高等数学--隐函数的求导法则

合集下载

高等数学---隐函数

高等数学---隐函数
3. 参数方程求导法 转化 极坐标方程求导
求高阶导数时,从低到高每次都用参数方程求导公式
4. 相关变化率问题 列出依赖于 t 的相关变量关系式
对 t 求导
相关变化率之间的关系式
再求速度方向 (即轨迹的切线方向):
设 为切线倾角, 则
抛射体轨迹的参数方程
速度的水平分量 速度的方向
垂直分量
在刚射出 (即 t = 0 )时, 倾角为
达到最高点的时刻
高度
落地时刻
抛射最远距离
例6. 设由方程
确定函数

解: 方程组两边对 t 求导 , 得

三、相关变化率
为两可导函数
之间有联系
之间也有联系
可用对数求导法求导 :
注意: 按指数函数求导公式 按幂函数求导公式
2) 有些显函数用对数求导法求导很方便 . 例如,
两边取对数
两边对 x 求导
又如,
两边取对数 对 x 求导
二、由参数方程确定的函数的导数
若参数方程
可确定一个 y 与 x 之间的函数
关系,
可导, 且

时, 有
时, 有
(此时看成 x 是 y 的函数 )
若上述参数方程中 则由它确定的函数
利用新的参数方程
二阶可导, 且
可求二阶导数 .
,可得
注意 : 已知
?
例4. 设
,且

解: 练习: P109 题8(1) 解:
例5. 抛射体运动轨迹的参数方程为
求抛射体在时刻 t 的运动速度的大小和方向. 解: 先求速 度大小:
速度的水平分量为
Байду номын сангаас垂直分量为
故抛射体速度大小

高等数学-隐函数的求导法则

高等数学-隐函数的求导法则

第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂ 22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -=u y x v =1=⋅+u yx x yu 22y x yu +=, 2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数xu ∂∂,x v ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂. .。

高等数学-隐函数及其导数

高等数学-隐函数及其导数

3
01 隐函数求导
2.隐函数的求导法则
(1)将(, ) = 0两端同时对求导,其等式左边在求导过
程中将变量看作的函数;
(2)求导后得到一个关于 ′ 的方程,解此方程得到 ′ 的表达
式,在该表达式中允许含有.
4
01 隐函数求导
例1
求由方程
+ − =

2
确定的隐函数对的导数 .
9
02 对数求导法
例3 设 = ( > 0),求 ′ .
解法1 等式两边取对数,得 = ,
= ,

上式两边同时对求导,得
1

整理得

⋅ = + ∙

1

= + ∙
导数与微分
第4讲
隐函数及其导数
本节内容
01 隐函数求导
02 对数求导法
2
01 隐函数求导
1.隐函数的概念
定义2.3 如果在方程(, ) = 0中,当取某区间
内的任一值时,相应地在某个范围 内总有满足这个
方程的值存在,那么就说方程(, ) = 0在 ∈ ,
∈ 的范围内确定了一个隐函数.
=
(
+
1


).

10
02 对数求导法
例3 设 = ( > 0),求 ′ .
解法2
′ = ( )′
= ⋅ ( )′
=

+ ⋅
=

2
=
∙ = +

= −

高等数学隐函数的求导公式

高等数学隐函数的求导公式

3
隐函数的求导公式
隐函数存在定理1 设二元函数 F ( x, y)在点 P( x0 , y0 )的某一邻域内满足:
(1) 具有连续偏导数;
(2) F ( x0 , y0 ) 0; (3)Fy ( x0, y0 ) 0, 则方程 F ( x, y) 0在点 P( x0 , y0 )的某一邻域内 恒能唯一确定一个连续且具有连续导数的函数
9
隐函数的求导公式
z Fx , x Fz
z Fy y Fz

已知 x2 a2

y2 b2

z2 c2

1,
求 z , z 及 2z . x y xy

令 F(x,
y, z)
x2 a2

y2 b2

z2 c2
1

Fx

2x a2
,
2y Fy b2 ,
2z Fz c2
z2


c2[
x ( a2z2
c2 y b2z
)]
c4 xy a2b2z3
注 对复合函数求高阶偏导数时, 需注意:
导函数仍是复合函数. 故对导函数再求偏导数时,
仍需用复合函数求导的方法.
11
隐函数的求导公式

设有隐函数
F(
x z
,
y z
)

0
,其中F的偏导数连续,
求 z , z . x y
u y u v
22
隐函数的求导公式
特别
如果方程组
F ( x, G( x,
y, u, v ) y, u, v )

0 0

F ( x,u,v) G( x,u,v)

高等数学上24隐函数的导数对数求导法由参数方程所确定函数的导数

高等数学上24隐函数的导数对数求导法由参数方程所确定函数的导数

结束
若函数 xy ((tt))二阶可 , 导
d2 y dx2

d (dy) dx dx

d ((t)) dt dt (t) dx
d2y dx 2

d dt

(t ) ( t )

dx
dt
(t)( t) 2( t)(t)(t)1 (t)
上页
返回
下页
结束
x a(t sint) y a(1cost)
x a cos3 t

y

a
sin 3
t
2
2
2
x3 y3 a3
首页
上页
返回
下页
结束
x2 y2 axa x2 y2
a(1cost)
首页
上页
返回
下页
结束
ea
a
首页
首页
上页
返回
下页
结束
例8 一汽球从离5开 0m 0处 观离 察地 员面铅
上升 ,其速率 14m 0为 /mi.当 n 气球高 50m 度 0时,为
观察员视线的 率仰 是角 多 ? 增 少加
解 设t时 刻 ,气球上升h高 ,观度 察为 员 视 线
的 仰 角 ,则 为
tan h (相关方程)
500
四、隐函数的导数 对数求导法 由参数方程所确定函数的导数
隐函数的导数 对数求导法由参数 方程所确定函数的导数
首页
上页
返回
下页
结束
1、隐函数的导数 P102
定义: 设在方程 F(x, y) 0中,当x取某区 间内的任意值 , 相时应地总有满足这的方程 唯一y的值存,在 那么就说方F程 (x, y) 0在 该区间内确定了一函个数y隐 f (x).

高等数学9_6隐函数求导

高等数学9_6隐函数求导

导数的另一求法 — 利用隐函数求导
sin y ex xy 1 0, y y(x)
两边对 x 求导
两边再对 x 求导
y x 0
ex cos
y y
x
(0,0)
sin y ( y)2 cos y y
令 x = 0 , 注意此时 y 0 , y 1
d2y dx2
x 0 3
机动 目录 上页 下页 返回 结束
定理2 . 若函数 F(x, y, z)满足:
① 在点
的某邻域内具有连续偏导数 ,
② F(x0 , y0, z0 ) 0 ③ Fz (x0 , y0, z0 ) 0
则方程
在点
某一邻域内可唯一确
定一个单值连续函数 z = f (x , y) , 满足
并有连续偏导数
z Fx , z Fy x Fz y Fz
化简得
x f dy
F2 dy 消去d y 可得 dz .
dx
机动 目录 上页 下页 返回 结束
第六节 隐函数的求导方法
一、由一个方程所确定的隐函数 的求(偏)导公式
二、由方程组所确定的隐函数组 的求(偏)导法则
三、全微分法
本节讨论 :
1) 方程(组)在什么条件下才能确定隐函数 . 2) 在方程(组)能确定隐函数时,研究其连续 性、可微性及求(偏)导方法问题 .
一、由一个方程所确定的隐函数的求导公式
dy dx
Fx x 0 Fy
x
0
ex y cos y x
d2y dx2 x 0
d ( ex y ) dx cos y x
x 0, y 0
( ex y)(cos y x) (ex y)(sin y y 1)

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)
原则是: 按照高阶导数的定义, 运用隐函数及参 数方程所确定的函数的求导法则逐阶进行求 导.

d y 设 x + x y + y = 4, 求 . 2 dx
2 2
2

对方程两边关于 x 求导:
2 x + y + x y′ + 2 y y ′ = 0
故 2x + y y′ = − x + 2y
想想如何求二阶导数?

(
)
1 2 1+ t 2 d y = 2 = = 2 2t 2 ′ 4t dx (ln(1 + t ) ) 1 + t 2
⎛ t ⎞′ ⎜ ⎟ ⎝ 2⎠
⎛ 1 + t 2 ⎞′ 2t 2 − 1 − t 2 ⎜ 3 ⎜ 4t ⎟ ⎟ 2 t 4 −1 d y 4t ⎝ ⎠ = = = 3 3 ′ 2t 8t dx (ln(1 + t 2 ) ) 1+ t 2

1 (1 − x)(1 − 2 x)(1 + x ) y′ = 3 3 (1 + 5 x)(1 + 8 x)(1 + x 4 )
⎧ −1 −2 2x 5 8 4 x3 ⎫ − − − ⎨1 − x + 1 − 2 x + 2 1 + 5x 1 + 8 x 4⎬ 1+ x 1+ x ⎭ ⎩
2
四、 隐函数及参数方程 确定的函数的高阶导数
F ( x, f (x) ) ≡ 0
对上式两边关于 x 求导:
d F ( x , y) = 0 dx
然后, 从这个式子中解出 y ′, 就得到隐函数的导数.

求由方程 F ( x , y ) = xy − e x + e y = 0 ( x ≥ 0 ) 所确定的隐函数的导数 y′, 并求 y′

大一隐函数的导数知识点总结

大一隐函数的导数知识点总结

大一隐函数的导数知识点总结一、引言在微积分学中,隐函数是指由两个或多个变量之间的方程所确定的函数。

在求解隐函数的导数时,我们需要运用一些特定的方法和规则。

本文将对大一隐函数的导数知识点进行总结和归纳。

二、隐函数的导数定义隐函数的导数表示了函数在某一点处的变化率。

设函数 y=f(x)在点 (x,y) 处满足方程 F(x,y)=0,则 y 是 x 的隐函数,并且可以看作自变量 y 和函数 y=f(x) 的函数关系。

隐函数的导数可以通过求导来计算。

三、常用求导法则1. 隐函数的导数:设 y 是 x 的隐函数,可以通过求导求得 y 对x 的导数,即 dy/dx。

2. 利用链式法则求导:通过将隐函数的方程两边同时对x 求导,然后解方程得到 dy/dx。

3. 隐函数的高阶导数:通过多次使用链式法则,可以求得隐函数的高阶导数。

四、常见的隐函数求导方法1. 参数方程法:将隐函数表示为参数方程,对参数方程中的参数求导,然后根据参数与自变量之间的关系求得隐函数的导数。

2. 对数导数法:将隐函数两边同时取对数,然后对取对数后的方程两边求导。

3. 微分形式法:将隐函数的微分形式表示为等式形式,然后对等式两边求导。

4. Laplace公式法:对于特定的隐函数形式,如 y=f(x)^{g(x)},可以使用 Laplace 公式来求导。

5. 特殊函数求导法:对于一些特殊的隐函数,如反函数、对数函数、指数函数等,可以利用已知的导数性质求导。

五、隐函数的应用举例1. 切线与法线:通过求解隐函数的导数,我们可以得到曲线上某一点处的切线斜率,进而求得切线和法线的方程。

2. 最值问题:利用隐函数的导数求得极值点的横坐标,进而求得隐函数在该点的最值。

3. 隐函数图像绘制:通过求解隐函数的导数,我们可以了解到隐函数在不同区间的单调性和凹凸性,有助于绘制函数图像。

六、结论隐函数的导数是微积分学中的重要概念,它帮助我们理解和解决具有复杂关系的函数问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -= ?u y x v =?1=⋅+u y x x yu ?22yx yu +=,2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,.它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvx v u v uv F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y v u v uvF FG G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数x u ∂∂,xv ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例? 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂.。

相关文档
最新文档