22 光栅衍射(小论文示范)
《大学物理实验》教案实验22衍射光栅

实验 22 衍射光栅一、实验目的:1.观察光栅的衍射光谱,理解光栅衍射基本规律。
2.进一步熟悉分光计的调节和使用。
3. 测定光栅常数和汞原子光谱部分特征波长。
二、实验仪器:分光计、光栅、汞灯。
三、实验原理及过程简述:1.衍射光栅、光栅常数光栅是由大量相互平行、等宽、等距的狭缝(或刻痕)构成。
其示意图如图 1 所示。
图1图2光栅上若刻痕宽度为 a,刻痕间距为 b,则 d=a 十 b 称为光栅常数,它是光栅基本参数之一。
2.光栅方程、光栅光谱根据夫琅和费光栅衍射理论,当一束平行单色光垂直入射到光栅平面上时,光波将发生衍射,凡衍射角满足光栅方程:, k 0 ,± 1 ,± 2... (1)时,光会加强。
式中λ为单色光波长, k 是明条纹级数。
衍射后的光波经透镜会聚后,在焦平面上将形成分隔得较远的一系列对称分布的明条纹,如图 2 所示。
如果人射光波中包含有几种不同波长的复色光,则经光栅衍射后,不同波长光的同一级( k )明条纹将按一定次序排列,形成彩色谱线,称为该入射光源的衍射光谱。
图 3 是普 0通低压汞灯的第一级衍射光谱。
它每一级光谱中有四条特征谱线:紫色λ14358 A ;绿色λ 0 0 025461 A ;黄色两条λ3=5770 A 和λ45791 A 。
3.光栅常数与汞灯特征谱线波长的测量由方程(1)可知,若光垂直入射到光栅上,而第一级光谱中波长λ1 已知,则测出它相应的衍射角为 1 ,就可算出光栅常数 d;反之,若光栅常数已知,则可由式(1)测出光源发射的各特征谱线的波长 i 。
角的测量可由分光计进行。
4.实验内容与步骤a.分光计调整与汞灯衍射光谱观察(1)调整好分光计。
(2)将光栅按图 4 所示位置放于载物台上。
通过调平螺丝 a 1 或 a 3 使光栅平面与平行光管光轴垂直。
然后放开望远镜制动螺丝,转动望远镜观察汞灯衍射光谱,中央( K 0 )零级为白色,望远镜转至左、右两边时,均可看到分立的四条彩色谱线。
光栅衍射实验报告(完整版)

4.10光栅的衍射【实验目的】(1)进一步熟悉分光计的调整与使用;(2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法;(3)加深理解光栅衍射公式及其成立条件。
【实验原理】衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。
它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。
透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。
而平面反射光栅则是在磨光的硬质合金上刻许多平行线。
实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。
由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。
另外,光栅还应用于光学计量、光通信及信息处理。
1(测定光栅常数和光波波长光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相iC B 互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。
A G如图1所示,设光栅常数d=AB的光栅G,有一束平行光与, 光栅的法线成i角的方向,入射到光栅上产生衍射。
从B点作BC垂直于入射光CA,再作BD垂直于衍射光AD,AD与光栅法线所成的夹角为,。
如果在这方向上由于光振动的加强而在F处产生了一个明条纹,其光程差CA+AD必等于波长的整数倍,即: F图1 光栅的衍射 dimsinsin,,,, (1) ,,式中,,为入射光的波长。
当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号,在光栅法线两侧时,(1)式括号内取负号。
如果入射光垂直入射到光栅上,即i=0,则(1)式变成:dmsin,,, (2) m这里,m=0,?1,?2,?3,…,m为衍射级次,,第m级谱线的衍射角。
m平行光望远镜物镜黄黄绿绿紫紫中央明纹图3 光栅衍射光谱图2衍射光谱的偏向角示意图光栅G在小平台上的位置2(用最小偏向角法测定光波波长如图2所示,波长为的光束入射在光栅G上,入射角为i,若与入射线同在光栅 ,法线n一侧的m级衍射光的衍射角为沪,则由式(1)可知dimsinsin,,,, (3) ,,若以?表示入射光与第m级衍射光的夹角,称为偏向角,,,,,i (4),,i显然,?随入射角i而变,不难证明时?为一极小值,记作,,称为最小偏向角。
光栅衍射实验实验报告doc

光栅衍射实验实验报告.doc 光栅衍射实验实验报告一、实验目的1.通过实验观察光栅衍射现象,了解光栅衍射的原理和特点。
2.掌握光栅方程,能够利用光栅方程计算不同级次的衍射角。
3.学习使用分光计进行角度测量,提高实验技能和数据处理能力。
二、实验原理光栅是由大量等宽等间距的平行狭缝构成的光学元件,当一束平行光垂直照射在光栅上时,会发生衍射现象。
光栅衍射的原理是多缝衍射和单缝衍射的结合,通过光栅方程可以描述不同级次的衍射角与波长之间的关系。
光栅方程为:d(sinθ ± sinφ) = mλ其中,d 为光栅常数,即相邻两狭缝之间的距离;θ 为衍射角;φ 为入射角;m 为衍射级次,可以是正整数或负整数;λ 为入射光的波长。
三、实验步骤1.调整分光计,使平行光管发出平行光,并调整光栅位置,使平行光垂直照射在光栅上。
2.观察光栅衍射现象,可以看到在屏幕上出现了一系列明亮的衍射条纹。
3.转动分光计上的望远镜,对准某一衍射条纹,记录此时望远镜的角度读数。
4.重复步骤3,对准不同级次的衍射条纹,记录相应的角度读数。
5.根据光栅方程,计算不同级次的衍射角。
6.分析实验数据,得出实验结论。
四、实验结果与数据分析实验中观察到了多个级次的衍射条纹,记录了不同级次衍射条纹对应的望远镜角度读数如下表所示:通过对比计算值和实验值可以发现,两者之间的误差较小,说明实验结果较为准确。
同时,不同级次的衍射角随着级次的增加而增加,符合光栅方程的规律。
五、实验结论本次实验通过观察光栅衍射现象,了解了光栅衍射的原理和特点。
掌握了光栅方程,能够利用光栅方程计算不同级次的衍射角。
同时,学习了使用分光计进行角度测量,提高了实验技能和数据处理能力。
实验结果较为准确,验证了光栅方程的正确性。
光栅的原理与视觉应用论文

光栅的原理与视觉应用论文一、引言•光栅是一种光学器件,通过光的干涉效应实现对光的分光和光的衍射。
在现代光学和光谱学中有着广泛的应用。
本文将介绍光栅的原理,并探讨其在视觉应用中的具体应用。
二、光栅的原理1.光栅是由一系列均匀间隔的平行直线所组成的,每条直线都具有相等的间距和宽度。
2.当平行光通过光栅时,光栅会对光进行衍射,产生一系列出射光束。
3.这些出射光束的强度和相位会随着入射角和波长的不同而发生变化,形成具有特定波长的光的光谱。
三、光栅的分类•光栅按照结构可以分为反射光栅和透射光栅。
•反射光栅是通过光的反射来实现光的衍射,常见的反射光栅包括光栅镜和光栅衍射片。
•透射光栅是通过光的透射来实现光的衍射,常见的透射光栅有衍射光栅和相位光栅。
四、光栅的视觉应用1.光栅光谱仪•光栅光谱仪通过利用光栅的光谱分离性能,可以对光进行分光分析。
它广泛应用于物质的光谱研究和光谱分析领域。
2.光栅投影仪•光栅投影仪是一种使用光栅分光和反射原理制作的投影仪。
它可以将图像分解成一系列波长不同的光束,再通过光的反射合成出彩色的图像。
3.光栅显示技术•光栅显示技术是在显示器中使用光栅进行像素显示的一种技术。
通过光栅的衍射原理,可以实现高分辨率和真实感的图像显示。
4.光栅衍射成像•光栅衍射成像是利用光栅的衍射现象,通过光栅的干涉效应生成清晰的图像。
这种成像技术在显微镜、望远镜等光学仪器中得到广泛应用。
五、光栅的未来发展•随着科学技术的进步,光栅在光学领域的应用将更加广泛。
未来光栅可能会在光通信、人机交互、3D成像等领域发挥更重要的作用。
六、结论•光栅作为一种重要的光学器件,具有广泛的应用前景。
通过光栅的原理和视觉应用,我们可以更充分地理解和应用光栅技术,推动光学科学的发展。
光栅衍射实验报告文库

一、实验名称:光栅衍射实验二、实验目的:1. 熟悉光栅的原理及其在光学仪器中的应用;2. 掌握分光计的调整和使用方法;3. 利用衍射光栅测定光波波长及光栅常数;4. 深入理解光栅衍射公式及其成立条件。
三、实验原理:光栅是利用多缝衍射原理使光发生色散的一种光学元件。
它由一组数目极多、平行等距、紧密排列的等宽狭缝组成。
当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。
光栅衍射条纹的形成是单缝衍射和多缝干涉的综合结果。
根据光栅衍射公式,衍射角θ与光波波长λ、光栅常数d以及衍射级次m之间存在如下关系:d sinθ = m λ其中,d为光栅常数,λ为光波波长,θ为衍射角,m为衍射级次。
四、实验仪器:1. 分光计;2. 平面透射光栅;3. 低压汞灯(连镇流器);4. 毫米刻度尺;5. 计算器。
五、实验步骤:1. 调整分光计,使其与光栅垂直;2. 将光栅放置在分光计的焦平面上,调整光栅角度,使光束垂直照射在光栅上;3. 观察透镜焦平面上形成的衍射条纹,记录下第m级明纹对应的衍射角θ;4. 重复步骤3,记录下多组m级明纹对应的衍射角θ;5. 利用光栅衍射公式计算光波波长λ和光栅常数d。
六、实验数据及结果处理:1. 记录实验数据,包括m级明纹对应的衍射角θ;2. 利用光栅衍射公式计算光波波长λ和光栅常数d;3. 计算光栅常数d的平均值和标准偏差;4. 对实验结果进行分析,讨论误差来源。
七、实验结果与分析:1. 根据实验数据,计算光波波长λ和光栅常数d的平均值及标准偏差;2. 分析实验误差来源,如分光计调整误差、测量误差等;3. 讨论实验结果与理论值之间的差异,分析原因。
八、实验总结:通过本次实验,我们掌握了光栅的原理及其在光学仪器中的应用,学会了分光计的调整和使用方法,并成功利用衍射光栅测定了光波波长及光栅常数。
同时,我们深入理解了光栅衍射公式及其成立条件,为今后进一步学习光学知识打下了基础。
光栅衍射实验报告建议(3篇)

第1篇一、实验名称光栅衍射实验二、实验目的1. 理解光栅衍射的基本原理,包括光栅方程及其应用。
2. 掌握分光计的使用方法,包括调整和使用技巧。
3. 学习如何通过实验测定光栅常数和光波波长。
4. 加深对光栅光谱特点的理解,包括色散率、光谱级数和衍射角之间的关系。
三、实验原理光栅是由大量平行、等宽、等间距的狭缝(或刻痕)组成的光学元件。
当单色光垂直照射到光栅上时,各狭缝的光波会发生衍射,并在光栅后方的屏幕上形成一系列明暗相间的衍射条纹。
这些条纹的形成是由于光波之间的干涉作用。
根据光栅方程,可以计算出光栅常数和光波波长。
四、实验仪器1. 分光计2. 平面透射光栅3. 低压汞灯(连镇流器)4. 光栅常数测量装置5. 光栅波长测量装置五、实验步骤1. 准备工作:检查实验仪器是否完好,了解各仪器的使用方法和注意事项。
2. 调节分光计:根据实验要求,调整分光计,使其达到最佳状态。
3. 放置光栅:将光栅放置在分光计的载物台上,确保其垂直于入射光束。
4. 调节光源:调整低压汞灯的位置,使其发出的光束垂直照射到光栅上。
5. 观察衍射条纹:通过分光计的望远镜观察光栅后的衍射条纹。
6. 测量衍射角:使用光栅常数测量装置,测量衍射条纹的角宽度。
7. 计算光栅常数和光波波长:根据光栅方程,计算光栅常数和光波波长。
8. 重复实验:重复上述步骤,至少进行三次实验,以确保实验结果的准确性。
六、实验数据记录1. 光栅常数(d):单位为纳米(nm)。
2. 光波波长(λ):单位为纳米(nm)。
3. 衍射角(θ):单位为度(°)。
七、实验结果与分析1. 计算光栅常数和光波波长:根据实验数据,计算光栅常数和光波波长。
2. 分析实验结果:比较实验结果与理论值,分析误差产生的原因,如仪器误差、操作误差等。
3. 讨论实验现象:讨论光栅衍射条纹的特点,如条纹间距、亮度等。
八、实验结论1. 通过实验,验证了光栅衍射的基本原理。
2. 掌握了分光计的使用方法,提高了实验操作技能。
光栅衍射实验报告

光栅衍射实验报告引言光栅衍射是一种重要的光学现象,通过光栅衍射实验可以深入了解其特性和原理。
本次实验旨在通过观察和分析光栅衍射的现象,研究光的波动性。
实验设备与方法实验中使用的设备包括光源(如激光光源)、光栅和屏幕。
首先,将光源置于一定距离外, 并将光栅放置在光源和屏幕之间。
然后,在屏幕上观察到光栅产生的衍射图样。
实验结果与分析当光源照射到光栅上时,光栅会起到一个光阻挡或光透射的作用。
光通过光栅后,会发生衍射现象,形成一组干涉条纹,这些条纹是由于光波的干涉所形成的。
我们可以观察到在屏幕上形成的交替明暗条纹,称之为衍射条纹。
衍射条纹的特点是明暗交替有序,而且在中央最亮,两侧逐渐变暗。
这是由于光栅的排列形式决定的。
光栅上的刻痕间距越小,衍射现象就越明显。
在观察衍射条纹时,我们发现条纹间距并非均匀的。
这是由于光栅的刻痕间距不一致所造成的。
这种现象被称为光栅的倾斜效应。
通过观察不同角度下的衍射图案,可以进一步分析光栅的倾斜角度和刻痕的间距。
实验中,我们还发现了衍射角和衍射距离的关系。
当屏幕距离光栅一定距离时,移动观察点会导致衍射条纹的位置改变。
通过测量观察点的移动距离和最亮条纹的位置,可以计算出衍射角。
我们可以利用这个关系来研究光栅的特性和进行测量。
实验进一步加深了我们对光的波动性的理解。
光栅衍射实验揭示了光波传播中的干涉现象,证明了光既有粒子性又有波动性。
通过观察和分析光栅衍射现象,我们可以了解到光波在通过光栅时发生的波动性干涉现象,这对于深入研究光学现象和应用具有重要意义。
结论通过光栅衍射实验,我们深入了解了光的波动性和光栅的特性。
实验结果表明,光栅衍射现象是光学中一种重要的干涉现象。
观察和分析衍射条纹可以揭示光的波动性和光栅的特性。
通过测量衍射角和衍射距离的关系,我们可以研究光栅的倾斜角度和刻痕间距。
光栅衍射实验对于进一步研究光学现象和应用具有重要意义。
总结光栅衍射实验通过观察光栅衍射现象,揭示了光的波动性和干涉现象。
光栅衍射实验实验报告

光栅衍射实验实验报告摘要:本实验通过搭建光栅衍射实验装置,观察和研究光栅衍射现象。
通过测量不同光栅的刻线间距和测得光束角度的数据,分析了光栅衍射实验的原理,验证了布拉格衍射定律,并通过实验结果得出了光波的波长。
引言:光是一种波动现象,在经过光栅时会产生衍射现象,这一现象在物理学中被广泛应用。
本实验通过搭建光栅衍射实验装置,利用单缝、干涉斑及多缝的光栅衍射,探究光栅衍射的规律与原理。
一、实验装置及原理实验装置包括一束连续可调节波长的激光器、光栅、狭缝、光屏、经纬仪、转角仪等。
实验原理为光分裂、衍射、干涉叠加等。
二、实验步骤1.调节激光器,使其波长尽量接近绿光的波长。
2.将激光器射出的光线置于平行于光栅的平面上,并使之通过光栅。
3.调整光屏的位置,使光线通过光栅后落在光屏上,观察到衍射图样。
4.用经纬仪测量光栅与光屏之间的距离,并记录下相关数据。
5.用转角仪测量光栅条纹与光轴之间夹角,并记录下相关数据。
6.通过实验数据计算出光波的波长。
三、实验结果与分析(插入关系图)由图可得出光栅的衍射角度与光栅的条纹间距d和波长λ之间的关系为sinα=nλ/d,即布拉格衍射定律。
通过实验数据计算得光波的波长为λ=XXnm。
四、实验误差分析1.仪器误差:由于实验仪器本身的精确度限制,导致实验结果可能存在偏差。
2.人为误差:在实验过程中,操作人员的主观因素也可能引起误差。
3.光源波长的不确定性:实验中所用激光器的波长虽然可以调节,但是其波长并没有绝对确定的数值,这也会对实验结果产生一定的影响。
五、结论本实验通过光栅衍射实验装置的搭建,观察和研究了光栅衍射现象。
通过测量不同光栅的刻线间距和测得光束角度的数据,验证并得出了布拉格衍射定律,并计算得到了光波的波长。
实验结果与理论值较为接近,结果可靠性较高。
六、实验改进意见1.提高仪器精度:选择更高精度的实验仪器,减小仪器误差。
2.调节光源:使用更精确的光源,可以提高实验结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
星期日前完成网上作业练习八。
上次课要点
用惠更斯—菲涅耳原理和波带法研究单缝衍射。
光垂直入射时,单缝夫朗和费衍射的暗纹条件为
aθkλ
sin
条纹宽度、角宽度等概念。
薄膜的等厚干涉
光垂直入射时,单缝夫朗和费衍射中央明纹强度约为1级明纹的20多倍。
利用单缝衍射测量光的波长,亮度低,条纹宽,不易精确测量。
光栅衍射实质上就是多缝衍射,它是单缝衍射和多缝干涉的综合,能够产生亮度高,条纹细,易于精确测量的衍射条纹。
本文先介绍光垂直入射于光栅的衍射规律,然后研究光栅光谱的特征,最后讨论光栅光谱的应用。
一、光栅的衍射规律
光栅是透光宽度为a 、遮光宽度为b 的多缝装置,a +b =d 称为光栅常数。
当波长为λ的单色光垂直入射到光栅且衍射角为θ时,相邻两缝间的干涉满足干涉相长条件就出现缝间干涉的主极大。
把此条件称为光栅方程,其表达式为
sin d θk λ=
当缝数为N 时,相邻两主极大之间的N -1个极小,有N -2个次极大。
主极大的强度远大于次极大。
因此,光栅衍射条纹细而亮。
当衍射角θ同时又满足单缝衍射的暗纹条件sin a θk λ'=时,主极大将不出现,这种现象称为缺级。
二、光栅光谱
当用得色光照射光栅时,除中央明纹外,各级衍射条纹按波长由小到大排列,这样的衍射谱你为光栅光谱。
可见光的波长范围为400nm~760nm。
如果要求用光栅观察到第3级可见光的完整光谱,光栅常数d应大于3λmax。
第1级光谱d sinθ范围为400nm~760nm;第2级光谱d sinθ范围为800nm~1520nm;第3级光谱d sinθ范围为1200nm~2280nm。
由于1200nm<1520nm,所以第3级光谱与第2级光谱部分重合。
三、光栅光谱应用的讨论
原子光谱为线光谱,分子光谱为带光谱,固体光谱为连续光谱。
光谱反映了物质的组成和结构。
利用光谱研究物质的组成和结构称为光谱分析,是重要的现代分析技术。
物质的光谱形成的原因主要是物质中的电子状态变化,解释和分析这种现象需要量子力学。