6.4 二次函数的应用(2)【最大面积是多少】

6.4 二次函数的应用(2)【最大面积是多少】
6.4 二次函数的应用(2)【最大面积是多少】

§6.4 二次函数的应用(2)【最大面积是多少】---( 教案)

备课时间: 主备人:

教学目标:

掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.

教学重点:

本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题.

教学难点:

由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式.

教学方法:

教师指导学生自学法。

教学过程:

一、例题:

例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.

(1)设矩形的一边AB=xcm,那么AD边的长度如何表示?

(2)设矩形的面积为ym2,当x取何值时,y的最大值是多少?

例2、某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?

二、练习

1、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角

边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最大?最大是多少?

2、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少?

3、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm,

S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积.

三、小结:本节课我们学习了什么?

四、作业:

湘教版二次函数的应用(2)

湘教版二次函数的应用(2) 二次函数与一元二次方程的联系 教学目标: 知识与技能:掌握求二次函数图象与X 轴交点方法; 过程与方法:经历观察图象求二次函数图象与X 轴交点的过程,找出二次函数与一元二次方程的联系; 情感态度与价值观:培养学生观察,拓展的思维能力。 教学重难点: 重点:二次函数图象与X 轴交点方法; 难点:通过二次函数图象估算一元二次方程的值。 教学过程: 复习:建立二次函数要注意的问题。 新知:掷铅球时,铅球在空中经过的路线是抛物线. 已知某运动员掷铅球时,铅球在空中经过的抛物线的解析式为 其中x 是铅球离初始位置的水平距离,y 是铅球离地面的高度,你能求出铅球被扔出多远吗? 学生交流讨论。 铅球的着地点A 的纵坐标y=0,横坐标x 就是铅球被扔出去的水平距离,由抛物线的解析式①,得 219=++1. 4020 y x x -①2190 = ++1. 4020x x -

即 : x 2-18x-40=0. 通过十字相乘法解得: x 1=20,x 2=-2(不合题意,舍去). 所以,铅球被扔出去20m 远. 当铅球离地面高度为2m 时,它离初始位置的水平距离是多少(精确到0.01m)? 因此,我们可以在直角坐标系中画出铅球所经过的路线图. 如图2-14所示. 从上面例子,求铅球被扔出去多远的解题过程中,你看到在求抛物线与x 轴的交点的横坐标时,需要做什么事情? 需要令y=0,解所得的一元二次方程. 学生思考二次函数与一元二次方程的联系是什么? 例2 求抛物线y=4x 2+12x+5与x 轴的交点的横坐标. 解 : 4x 2+12x+5=0, (2x+5)(2x+1)=0 解得: 所以抛物线y=4x 2+12x+5与x 轴的交点的横坐标为21 -或2 5- 。 12 15= = .22 x x --,

上,二次函数应用的类型

教师一对一个性化教案 学生姓名年级9年级科目数学日期时间段课时 教学目标 教学内容 二次函数应用专题训练个性化学习问题解决掌握二次函数常见题型应用的最值问题 教学重 点、难点及 考点分析 重难点:函数解析式的确定以及根据实际情况处理最值问题 教学过程Part1桥·隧道 【基础题型】 1.如图所示的抛物线的解析式可设为,若AB∥x轴, 且AB=4,OC=1,则点A的坐标为, 点B的坐标为;代入解析式可得出此抛物线的 解析式为。 2.飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是: 2 5.1 60t t s- =.飞机着陆后滑行多少秒(m)后才能停下来. 例题1:有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。 例题2如图,河上有一座抛物线桥洞,已知桥下的水面离桥顶部3m时,水面宽AB为6m,当水位上升0.5m时: (1)求水面的宽度CD为多少米? (2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行。 ①若游船宽(指船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过? y x O A B

教学过程 例题3.许多桥梁都采用抛物线型设计,小明将他家乡的彩虹桥按比例缩小后,绘成如下的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x 轴表示桥面,y 轴经过中间抛物线的最高点,左右两条抛物线关于y 轴对称.经过测算,中间抛物线的解析式为2 11040 y x =-+,并且BD=12CD. (1)求钢梁最高点离桥面的高度OE 的长; (2)求桥上三条钢梁的总跨度AB 的长; (3)若拉杆DE ∥拉杆BN ,求右侧抛物线的解析式. 例题4. 一座拱桥的轮廓是抛物线型(如图1所示) , 拱高6m, 跨度20m, 相邻两支柱间的距离均为5m . (1) 将抛物线放在所给的平面直角坐标系中(如图2所示), 求抛物线的解析式; (2) 求支柱EF 的长度; (3) 拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带), 若并排行驶宽2m 、高3m 的汽车,要求车与车之间, 车与隔离带之间的间隔均为0.5米, 车与桥的竖直距离至少为0.1米, 问其中一条行车道最多能同时并排行驶几辆车? 图1 图2 例5.如图1,一座拱桥的轮廓是抛物线型,拱高6m ,跨度20m ,相邻两支柱间的距离均为5m . (1)如图2,将抛物线放在所给的直角坐标系中,求该抛物线的解析式(不需要写出自变量x 的取值

二次函数的应用(培优)

二次函数实际应用 练习: 1.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1 2.已知a -b +c=0 ,9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) A.第一或第二象限 B.第三或第四象限 C.第一或第四象限 D.第二或第三象限 3.已知M ,N 两点关于y 轴对称,且点M 在双曲线y x = 1 2上,点N 在直线y x =+3上,设点M 的坐标为(a ,b ),则二次函数y abx a b x =-++2()( )。 A. 有最小值 92 B. 有最大值-92 C. 有最大值92 D. 有最小值-9 2 4.二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是____________ 例3、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式 是y=x 2-3x+5,则有( ). A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=21 4(09?泰安市?3)抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9) 5(09?天津?10)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++ 6(09?威海?7)二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18) -, B .(18), C .(12)-, D .(14)-, 7.(09?温州?5)抛物线y=x 2一3x+2与y 轴交点的坐标是( ) A .(0,2) B .(1,O) C .(0,一3) D .(0,O)

2017二次函数应用题专题训练

作品编号:DG13485201600078972981 创作者:玫霸* 2017二次函数应用题专题训练 1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元. (1)当每吨售价为240元时,计算此时的月销售量; (2)求y与x的函数关系式(不要求写出x的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 2.(2010德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳能路灯?

3.(2010恩施)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇 远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克 香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香 菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每 天有6千克的香菇损坏不能出售. (1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少? 4(2010河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =100 1 x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳100 1x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内

二次函数的应用(含答案)

二次函数的应用练习题 1、在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条金色纸 边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是 y cm 2,设金色纸边的宽度为x cm 2,那么y 关于x 的函数是( ) A .y =(60+2x )(40+2x ) B .y =(60+x )(40+x ) C .y =(60+2x )(40+x ) D .y =(60+x )(40+2x ) 2、把一根长为50cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( ) A .y = -x 2+50x B .y =x 2-50x C .y = -x 2+25x D .y = -2x 2+25 3、某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是() A .y =x 2+a B .y =a (x -1)2 C .y =a (1-x )2 D .y =a (1+x )2 4、如图所示是二次函数y=212 2 x -+的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为可能的值是( ) A .4 B .163 C .2π D .8 5、周长8m 的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m 2 A .45 B .83 C .4 D .56 6、如图,从地面竖直向上抛出一个小球,小球的高度h (单位:m )与小 球运动时间t (单位:s )之间的关系式为h =30t -5t 2,那么小球从抛出至回 落到地面所需要的时间是( ) A .6s B .4s C .3s D .2s 7、如图,二次函数y = -x 2-2x 的图象与x 轴交于点A 、O ,在抛物线 上有一点P ,满足 S △AOP =3,则点P 的坐标是( ) A .(-3,-3) B .(1,-3) C .(-3,-3)或(-3,1) D .(-3,-3)或(1,-3)

中考经典二次函数应用题(含答案)

二次函数应用题 1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元? (2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少? 2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙 另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值. (参考公式:二次函数2 y ax bx c =++(0a ≠),当2b x a =-时,2 44ac b y a -=最大(小)值) 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表: 月份 1月 5月 销售量 3.9万台 4.3万台 (1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少? (2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.916 6.083 6.164)

《二次函数的应用》练习题

【课时训练】21.4二次函数的应用 1.已知函数y=2 1x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是( ) A. x <1 B. x >1 C. x >-4 D. -4<x <6 2.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如果提高售价,才能在半月内获得最大利润? 3.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花 形柱子OA ,O 恰在水面中心,安置在柱子顶端A 处的喷头向外喷水, 水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一 平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流 喷出的高度y (米)与水平距离x (米)之间的关系是 4 522++-=x x y .请回答下列问题: (1) 柱子OA 的高度是多少米? (2) 喷出的水流距水平面的最大高度是多少米? (3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外? 4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击 影响可以用公式I=2v 2来表示,其中v (千米/分)表示汽车的速度. ① 列表表示I 与v 的关系; ② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍? 5.如图,正方形EFGH 的顶点在边长为a 的正方形ABCD 的边上,若AE=x ,正方形EFGH 的面积为y. (1) 求出y 与x 之间的函数关系式; (2) 正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,说明理由.

中考专项复习:二次函数的应用题型总结解析版

专题10二次函数的应用一.解读考点 知识点 二次函(1)利润问题 数应用(2)几何问题 类型(3)抛物线型问题 名师点晴 利用二次函数的最值确定最大利润、最大面积是二次函数应用最常见的问题. 一般方法是: (1)建模(最重要的 就是可以读懂题意),然 二次后求二次函数的解析式,解决此类问题的关键是①函数并把x的取值范围求出;认真审题,理解题意,建 应用(2)求x= ﹣b 2a 的值;立二次函数的数学模型, 的解(3)判断x=﹣b的值在再用二次函数的相关知识 2a 题步不在自变量x的取值范解决②注意自变量的取值骤围 ①在,即相当于求顶点处 函数的最大值或最小值 ②不在,可画草图根据二 范围.

次函数的增减性来解答. 二.考点归纳 归纳1:利润问题 基础知识归纳: ①每件商品的利润=售价—进价 ②商品的总利润=每件商品的利润×销售量=(售价—进价)×销售量 ③商品的总利润=总收入-总支出 ④商品的利润率==

例1.(2017湖北十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱.设每箱牛奶降价x元(x为正整数),每月的销量为y箱. (1)写出y与x之间的函数关系式和自变量x的取值范围; (2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元? 【答案】(1)y=60+10x(1≤x≤12,且x为整数); (2)超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元. 【解析】 试题分析:(1)根据题意,得:y=60+10x,由36?x≥24得x ≤12, ∴1≤x≤12,且x为整数; (2)设所获利润为W, 则W=(36?x?24)(10x+60)=?10x2+60x+720=?10(x?3)2+810, ∴当x=3时,W取得最大值,最大值为810, 答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.

2019年中考数学二次函数的应用专题(解析版)

2019年中考数学二次函数的应用专题 (名师点拨中考必考知识点,建议下载打印练习) 时间:45分钟 满分:100分 一、单选题(共7题,每题4分;共28分) 1.(2017?包头)已知一次函数y 1=4x ,二次函数y 2=2x 2 +2,在实数范围内,对于x 的同 一个值,这两个函数所对应的函数值为y 1与y 2,则下列关系正确的是( ) A .y 1>y 2 B .y 1≥y 2 C .y 1<y 2 D .y 1≤y 2 【分析】首先判断直线y =4x 与抛物线y =2x2+2只有一个交点,如图所示,利用图象法即可解决问题. 【解答】解:由2 422 y x y x =??=+?消去y 得到:x 2-2x +1=0, ∵△=0,∴直线y =4x 与抛物线y =2x 2+2只有一个交点,如图所示 观察图象可知:.y 1≤y 2, 故答案:D . 2.(2018威海)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x - 21x 2刻画,斜坡可以用一次函数y =2 1 x 刻画,下列结论错误的是( ) A .当小球抛出高度达到7.5时,小球距O 点水平距离为3m B .小球距O 点水平距离超过4米呈下降趋势 C .小球落地点距O 点水平距离为7米

D .斜坡的坡度为1∶2 【分析】根据二次函数图象和性质可解答 【解答】解::根据函数图象可知,当抛出的高度为7.5时,小球距离O 点的水平距离有两值(为3m 或5m ),A 结论错误;由y =4x - 21x 2得y =-2 1 (x -4)2+8,则对称轴为直线x =4,当x >4时,y 随x 值的增大而减小,B 结论正确;联立方程y =4x - 12 x 2 与y =21x 解得???==00y x ,或?????==277y x ;则抛物线与直线的交点坐标为(0,0)或(7,27),C 结论正确;由点(7,27)知坡度为27∶7=1∶2(也可以根据y =21x 中系数2 1 的意义判断 坡度为1∶2),D 结论正确; 故选A . 3.(2017?泰安)如图,在△ABC 中,∠C=90°,AB=10cm ,BC=8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为( ) A .19cm 2 B .16 cm 2 C .15 cm 2 D .12 cm 2 【分析】在Rt △ABC 中,利用勾股定理可得出AC=6cm ,设运动时间为t (0≤t≤4),则PC= (6﹣t )cm ,CQ=2tcm ,利用分割图形求面积法可得出S 四边形PABQ=t 2 ﹣6t+24,利用二 次函数性质即可求出四边形PABQ 的面积最小值.

二次函数应用的九种类型

如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 为直角三角形,如果存在请求出P 点坐标,如果不存在,请说明理由。 此类问题分别以三角形的三条边为斜边(或三个顶点为直角顶点)分三种情况进行讨论,其中要应用勾股定理等知识。 类型三:直角三角形的分类讨论: 如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 的周长最小,如果存在请求出P 点坐标,如果不存在,请说明理由。此类问题有一个动点在一条直线上运动,在直线的一侧有两个定点,先找出其中一个定点关于这条直线的对称点,然后连接这个对称点和另一个定点,与已知直线有个交点,这个交点就是使得这个动点到两个定点距离之和最小的点。 类型二:将军饮马问题: 如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在直线AC 的上方的抛物线上是否存在点P,使得△PAC 的面积最大,如果存在请求出P 点坐标,如果不存在,请说明理由。 把图形面积用二次函数表达式表示出来,然后 利用函数表达式求最值补充知识:平面直角坐 标系中三角形的面积一般用铅直高乘以水平宽 再乘以二分之一来求。 类型一:利用二次函数表达式求最大值的问题 如图所示,抛物线y=-12x 2-32x+2和直线y=12相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 为等腰三角形,如果存在请求出P 点坐标,如果不存在,请说明理由。此类问题分别以三角形的三条边为底边分三种情况进行讨论, 其中要应用两点之间的距离公式等知识。 类型四:等腰三角形的分类讨论:

二次函数在实际生活中的应用.

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=- 2 080 2×(-80) =13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销

售量y (件)与销售单价x (元)的关系如图Z8-1所示. (1)图中点P 所表示的实际意义是__当售价定为35元/件时,销售量为300件__;销售单价每提高1元时,销售量相应减少__20__件; (2)请直接写出y 与x 之间的函数表达式:__y =20x +1_000__;自变量x 的取值范围为__30≤x ≤50__; (3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件; 第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件). (2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得?????400=30k +b ,300=35k +b ,解得?????k =-20, b =1 000, ∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50, ∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元, 由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500, ∵-20<0,∴当x =35时,W 取最大值4 500. 答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元. 2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在图Z8-1

23.5二次函数的应用

课题:23.5二次函数的应用 寿县迎河中学 龙如山 三维目标: 一、知识与技能 1、让学生进一步熟悉,点坐标和线段之间的转化。 2、让学生学会用二次函数的知识解决有关的实际问题。 二、过程与方法 掌握数学建模的思想,体会到数学来源于生活,又服务于生活。 三、情感态度与价值观 培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。 教学重点: 1、 在直角坐标系中,点坐标和线段之间的关系。 2、 根据情景建立合适的直角坐标系,并将有关线段转化为坐标系中的点。 教学难点: 如何根据情景建立合适的直角坐标系,并判断直角坐标系建立的优劣。 课前准备: 制作多媒体课件,并将有关内容做成讲义。 教学过程: 一、创设情景,引入新课 1、在寒冷的冬天,同学们一般会参加什么样的课外活动呢? 2、由上给出引例: 引例:在跳大绳时,绳甩到最高处的形状可近似的看作抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米和2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,根据以上信息你能知道学生丁的身高吗? 3、要解决这个问题,同学们分析一下,我们会利用哪些知识来解决? 对,本题我们可以利用有关二次函数的知识来解决。今天我们学习的内容是“二次函数的应用”。 二、新课讲解:

(一)课前练习 1、已知抛物线 23x y =上有一点的横坐标为2,则该点的纵坐标为______。 2、已知二次函数132 612++- =x x y 的函数图象上有一点的横坐标为2 5, 则该点到x 轴的距离是______________。 3、已知二次函数532 -=x y 有一点的纵坐标是2, 则该点横坐标为__________. 4、已知抛物线过点A (0,1),B (2,1),C (1,0),则该抛物线解析式为___ 5、已知如图A (1,1),AB=3,AB ∥x 轴, 则点A 的坐标为__________. 注:第四题在处理时,只要求学生知道解题方法,而不需要完全解答。 (二)例题讲解 下面我们来解决本堂课的引例。 1、要解决这个实际问题,关键是什么?(建立直角坐标系) 2、那么有几种建立直角坐标系的方法呢?请同学们讨论一下。 (学生分析、讨论完毕后教师进行归纳小结) 3、利用其中一种方法,解决①、②两个 。 ①、求点A 、B 、C 的坐标. ②、求过点A 、B 、C 的抛物线的函数解析式. 4、同学们能否根据老师所用的方法,分别求出在上述四个图中第1、2两小题呢? 6、在完成第①、②小题的基础上,请同学们根据老师的方法完成第③、④小题。 ③、你能算出丁的身高吗?

初中数学二次函数的应用题型分类——动态几何图形问题1( 精选50题 附答案)

初中数学二次函数的应用题型分类——动态几何图形问题1( 精选50题 附答案) 1.我们规定,以二次函数y =ax 2+bx +c 的二次项系数a 的2倍为一次项系数,一次项系数b 为常数项构造的一次函数y =2ax +b 叫做二次函数y =ax 2+bx +c 的“子函数”,反过来,二次函数y =ax 2+bx +c 叫做一次函数y =2ax +b 的“母函数”. (1)若一次函数y =2x -4是二次函数y =ax 2+bx +c 的“子函数”,且二次函数经过点(3,0), 求此二次函数的解析式及顶点坐标. (2)若“子函数”y =x -6的“母函数”的最小值为1,求“母函数”的函数表达式. (3)已知二次函数y =-x 2-4x +8的“子函数”图象直线l 与x 轴、y 轴交于C 、D 两点,动点P 为二次函数y =-x 2-4x +8对称轴右侧上的动点,求△PCD 的面积的最大值. 2.如图①,在矩形ABCD 中,动点P 从点A 出发,以2cm/s 的速度沿AD 向终点D 移动,设移动时间为t(s).连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF .设PCD ?的面积为y (cm 2). y 与t 之间的函数关系如图②所示. (1) AB = cm ,AD = cm; (2) 点P 从点A 到点D 的移动过程中,点E 的路径是_________________ cm. (3)当t 为何值时,DEF ?的面积最小?并求出这个最小值; (4) 当t 为何值时,DEF ?为等腰三角形?请直接.. 写出结果。 3.已知开口向下的抛物线y=ax 2+bx+c 可以由y=a (x-m )2向上平移n 个单位长度所得,且抛物线过点B (t ,0)(t>0)和C (0,3),实数a ,m 是一元二次方程8x 2-6x-9=0的两个根,若点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式和实数n 的值; (2)当动点P 在第一象限的抛物线上运动时,过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值;如果没有,请说明理由; (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问四边形CDPQ 能否成为菱形?如果能,请求出此时点P 的坐标;如果不能,请说明理由.

二次函数知识点及其应用的总结

二次函数知识点总结 知识结构框图 一、二次函数的概念 形如c bx ax y ++=2(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数,其中x ,是自变量,a b c 、、分别是函数表达式的二次项系数,一次项系数和常数项。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.X 可以取全体实数. 二、二次函数的一般表达式 1、 一般式:c bx ax y ++=2(a ,b ,c 为常数,0a ≠); 2、 顶点式:k h x a y +-=2 )((a ,h ,k 为常数,0a ≠)其中2 424b ac b h k a a -=-= ,; 3、 两根式: 21212()()(0,,=)y a x x x x a x x ax bx c x =--≠++其中是y 与轴交点的横坐标 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以 写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

三、二次函数2y ax bx c =++的图像性质(轴对称图形) 1. 当0a >时,抛物线开口向上, 对称轴为2b x a =-, 顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下, 对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ???,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. 四、二次函数的图像与各项系数之间的关系 1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a - >,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a - <,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.

二次函数的应用练习题及答案

二次函数的应用练习题及答案 一:知识点 利润问题:总利润=总售价–总成本 总利润=每件商品的利润×销售数量 二:例题 1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个形,则这两个形面积之和的最小值是cm2. 2、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________ 3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少? 4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.若每件降价x 元,每天盈利y 元,求y 与x 的关系式.若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?

5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求: 房间每天的入住量y关于x的函数关系式. 该宾馆每天的房间收费z关于x的函数关系式. 该宾馆客房部每天的利润w关于x的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? 6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x,日销售量为y. 写出日销售量y与销售单价x之间的函数关系式;设日销售的毛利润为P,求出毛利润P与销售单价x之间的函数关系式; 在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少? 7、我州有一种可食用的野生菌,上市时,外商经理按市场价格20元/千克收购了这种野生菌1000千克存放入

初中数学二次函数的应用(二)

初中数学二次函数的应用(二)

二次函数的应用 ◆目标指引 1.运用二次函数的知识去分析问题、解决问题,?并在运用中体会二次函数的实际意义.2.体会利用二次函数的最值方面的性质解决一些实际问题. 3.经历把实际问题的解决转化为数学问题的解决的过程,?学会运用这种“转化”的数学思想方法. ◆要点讲解 1.在具体问题中经历数量关系的变化规律的过程,?运用二次函数的相关知识解决简单的实际问题,体会二次函数是刻画现实世界的一个有效的数学模型. 2.运用函数思想求最值和数形结合的思想方法研究问题. ◆学法指导 1.当涉及最值问题时,应运用二次函数的性 2

3

4 5t 2-12t+36的最小值,就可以求P ,Q 的最短距离. 【解】(1)设经过ts 后P ,Q 的距离最短,则: ∵22 BP BQ +22 (6)(2)t t -+251236 t t -+26144 5()55 t -+ ∴经过65s 后,P ,Q 的距离最短. (2)设△PBQ 的面积为S , 则S=12BP·BQ=12 (6-t )·2t=6t -t 2 =9-(t -3)2 ∴当t=3时,S 取得最大值,最大值为9. 即经过3s 后,△PBQ 的面积最大,最大面积为9cm 2. 【注意】对于动点问题,一般采用“以静制动”的方法,抓住某个静止状态,寻找等量关系.在求最值时,可用配方法或公式法,同时取值时要注意自变量的取值范围. 【例2】某高科技发展公司投资1500万元,成功研制出一种市场需求较大的高科技替代产品,并

投入资金500万元进行批量生产.已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价若增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利额(年获利额=年销售额-生产成本-投资)为z(万元).(1)试写出y与x之间的函数关系式(不必写出x的取值范围); (2)试写出z与x之间的函数关系式(不必写出x的取值范围); (3)计算销售单价为160元时的年获利额,并说明:得到同样的年获利额,?销售单价还可以定为多少元?相应的年销量分别为多少万件? (4)公司计划:在第一年按年获利额最大时确定的销售单价进行销售;?第二年的年获利额不低于1130万元,请你借助函数的大致图象说明,第二年的销售单价x(元)?应确定在什么范围? 【分析】本题以传统的经济活动中的利润、销售决策问题为背景,设计成数学应用题,引导学生 5

初中数学二次函数的应用

二次函数的应用 ◆目标指引 1.运用二次函数的知识去分析问题、解决问题,?并在运用中体会二次函数的实际意义. 2.体会利用二次函数的最值方面的性质解决一些实际问题. 3.经历把实际问题的解决转化为数学问题的解决的过程,?学会运用这种“转化”的数学思想方法. ◆要点讲解 1.在具体问题中经历数量关系的变化规律的过程,?运用二次函数的相关知识解决简单的实际问题,体会二次函数是刻画现实世界的一个有效的数学模型. 2.运用函数思想求最值和数形结合的思想方法研究问题. ◆学法指导 1.当涉及最值问题时,应运用二次函数的性质选取合适的变量,?建立目标函数,再求该目标函数的最值,求最值时应注意两点:(1)变量的取值范围;(2)?求最值时,宜用配方法. 2.有关最大值或最小值的应用题,关键是列出函数解析式,?再利用函数最值的知识求函数值,并根据问题的实际情况作答. ◆例题分析 【例1】如图,在△ABC 中,∠B=90°,AB=6cm ,BC=12cm ,点P 从点A 开始,?沿着AB 向点B 以1cm/s 的速度移动;点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,?设P ,Q 同时出发,问: (1)经过几秒后P ,Q 的距离最短? (2)经过几秒后△PBQ 的面积最大?最大面积是多少? 【分析】这是一个动点问题,也是一个最值问题,设经过ts ,显然AP 和BQ?的长度分别为AP=t ,BQ=2t (0≤t≤6).PQ 的距离PQ=2 2 BP BQ +=251236t t -+.因此,只需求出被开方 式5t 2-12t+36的最小值,就可以求P ,Q 的最短距离. 【解】(1)设经过ts 后P ,Q 的距离最短,则: ∵PQ=22BP BQ +=22 (6)(2)t t -+=251236t t -+=2 6144 5()5 5 t -+

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值? 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式?当x为多长时,花园面积最大?

例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多? 设销售单价为x元,(0<x≤13.5)元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)所获利润可以表示为__________________; (4)当销售单价是________元时,可以获得最大利润,最大利润是__________。 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量?其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________. (4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

相关文档
最新文档