1-A 1-(G 4+Q)cos a =0f A F ⋅=11 fB E ⋅=11()()[]0cos sin sin cos 141411=+−++⋅+′′⋅+′−−′⋅a L a a Q e L G C S l B C H E C F θθA 1=()()()()[]()″″″″″+−⋅−⋅−−++−+++L C H f C f L C H f G Q SC a L Q e L G 44414cos sin cos sin cos θθθθθ代入数据得:A 1 =12030kg ;B 1 =13565kg ;Z 1 =7498kg⑸ 三节臂伸缩力Z 2计算:Z 2- E 2- F 2 –Z 1′-G 3×sin θ=0 E 2 =B 2×f F 2 =A 2×fB 2 -A 2-G 2×cos a =00sin cos 22222222222=××+×+××−×+×−×′′θθb G C Z l G a F d E L B()()kg d f L a f G b C Z L d f L G A 1896sin cos 22222222222−=⋅−+⋅⋅⋅−⋅−−⋅+⋅=′′θθB 2=2097(kg)()kg Z G f A f B Z 1575sin 12222=+⋅+⋅+⋅=′θ⑹ 二节臂伸缩力Z 3计算:Z 3- E 3- F 3 –Z 2′-G 2×sin θ=0 E 3 =B 3×f F 3 =A 3×f B 3-A 3+G 2×cos θ=0()0sin cos 222223233=−+⋅⋅−++ −−⋅E e G L G e H F e H E L B G B θθ求得:()()kg e H f L e H f E e G L e Hf L G A G B G 9902cos 2sin 2cos 222223=−−⋅+ +−⋅− − −+⋅=θθθB 3=A 3+G 2cos θ=1257(kg)代入数据得:Z 3=32340(kg) (缸底、活塞杆受力) ⑺ 伸缩液压缸缸筒(无杆腔)工作压力计算: F=ηπ×××42D PP=ηπ×××24D F=95.01614.33234042×××=169kg·f/cm 2 速比:ψ=222d D D −=2225.121616−=2.5 2、 伸缩液压缸稳定性计算(缸筒): ① 用非等截面法计算临界载荷:)(1269000207.710321.81006.239.02611222N L J E K P K =×××××=⋅⋅⋅=−ππ 式中:K—形状系数。

B4学生公寓楼塔机基础矩形板式基础计算书

B4学生公寓楼塔机基础矩形板式基础计算书

B4学生公寓楼塔机基础矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、基础验算基础布置图基础及其上土的自重荷载标准值:G k=blhγc=5.3×5.3×1×25=702.25kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×702.25=842.7kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×22+3.8×11.5-19.8×6.3-89.4×11.8+0.9×(690+0.5×17.362×43/1.2)=587.802kN·mF vk''=F vk/1.2=17.362/1.2=14.468kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×(37.4×22+3.8×11.5-19.8×6.3-89.4×11.8)+1.4×0.9×(690+0.5×17.362×43/1.2) =885.555kN·mF v''=F v/1.2=24.307/1.2=20.256kN基础长宽比:l/b=5.3/5.3=1≤1.1,基础计算形式为方形基础。

飞机结构综合设计(课件)

飞机结构综合设计(课件)

3.结构的使用条件
结构的 使用条件
环境条件
起飞着陆 场所条件
维修条件 和使用条件
(1) 环境条件 是指飞机在飞行或停机时的气 象条件或周围介质条件。 气象条件是指大气温度和湿度 变化范围,飞机若能在夜间或恶劣 气象(雷雨、冰雹等)条件下飞行, 则为全天候飞机。 周围介质条件是指结构所处环 境周围介质状态,如海水腐蚀等。
机翼、机身这样的大结构。通常称为部件结构 机翼、机身又可沿翼展方向或机身纵向分成几 个大段,这样的一大段结构常称为组件结构。 组件结构还可以分为小组件、构件等结构。 零件为不需做装配的基本单位。 构件由很少几个零件装配而成。 当零件与构件(常统称为零构件)飞机结构中作 为有一定功用的基本单元时常称为元件,如翼肋、 梁、框等,它可以是一个构件。也可以是零件。 图1.2为L-1011旅客机的结构分解图
结构设计:
在总体设计基础上,进行飞机 各部件结构的初步设计(或称结构打 样设计);对全机结构进行强度计算; 完成零构件的详细设计和细节设计, 完成结构的全部零构件图纸和部件、 组件安装图。
3.飞机制造过程
飞机制造工厂根据飞机设计单 位提供的设计图纸和技术资料进行 试制。完成后装上全部设备系统和 发动机。由飞机工厂首批(一般称 “O”批,生产2~4架)试制出来的 新飞机即可投入全机强度、疲劳和 损伤容限的验证试验和试飞。
美国的F-22是其第一个代表机种。 采用了连续曲率造型,结构上使用了很多 新材料,飞机的性能全面提高。
现代军用运输机和一些大型远程旅 客机的航程和载重量越来越大,有的航 程可达10 000km以上。军用运输机如C5A载重量将近100t,可运载350名士兵 或一辆坦克加上两架小型直升机;俄罗 斯的安-225载重量则高达225 t。大型旅 客机载客可达500名;且有的客机Ma数 可达到2以上(如“协和”号)。目前有些 国家还在研制可载客600~800名的超大 型旅客机。图1.2为旅客机L—1O11的 示意图。

汽车起重机总体计算书

汽车起重机总体计算书
汽车起重机总体设计(计算书)
汽车起重机 总 体 设 计(计 算 书)
0
汽车起重机总体设计(计算书)
一、 整机主要技术性能参数 二、 总体计算参数的确定 三、 坐标系的建立 四、 行驶状态整机重心及轴荷计算 五、 变幅机构三铰点计算 六、 起重作业吊臂仰角、起升高度计算 七、 吊臂伸缩机构计算 八、 吊臂强度起重量计算 九、 稳定性起重量计算 十、 吊臂强度校核计算 十一、 支腿反力计算 十二、 回转支承计算 十三、 回转机构计算 十四、 起升机构计算 十五、 整机作业稳定性及行驶稳定性计算 十六、 活动支腿危险截面强度校核计算
注:底盘整备质量 其中: G 前 =3820kg G 后 =4750kg
行驶状态下车重量、重心计算 下车总重
G 底 =8570kg
G 下 = ∑Gi =12708kg 重心至双后桥中心线水平距离
X

= ∑Gi × Xi ∑ Gi
=166cm
重心至地面的垂直距离
Y

= ∑Gi ×Yi ∑ Gi
=84cm
LL
= 23421× (470 −112)
470
=17839kg
P 前=G 车 - P 后=23421-17839=5582kg
Y 全= G上 × Y上 + G下 × Y下 = 9916 × 95 + 12708 × 84 =85cm
G全
23421
9
五、 变幅机构三铰点计算
汽车起重机总体设计(计算书)
1
一、 整机主要性能参数
汽车起重机总体设计(计算书)
1.最大额定起重量(t)
16
2.最大额定起重力矩(t·m)
60
3.基本臂最大起升高度(m)

(完整word版)飞机总体课程设计

(完整word版)飞机总体课程设计

1.重量估算与指标分配以下计算过程的公式参照《飞机设计手册8》1.1机身重量估算USFA方法——机身重量,kg-—起飞重量,1684 kg;——设计过载,2;——机身长度,8.5 m;——机身最大宽度,1。

9 m;——机身最大高度,1。

6 m;—-设计巡航速度(EAS),290 km/h;此公式可用于速度550 km/h以下的飞机。

代入数据,算得机身重量126。

56kg。

1.2机翼重量计算采用USFA方法——机翼重量,kg——机翼面积,16 ;——机翼展弦比,11;——机翼1/4弦线后掠角,4°;-—机翼根梢比,1.25;——机翼最大相对厚度,15%;——海平面最大平飞速度,300 km/h;代入数据,计算得机翼重量。

1.3尾翼重量计算采用USFA方法1.3.1水平尾翼-—平尾面积,2.28 ;——平尾力臂,;--平尾展长,;—-平尾根部剖面最大厚度,0。

0672 m;代入数据,计算得水平尾翼重量。

1.3.2垂直尾翼——垂尾面积,;——垂尾展长,;—-垂尾根部剖面最大厚度,0。

1899 m;代入数据,计算得垂直尾翼重量。

1.4发动机短舱重量采用Torenbeek方法多发活塞式发动机飞机:汽缸水平对置发动机:-—发动机起飞总功率,264.6kW;N—-发动机的数量,2;代入数据,计算得单发重量.双发总重量为。

1.5 起落架重量采用Torenbeek 方法式中:=1,下单翼飞机;1。

08,上单翼飞机。

其中,,,见下表起落架重量计算系数表飞机类别A B C D 主15.00.0330.0210前 5.40.04900主9.10.0820.0190前11.300.0240尾 4.100.0240主18.10.1310.019 2.23E-05前9.10.0820 2.97E-06尾2.30.31起落架型式喷气式教练机和行政飞机收放式固定式收放式其他民用飞机可知主起落架:,,,;主起落架重量:62。

塔机计算书模板

塔机计算书模板

1.设计原则和参数 设计计算原则 工作级别 起重机的工作级别1、载荷状态 Q 2 名义载荷谱系数 K f =2、利用等级 U5 总的工作循环次数 N=5×1053、起重机的工作级别 A5 结构的工作级1、应力状态 S22、名义应力谱系数 Ks= 应力循环等级 N4 总的工作应力循环次数 N4=×1053、结构的工作级 B 4 机构工作级别 1、载荷状态起升机构 L2 回转机构 L3 变幅机构 L2 顶升机构 L2 2、利用等级 起升机构 T4 回转机构 T4 车变幅机构 T3 顶升机构 T1 3、工作级别 起升机构 M5 回转机构 M5 车变幅机构 M4 顶升机构 M1 总的设计寿命 h=6300 载荷及其组合 计算载荷1、自重载荷:Fq —考虑起升冲击系数φ1=~2、起升载荷:FQ —考虑起升载荷的动载系数φ2.3、卸载冲击载荷:F=mm∆⨯-5.11 4、运行冲击载荷:当υ<1 m/s φ4= ; 当υ>1 m/s φ4=5、传动机构加减速载荷:F=()F F ∆⨯+51φ6、离心力:F f =R m ⨯⨯2ϖ 7、风载荷:Fw(1)工作状态的风载荷按下式计算: F wi =A P C wi w ⨯⨯ (N/m 2) (2)非工作状态风载荷按下式计算: F wi3=A P C w w ⨯⨯3 (N/m 2) (3)安装状态风载荷按下式计算:F w =A P C w ⨯⨯ (N/m 2) 以上各式中:C w — 风力系数 (塔式起重机设计规范) A —垂直于风向的迎风面积 (m 2) P wi 、P w3、P w 安—计算风压 (N/m 2) P wi =150(N/m 2)—正常工作状态计算风压 P wi =250(N/m 2)—工作状态最大计算风压 P wi =1100(N/m 2)—非工作状态计算风压 P wi =100(N/m 2)—安装架设计算风压 8、坡度载荷:计算起重机抗倾覆稳定时取α=1° 钢结构计算不考虑 9、试验载荷:动态试验载荷 F dt 值取额定载荷的110%与动载系数φ6=()5.021⨯+φ静态试验载荷 F st 值取额定载荷的125% 试验载荷应作用在起重机最不利位置上 10、碰撞载荷F c 11、突然停机引起的载荷 12、安装载荷 载荷分类 1、基本载荷基本载荷是始终和经常作用在起重机结构上的载荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 计算模型简化说明与材料参数 ................................................ 3
4.1 计算模型简化说明 ........................................... 3 4.2 自控飞机的材料参数 ........................................ 4
ZKFJ 自控飞机(B 级) 设计计算书
编制: 审核: 批准:
九妹婆婆游乐设备有限公司 2020 年 06 月
九妹婆婆游乐设备有限公司
ZKFJ 自控飞机(B 级)设计计算书
目录
第一部分 总 论 ............................................................. 1
9 主体焊缝验算 ............................................................ 40
9.1 焊缝计算概述 ............................................. 40
第1页 共 117 页
九妹婆婆游乐设备有限公司
8 旋转转盘(ZKFJ.02) ..................................................... 33
8.1 有限元模型 ................................................ 33 8.2 载荷与约束 ............................................... 34 8.3 工况 1 旋转转盘部件分析结果 ................................36 8.4 工况 2 旋转转盘部件分析结果 ................................38
5 自控飞机载荷特性分析 ..................................................... 5
5.1 工作载荷 ................................................... 5 5.2 风载荷 ..................................................... 8 5.3 雪载荷和温度载荷 .......................................... 11 5.4 回转机构的阻力计算 ........................................ 12 5.5 分析工况 ...................................................13
第二部分 整体刚体动力学分析计算 ........................................... 15
6 刚体动力学分析 .......................................................... 15
6.1 概述 ..................................................... 15 6.2 几何模型 .................................................. 16 6.3 载荷与约束 ................................................ 17 6.4 刚体动力学分析结果 ........................................ 19 6.5 小结 ...................................................... 25
10.1 结果汇总表 ............................................... 47 10.2 小结 ..................................................... 49
第四部分 大臂与座舱分析计算 ................................................ 50
1 概述 .................................................................. 1
2 工作依据 ................................................................. 2
3 主要工作内容 ............................................................. 3
ZKFJ 自控飞机(B 级)设计计算书
9.2 焊.............................. 42
10 主体分析结果汇总 ........................................................ 47
第三部分 主体部件分析计算 .................................................. 26
7 底座(ZKFJ.01) ......................................................... 26
7.1 有限元模型 ................................................ 26 7.2 载荷与约束 ............................................... 26 7.3 工况 1 底座部件分析结果 ....................................29 7.4 工况 2 底座部件分析结果 ....................................31
相关文档
最新文档