春季五年制小学奥数四年级杯赛真题精选中
小学4年级5年级奥数竞赛题

数表计算与代数公式应用【例 1】所有奇数排成右面的数表,根据规律,请你指出:⑴第10行的第9个数是多少?⑵197排在第几行的第几个数?例1图【例 2】将自然数按从小到大的顺序排列成螺旋形,在2处拐第1个弯,在3处拐第2个弯,在5处拐第3个弯,…,问拐第20个弯的地方是哪个数?例2图【例 3】计算:1⨯19+2⨯18+3⨯17+…+9⨯11=。
〖答案〗【例1】⑴179,⑵第10行的第18个数【例2】111【例3】615乘除法巧算之提取公因数与组合思想计算中的提取公因数法是近几年来数学解题能力展示、希望杯和小升初中经常考的题目,但是通过分析我们发现在考试中不仅仅是只考提取公因数这样简单的题。
这类题目往往是同和、差、积和商不变的性质进行解题。
常用的提取公因数的方法有三种:⑴直接提取公因数例如:35⨯8−35+3⨯35⑵逐步提取公因数例如:计算:2000⨯1999−1999⨯1998+1998⨯1997−1997⨯1996+1996⨯1995−1995⨯1994⑶利用和、差、积和商不变性质和不变性质:如果一个加数增加(减少)一个数,另一个加数减少(增加)相同的数,它们的和不变;差不变性质:如果被减数增加(减少)一个数,减数也增加(减少)相同的数,则它们的差不变;积不变性质:如果一个因数扩大几倍,另一个因数缩小相同的倍数,它们的积不变;(零除外) 商不变性质:如果除数和被除数同时扩大或缩小相同的倍数,它们的商不变。
(零除外)例如:81⨯15+57⨯5【例1】计算:55555⨯666667+44445⨯666666−155555【例2】计算:78.16⨯1.45+3.14⨯21.84+169⨯0.7816【例3】快来自己动手算算2010个1111⨯2010个9999+2010个9999⨯2010个7777的结果看谁算得准?【例4】计算:⑴⨯−⨯2008个20082009个20092008个20092009个2008200820082008200920092009200920092009200820082008⑵2009个2009200920092009÷2008个410041004100410041〖答案〗【例1】66666500000【例2】 314【例3】 2009个12009个888871112【例4】 ⑴ 0,⑵ 49【例1】计算:1.2⨯1.24+1927=。
wmo世界奥林匹克数学竞赛试题四年级

wmo世界奥林匹克数学竞赛试题四年级WMO世界奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是一些适合四年级学生的数学竞赛题目:1. 加法与减法:- 题目:小明有35个苹果,他给了小红15个,然后又从小红那里拿回了5个,请问小明现在有多少个苹果?- 解答:小明开始有35个苹果,减去给小红的15个,剩下20个。
再拿回5个,所以小明现在有20 + 5 = 25个苹果。
2. 乘法与除法:- 题目:一个班级有40名学生,老师要将他们分成若干个小组,每组有相同数量的学生。
如果每组有5名学生,那么可以分成多少个小组?- 解答:40名学生除以每组5名学生,可以分成40 ÷ 5 = 8个小组。
3. 几何问题:- 题目:一个正方形的边长是10厘米,求这个正方形的周长和面积。
- 解答:正方形的周长是边长乘以4,所以周长是10 × 4 = 40厘米。
面积是边长的平方,所以面积是10 × 10 = 100平方厘米。
4. 逻辑推理:- 题目:有5个盒子,编号为1到5。
每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个,和5个。
现在知道盒子1和盒子2里球的总数是4个,盒子3和盒子4里球的总数是7个。
请问盒子5里有多少个球?- 解答:盒子1和2的球总数是4个,盒子3和4的球总数是7个。
因为总共有15个球(1+2+3+4+5),所以盒子5里的球数是15 - 4 -7 = 4个。
5. 数列问题:- 题目:一个数列的前5项是2, 4, 8, 16, 32。
请问这个数列的第6项是什么?- 解答:这个数列是2的幂次方数列,每一项都是前一项的2倍。
所以第6项是32 × 2 = 64。
6. 时间与日期:- 题目:小明的生日是2月29日,他每4年才过一次生日。
如果他今年12岁,请问小明出生在哪一年?- 解答:小明每4年过一次生日,所以他的生日是在闰年。
最新春季五年制小学奥数四年级数论问题——余数汇编

数论问题—余数一、带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r。
0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:⑴当r=0时:我们称a可以被b整除,q称为a除以b的商或完全商。
⑵当r≠0时:我们称a不可以被b整除,q称为a除以b的商或不完全商。
二、余数定理:1.余数一定要比除数小。
2.余数的加法定理例如:23÷5=4 (3)16÷5=3 (1)所以23+16=39除以5的余数等于4,即两个余数的和3+1。
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23÷5=4 (3)19÷5=3 (4)所以:23+19=4242÷5的余数等于3+4=7除以5的余数,即2。
和的余数=余数的和(的余数)。
3.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23÷5=4 (3)16÷5=3 (1)所以23×16除以5的余数等于3×1=3。
例如:23÷5=4 (3)19÷5=3 (4)所以23×19除以5的余数等于3×4除以5的余数,即2。
积的余数=余数的积(的余数)。
例1有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________。
22003与20032的和除以7的余数是________。
12+22+32+…+20012+20022除以7的余数是多少?在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组。
这样的数组共有______组。
春季五年制小学奥数四年级数论问题——整除

整除——当两个整数a和b(b≠0),a被b除的余数为0时(商为整数),则称a被b整除或b整除a;倍数和约数——把a叫作b的倍数,b叫作a的约数;数的整除特征:①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;求满足下面各小题条件的a:(a代表同一个数字)⑴312a a⑵512a a⑶910a a有一个五位数可同时被9和11整除。
若将这个五位数的第一位、第三位与第五位数码移除,则可得到一个两位数35;若将这个五位数的前三位数码移除,则剩下的两位数可被9整除;若将这个五位数的末三位数码移除,则剩下的两位数也可以被9整除,请问这个五位数是什么?有些六位数,组成六位数的六个数字都不相同,而相邻两个数字组成的两位数能被3整除,这样的六位数一共有几个?如果从5,6,7,8,9五个数字中,选出四个数字组成一个四位数,它能被3,5,7都整除,求这些数中最大的四位数。
有一个五位数679a b ,它可被72整除。
请问a 2+b 2等于多少?如果七位数2008□□□能同时被2、3、4、5、6、7、8、9整除,那么,它的最后三位数是_____。
从1~99中选出连续3个自然数,使得它们的乘积能被30整除,一共有_____种选法。
测试题1.173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数。
依次可被9、11、6整除。
”问:数学老师先后填入的3个数字的和是多少?2.如果六位数1992□□能被95整除,那么,它的最后两位数是_____。
春季五年制小学奥数四年级奇数与偶数(下)

一、奇数和偶数的定义整数可以分成奇数和偶数两大类。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数加减法中考虑奇数的个数:性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数乘法中考虑有无偶数三、奇偶性的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶桌子上有6只开口向上的杯子,每次同时翻动其中的5只杯子,问能否经过若干次翻动,使得全部杯子的开口全都向下?桌子上有5个开口向上的杯子,现在允许每次同时翻动其中的4个,问能否经过若干次翻动,使得5个杯子的开口全都向下?师傅与徒弟加工同一种零件,各人把产品放在自己的箩筐里,师傅的产量是徒弟的2倍,师傅的产品放在4只箩筐中,徒弟的产品放在2只箩筐中,每只箩筐都标明了产品的只数:78只,94只,86只,87只,82只,80只。
根据上面的条件,你能找出哪两只筐的产品是徒弟制造的吗?有一个袋子里边装着红、黄、蓝三种颜色的球,现在小峰每次从口袋中取出3个球,如果发现三个球中有两个球的颜色相同,就将第三个球放还回口袋,如果三个球的颜色各不相同,就往口袋中放一个黄球,已知原来有红球42个、黄球23个、蓝球43,那么取到不能再取的时候,口袋里还有蓝球,那么蓝球有多少个?一条线段上分布着n个点,这些点的颜色不是黑的就是白的,它们将线段分为n+1段,已知线段两端的两个点都是黑的,n+1段线段中两端的端点为一黑一白的个数是奇数还是偶数?有8个棱长是1的小正方体,每个小正方体有三组相对的面,第一组相对的面上都写着数字1,第二组相对的面上都写着数字2,第三组相对的面上都写着数字3(如图)。
小学四年级数学奥数竞赛试卷及答案

小学四年级数学竞赛试卷及答案一、填空。
〔共20分,每题2分〕1.被除数是3320,商是150,余数是20,除数是〔〕。
2.3998是4个连续自然数的和,其中最小的数是〔〕。
3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。
这个两位数是〔〕4.填一个最小的自然数,使225×525×〔〕积的末尾四位数字都是0。
5.在下面的式子中填上括号,使等式成立。
(可以使用大括号或者中括号) 5×8+16÷4-2=206.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有〔〕种取法。
7.某地的邮政编码可用ABCCDD表示,这六个数字的和是8,A与B的和等于2个D,A是最小的自然数。
这个邮政编码是〔〕。
8.两个数之和是444,大数除以小数商11,且没有余数,大数是〔〕。
9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。
〔〕×〔〕×〔〕=〔〕×〔〕×〔〕二、判断。
〔对的在括号内画"√〞,错的画"×〞,共10分,每题2分〕11.大于0.9997而小于0.9999的小数只有0.9998。
〔〕12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下一个最大的正方形。
这时纸的长是6厘米。
〔〕13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。
箱子中一共有3顶帽子。
〔〕14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。
〔〕15.有铅笔180支,分成假设干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。
三、选择。
〔把正确答案的序号填在括号里,共10分,每题2分〕16.5÷7的商用循环小数表示,这个小数的小数点后面第200位数字是〔〕。
四年级奥林匹克数学竞赛试题

小学数学奥林匹克竞赛试题(四年级)姓名:__________ 班级:__________ 成绩:__________+96-94+92-90+……8-6+4-2=( ).2.四年级的同学参加“六一”儿童节的团体操表演,每横排人数同样多,每竖排人数也同样多。
王箐的位置是从左数第10人,从右数第8人,从前数第9人,从后数第7人。
则参加表演的同学有( )人。
3.一个挂钟,一点钟敲一下,两点钟敲两下,三点钟敲三下……十二点钟敲十二下,每逢半点敲一下。
这个挂钟一昼夜共敲( )下。
4.移动一根火柴,使下式成立:5.用24根火柴棒摆成下面的图形,请你移动四根火柴棒,使它变成两个大小相等的正方形。
6.请你将下面的图形改成能一笔画成的图形:7.如图,有8条线段,至少要分别测量编号为( )的三条线段的长度,才能求出这个图形的周长。
③⑧①A.①②⑤B.①②③C.①②⑦D.②③⑦8.排球、足球、篮球共90个,排球比足球的2倍多1个,篮球比足球的3倍少13个。
求排球、足球和篮球各有多少个( )、27、26 、33、64 、35、38 、25、529.一个除法算式,商是5,余数是1,被除数、除数、商和余数的和是109,除数是( )。
10.一根木头长24分米,要锯成4分米长的木棍。
若每锯一次要3分钟,锯完一段休息2分钟,则全部锯完需要( )分钟。
11.小洁比妈妈小24岁,5年以后妈妈的年龄是小洁的3倍,今年小洁( )岁。
12.公共汽车共有男、女乘客100人,车到甲站后下车27个男的,9个女的,又上来3个男的,9个女的。
车到乙站后,上来8个女的,这时车上的男乘客正好是女乘客的3倍。
问原来男乘客比女乘客多多少人( )。
奥数综合训练试卷(竞赛)-2023四年级数学竞赛通用版含答案

.奥数综合训练试卷(奥数专训)2023小学四年级数学竞赛通用版全解析一.填空题(共5 小题)1.两数相除,商4 余8,被除数、除数、商数、余数四数之和等于415,则被除数是2.图形的面积是 cm 2.3.根据如图7×7的方格盘中已经填好的左下角4×4个方格中数字显现的规律,求出方格盘中a 与b 的数值,并计算其和,得a +b = .4.已知△ABC 为等边三角形,面积为a ,D 、E 、F 分别为三边的中点,BF 、DE 交于M ,CD 、EF交于N ,AM 、AN 交DF 于I 、J ,若△ADI 、△AJF 、△HBC 面积和为常数k (k >),则五边形IJNHM (图中阴影部分)的面积为 .(用k 和a 的代数式表示)5.快、慢车分别从A 、B 两地同时相向而行.快车每小时行78千米,慢车每小时行58千米,两车离中点25千米相遇.请回答:A 、B 两地相距 千米.二.计算题(共1小题)6.脱式计算,能简算的要简算.20﹣2.5×4÷86.4×9.9+0.64 5.37×2.5+7.5×5.37 (4.8﹣4.8×0.5)÷2 1.5×1.2﹣0.6÷2.4 2.5×7.6×4﹣7.6三.解答题(共17小题)7.用0,1,2,3四个数字组成一个没有重复数字的三位数,可以组成多少个偶数?8.一辆摩托车从A地到B地共行驶了420km,用了5小时.途中一部分公路是水泥路,部分是普通公路,已知摩托车在水泥公路上每小时行驶110km,在普通公路上每小时行驶60km,求摩托车在普通公路上行驶了多少千米?9.在一条马路2旁植树,每隔3米植一棵,植到头还剩3棵;每隔2.5米植一棵,植到头还缺少37棵,这条马路的长度?10.六年级各班组队参加一次数学竞赛,竞赛规则是:每队都分别给出50道题,答对一题得3分,否则倒扣1分,如果六(1)班代表队最后得分130分,那么六(1)班答对了多少道题?11.用0﹣5这6个数字组成没有重复数字的多位数,一共可以组合成多少个能被3整除的数?12.如图,给定一个正六边形,其中矩形的每个顶点都位于正六边形各边的中点上.请问矩形的面积与正六边形的面积之比是几比几?13.有一群小朋友分一堆苹果,如果减少1人,每人可分得8个;如果增加2人,每人可分得6个,求实际有多少个小朋友?14.一头大象每天吃90根香蕉,一头小象每天吃60根香蕉.(1)一头大象一个星期要吃多少根香蕉?(2)3头小象吃一堆200根的香蕉,够1天吃吗?15.在1到100的全部自然数中,既不是8的倍数也不是5的倍数的数有多少个?16.用一条60米的长绳沿着一道围墙围出长方形的三个边(如图所示,墙是长方形另一个边)请问这条绳子所能围出的最大面积为多少?17.某班有50名学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可以参加1个、2个或3个兴趣小组.问班级中至少有几名同学参加的项目完全相同?18.以尽可能小的自然数做被除数,以18,27,7为除数,余数都是5,问:被除数是几?19.在下面等号左边的数字之间适当地添上一些加号,使其结果等于144.(数的顺序不变)1 2 3 4 5 6 7 8 9=14420.一个正方体的六个面上分别写着ABCDEF六个字母.根据下列摆放的三种情况,判断每个字母的对面是什么?21.从数字1﹣6中选5个数字填入下面算式的方框中,使算式的结果尽量大.这个最大的结果是多少?□×(□﹣□)×(□﹣□)22.甲、乙、丙三人进行200米跑比赛.当甲跑至150米处时,比乙领先25米,比丙领先50米.(1)如果三人速度都不变,当甲到达终点时,乙比丙领先多少米?(2)如果乙的速度不变,丙的速度提高一倍,丙能否在乙之前到达终点?如果能,丙到达终点时,乙离终点多远?(3)如果甲、乙速度不变,丙想得第一名,他的速度应提高到原来速度的几倍?23.一次测验有10道问答题,每题的评分标准是:回答完全正确得5分,回答不完全正确得3分,回答错误或不答得0分.若保证至少有4人得分相同,参加这次测验的学生至少要有多少人?奥数综合训练试卷(奥数专训)小学四年级数学竞赛通用版全解析参考答案与试题解析一.填空题(共5小题)1.两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是324.【答案】见试题解答内容【分析】设除数为x,根据“被除数=商×除数+余数”得:(4x+8)+x+4+8=415,解这个方程,求出除数,进而根据“被除数=商×除数+余数”解答即可.【解答】解:设除数为x,则:(4x+8)+x+4+8=415,5x+20=415,x=79;4×79+8,=316+8,=324;答:被除数是324.故答案为:324.2.图形的面积是75cm2.【答案】见试题解答内容【分析】如图所示,做出辅助线,则将原图形分割成了1个三角形和1个长方形,利用三角形和长方形的面积和即可得解.【解答】解:(12﹣6)×(10﹣5)÷2+12×5,=6×5÷2+60,=15+60,=75(平方厘米);答:图形的面积是75平方厘米.3.根据如图7×7的方格盘中已经填好的左下角4×4个方格中数字显现的规律,求出方格盘中a与b的数值,并计算其和,得a+b=43.【答案】见试题解答内容【分析】依表得规律:三列自下而上的数依次多4,5,6,…,所以b=26;a所在行,从左向右的数依次多2,3,4,5,…,a=12+5=17,即可得出结论.【解答】解:依表得规律:(1)从第一列起自下而上的数依次多2,3,4,5,…,第二列自下而上的数依次多3,4,5,6,…,第三列自下而上的数依次多4,5,6,…,所以b=26;(2)a所在行,从左向右的数依次多2,3,4,5,…,a=12+5=17,故:a+b=26+17=43.故答案为43.4.已知△ABC为等边三角形,面积为a,D、E、F分别为三边的中点,BF、DE交于M,CD、EF 交于N,AM、AN交DF于I、J,若△ADI、△AJF、△HBC面积和为常数k(k>),则五边形IJNHM(图中阴影部分)的面积为k﹣.(用k和a的代数式表示)【答案】见试题解答内容【分析】利用S IJNHM=S△ANB+S△AMC+S△HBC﹣(S△ABC﹣S△ADI﹣S△AJF),即可得出结论.【解答】解:∵S△ANB=S△AMC=S△ABC=a,△ADI、△AJF、△HBC面积和为常数k(k>),∴S IJNHM=S△ANB+S△AMC+S△HBC﹣(S△ABC﹣S△ADI﹣S△AJF)=+S△HBC﹣(a﹣S△ADI ﹣S△AJF)=k﹣,故答案为k﹣.5.快、慢车分别从A、B两地同时相向而行.快车每小时行78千米,慢车每小时行58千米,两车离中点25千米相遇.请回答:A、B两地相距340千米.【答案】见试题解答内容【分析】两车离中点25千米相遇,快车就比慢车多走了25×2千米,然后根据时间=路程÷速度差,可求出两车相遇时的时间,再根据路程=速度×时间,可求出两地之间的距离.【解答】解:25×2÷(78﹣58)×(78+58),=25×2÷20×136,=340(千米);答:A、B两地相距340千米.故答案为:340.二.计算题(共1小题)6.脱式计算,能简算的要简算.20﹣2.5×4÷8 6.4×9.9+0.64 5.37×2.5+7.5×5.37(4.8﹣4.8×0.5)÷2 1.5×1.2﹣0.6÷2.4 2.5×7.6×4﹣7.6【答案】见试题解答内容【分析】(1)(5)首先计算乘除法,然后计算减法即可.(2)(3)根据乘法分配律简算即可.(4)首先计算小括号里面的乘法、减法,然后计算小括号外面的除法即可.(6)根据乘法交换律、乘法结合律简算即可.【解答】解:(1)20﹣2.5×4÷8=20﹣10÷8=20﹣1.25=18.75(2)6.4×9.9+0.64=6.4×9.9+6.4×0.1=6.4×(9.9+0.1)=6.4×10=64(3)5.37×2.5+7.5×5.37=5.37×(2.5+7.5)=5.37×10=53.7(4)(4.8﹣4.8×0.5)÷2=(4.8﹣2.4)÷2=2.4÷2=1.2(5)1.5×1.2﹣0.6÷2.4=1.8﹣0.25=1.55(6)2.5×7.6×4﹣7.6=2.5×4×7.6﹣7.6=10×7.6﹣7.6=76﹣7.6=68.4三.解答题(共17小题)7.用0,1,2,3四个数字组成一个没有重复数字的三位数,可以组成多少个偶数?【分析】由题意,末尾是0或2,分类讨论,利用排列知识可得结论.【解答】解:由题意,末尾是0或2,末尾是0时,有=6个;末尾是2时,有=4个,所以共有6+4=10个偶数,答:用0,1,2,3四个数字组成一个没有重复数字的三位数,可以组成10个偶数.8.一辆摩托车从A地到B地共行驶了420km,用了5小时.途中一部分公路是水泥路,部分是普通公路,已知摩托车在水泥公路上每小时行驶110km,在普通公路上每小时行驶60km,求摩托车在普通公路上行驶了多少千米?【答案】见试题解答内容【分析】根据题意分析,利用“鸡兔同笼”原理,即可解答.【解答】解:根据题意分析:如果全部用每小时60千米的速度行驶,5小时只能行5×60=300(千米);还剩420﹣300=120(千米);故水泥路长为:120÷(110﹣60)×110=264(千米);普通路为420﹣264=156(千米).故答案为摩托车在普通公路上行驶了156千米9.在一条马路2旁植树,每隔3米植一棵,植到头还剩3棵;每隔2.5米植一棵,植到头还缺少37棵,这条马路的长度?【答案】见试题解答内容【分析】3和2.5的最小公倍整数是3×2.5×2=15,即每15米每旁多种1棵(两旁多2棵),里外里多3+37=40棵,即每旁多40÷2=20棵,马路长15×20=300米.【解答】解:由题意,这条马路的长为:[3÷(3﹣2.5)×2.5]×[(3+37)÷2]=300米.答:这条马路的长为300米.10.六年级各班组队参加一次数学竞赛,竞赛规则是:每队都分别给出50道题,答对一题得3分,否则倒扣1分,如果六(1)班代表队最后得分130分,那么六(1)班答对了多少道题?【答案】见试题解答内容【分析】假设50道题全做对,则得50×3=150分,这样就少出150﹣130=20分;最错一题比做对一题少3+1=4分,也就是做错20÷4=5道题,进而得出做对题的数量.【解答】解:做错:(50×3﹣130)÷(3+1)=20÷4=5(道)做对:50﹣5=45(道)答:六(1)班答对了45道题.11.用0﹣5这6个数字组成没有重复数字的多位数,一共可以组合成多少个能被3整除的数?【答案】见试题解答内容【分析】由于0+3=3,1+2=3,1+5=6,2+4=6,0+1+2=3,0+1+5=6,0+2+4=6,1+2+3=6,1+3+5=9,2+3+4=9,3+4+5=12,0+1+2+3=6,0+1+3+5=9,0+2+3+4=9,0+3+4+5=12,1+2+4+5=12,0+1+2+4+5=12,1+2+3+4+5=15,0+1+2+3+4+5=15,根据能被3整除的数的特征,分别得到各自能被3整除的数,进一步即可求解.【解答】解:由于0+3=3,有30;1+2=3,有12,21;1+5=6,有15,51;2+4=6,有24,42;0+1+2=3,有102,120,201,210;0+1+5=6,有105,150,501,510;0+2+4=6,有204,240,402,420;1+2+3=6,有123,132,213,231,312,321;1+3+5=9,有135,153,315,351,513,531;2+3+4=9,有234,243,324,342,423,432;3+4+5=12,有345,354,435,453,534,543;0+1+2+3=6,有1023,1032,1203,1230,1302,1320,2013,2031,2103,2130,2301,2310,3012,3021,3102,3120,3201,3210;0+1+3+5=9,有1035,1053,1305,1350,1503,1530,3015,3051,3105,3150,3501,3510,5013,5031,5103,5130,5301,5310;0+2+3+4=9,有2034,2043,2304,2340,2403,2430,3024,3042,3204,3240,3402,3420,4023,4032,4203,4230,4302,4320;0+3+4+5=12,有3045,3054,3405,3450,3504,3540,4035,4053,4305,4350,4503,4530,5034,5043,5304,5340,5403,5430;1+2+4+5=12,有1245,1254,1425,1452,1524,1542,2145,2154,2415,2451,2514,2541,4125,4152,4215,4251,4512,4521,5124,5142,5214,5241,5412,5421;0+1+2+4+5=12,有10245,10254,10425,10452,10524,10542,12045,12054,14025,14052,15024,15042,12405,12504,14205,14502,15204,15402,12450,12540,14250,14520,15240,15420,20145,20154,20415,20451,20514,20541,21045,21054,24015,24051,25014,25041,21405,21504,24105,24501,25104,25401,21450,21540,24150,24510,25140,25410,40125,40152,40215,40251,40512,40521,41025,41052,42015,42051,45012,45021,41205,41502,42105,42501,45102,45201,41250,41520,42150,42510,45120,45210,50124,50142,50214,50241,50412,50421,51024,51042,52014,52041,54012,54021,51204,51402,52104,52401,54102,54201,51240,51420,52140,52410,54120,54210;1+2+3+4+5=15,有12345,12354,12435,12453,12534,12543,13245,13254,13425,13452,13524,13542,14235,14253,14325,14352,14523,14532,15234,15243,15324,15342,15423,15432,21345,21354,21435,21453,21534,21543,23145,23154,23415,23451,23514,23541,24135,24153,24315,24351,24513,24531,25134,25143,25314,25341,25413,25431,31245,31254,31425,31452,31524,31542,32145,32154,32415,32451,32514,32541,34125,34152,34215,34251,34512,34521,35124,35142,35214,35241,35412,35421,41235,41253,41325,41352,41523,41532,42135,42153,42315,42351,42513,42531,43125,43152,43215,43251,43512,43521,45123,45132,45213,45231,45312,45321,51234,51243,51324,51342,51423,51432,52134,52143,52314,52341,52413,52431,53124,53142,53214,53241,53412,53421,54123,54132,54213,54231,54312,54321;0+1+2+3+4+5=15,有6×5×4×3×2×1﹣5×4×3×2×1=5×5×4×3×2×1=600个;一共2×3+4×3+6×4+18×4+24+96+120+600=954(个)答:一共可以组合成954个能被3整除的数.12.如图,给定一个正六边形,其中矩形的每个顶点都位于正六边形各边的中点上.请问矩形的面积与正六边形的面积之比是几比几?【答案】见试题解答内容【分析】如图所示:作出红色的辅助线,则可以得出图中编序号的8个三角形的面积都相等,则红色大三角形的面积就等于正六边形的面积,求出红色大三角形的面积与原图中矩形的面积的关系,问题即可得解.【解答】解:如图所示:作出红色的辅助线,则1、2、3、4、5、6、7、8的面积都相等,将2、3、6、7分别移到1、4、5、8的位置,可以得出:红色大三角形的面积就等于正六边形的面积,又因红色大三角形的面积等于矩形的面积的2倍,所以矩形的面积与正六边形的面积之比是1:2.13.有一群小朋友分一堆苹果,如果减少1人,每人可分得8个;如果增加2人,每人可分得6个,求实际有多少个小朋友?【答案】见试题解答内容【分析】求出两次分配的人数差、分得的数量差,即可得出结论.【解答】解:两次分配的人数差是2+1=3(人),分得的数量差是8﹣6=2(个),所以减少1人后,共有3×6÷2=9(人),实际有小朋友9+1=10(人).14.一头大象每天吃90根香蕉,一头小象每天吃60根香蕉.(1)一头大象一个星期要吃多少根香蕉?(2)3头小象吃一堆200根的香蕉,够1天吃吗?【答案】见试题解答内容【分析】根据题意,一头大象每天吃90根香蕉,用1天吃的90根乘7天就是一头大象一个星期吃的根数;用一头小象一天吃的香蕉根数60乘3求出3头小象1天吃多少根香蕉,与给出的200进行比较,吃的根数小于或等于给出的200够吃,否则不够.【解答】解:根据题意可得:(1)90×7=630(根)答:一头大象一个星期吃630根香蕉.(2)3×60=180(根)180<200,够了.答:这些香蕉够3头小象1天吃.15.在1到100的全部自然数中,既不是8的倍数也不是5的倍数的数有多少个?【答案】见试题解答内容【分析】在1~100中,除去“既不是5也不是8的倍数”的数,剩下的数或者是5的倍数,或者是8的倍数,同时包含了40的倍数,100与这部分数的个数之差即为所求.【解答】解:100﹣[]﹣[]+[]=100﹣20﹣12+2=70(个)答:既不是8的倍数也不是5的倍数的数有70个.16.用一条60米的长绳沿着一道围墙围出长方形的三个边(如图所示,墙是长方形另一个边)请问这条绳子所能围出的最大面积为多少?【答案】见试题解答内容【分析】围成的长是宽2倍的时候所围成的长方形的面积最大.【解答】解:因为只围了三条边,沿长的中点画垂直于墙壁的线段,将长方形分成两个图形,只有当这两个图形是正方形时面积才最大.长:60÷2=30(米)宽:30÷2=15(米)面积:30×15=450(平方米)答:这条绳子所能围出的最大面积为450平方米.17.某班有50名学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可以参加1个、2个或3个兴趣小组.问班级中至少有几名同学参加的项目完全相同?【答案】见试题解答内容【分析】参加了课外兴趣小组的种类共有7种(看作7个抽屉):参加1个的有3种方法,参加2个的有3种方法,参加3个的有1种方法.将50名学生依他们参加的项目分成7类,然后根据抽屉原理解答即可.【解答】解:3+3+1=7(种)50÷7=7(名)…1(名)7+1=8(名)答:班级中至少有8名同学参加的项目完全相同.18.以尽可能小的自然数做被除数,以18,27,7为除数,余数都是5,问:被除数是几?【答案】见试题解答内容【分析】求出这三个数的最小公倍数,然后加上5即可求解.【解答】解:[18,27]=54[54,7]=378378+5=383答:被除数是383.19.在下面等号左边的数字之间适当地添上一些加号,使其结果等于144.(数的顺序不变)1 2 3 4 5 6 7 8 9=144【答案】见试题解答内容【分析】先凑成接近得数的式子,然后再通过加减乘除法,凑数即可.【解答】解:1+2+3+4+56+78=14420.一个正方体的六个面上分别写着ABCDEF六个字母.根据下列摆放的三种情况,判断每个字母的对面是什么?【答案】见试题解答内容【分析】根据前两个图形可得:E与D、F、C、B相邻,所以E的对面是A;第二个和第三个图形可得:F与B、A、D、E相邻,所以F的对面是C;然后进一步解答即可.【解答】解:根据分析可得,根据前两个图形可得:E与D、F、C、B相邻,所以E的对面是A;第二个和第三个图形可得:F与B、A、D、E相邻,所以F的对面是C;则剩下的B的对面就是D,所以,E的对面是A;F的对面是C;B的对面就是D.21.从数字1﹣6中选5个数字填入下面算式的方框中,使算式的结果尽量大.这个最大的结果是多少?□×(□﹣□)×(□﹣□)【答案】见试题解答内容【分析】根据题意明白,要求积尽可能大,也就是相乘的因数尽可能大,只能在1~6中选,又因为括号里面是两个数相减,因此减数越小,算出来的积越大,故两个减数一定是1和2,故应取4、5、6三个,这样如果把括号里面的看做一个整体当一个数看,则三个因数的和是一定的,即4+5+6﹣1﹣2=12,相当于在x+y+z=12,且x、y、z均大于零的条件下,求x×y×z的最大值,其获得最大值的条件是x=y=z时最大,故应有x=y=z=12÷3=4时,最大,再算出积即可.【解答】解:因为括号里面是两个数相减,因此减数越小,算出来的积越大,故两个减数一定是1和2;另外三个数一定是越大积越大,故应取4、5、6三个;这样如果把括号里面的看做一个整体当一个数看,则三个因数的和是一定的,即4+5+6﹣1﹣2=12,相当于在x+y+z=12,且x、y、z均大于零的条件下,求x×y×z的最大值;其获得最大值的条件是x=y=z时最大,故应有x=y=z=12÷3=4时,最大,分别填4、5、1、6、2时乘积最大,得到算式是:4×(5﹣1)×(6﹣2)=4×4×4=64.22.甲、乙、丙三人进行200米跑比赛.当甲跑至150米处时,比乙领先25米,比丙领先50米.(1)如果三人速度都不变,当甲到达终点时,乙比丙领先多少米?(2)如果乙的速度不变,丙的速度提高一倍,丙能否在乙之前到达终点?如果能,丙到达终点时,乙离终点多远?(3)如果甲、乙速度不变,丙想得第一名,他的速度应提高到原来速度的几倍?【答案】见试题解答内容【分析】先根据题意求出:甲、乙、丙三人是路程(或速度)比是6:5:4,然后再根据这个比,分别作答下面的3个问题即可.【解答】解:(1)甲跑150米,乙跑150﹣25=125米,丙跑150﹣50=100米三人的路程(或速度)比是150:125:100当甲跑了200米时,乙能跑200×125÷150=米,丙能跑200×100÷150=米﹣=33(米)答:乙比丙领先33米.(2)甲、乙、丙的速度比是150:125:(100×2)=6:5:8丙还剩下200﹣100=100米到达终点,乙还剩200﹣125=75米若乙跑75米时,丙可以跑75×8÷5=120米120>100若丙跑了100米,乙能跑100×5÷8=62.5米75﹣62.5=12.5(米)答:丙能到达终点,丙到达时,乙离终点还有12.5米.(3)丙要得第一名,他是速度应是甲速度的100÷50=2(倍)6×2÷4=3(倍)答:丙的速度应提高到原来速度的3倍.23.一次测验有10道问答题,每题的评分标准是:回答完全正确得5分,回答不完全正确得3分,回答错误或不答得0分.若保证至少有4人得分相同,参加这次测验的学生至少要有多少人?【答案】见试题解答内容【分析】最低得分为0分,最高得分为50分,分数在0~50分之间,由于1分,2分,4分,7分,47分,49分都不可能出现,所以共有45种得分情况,求至少有多少人参加考试,才能保证至少有3人得分相同,最坏的打算是每种得分情况都有3人,那么再有1个,才能保证至少有4人得分相同,从而得出问题答案.【解答】解:最低得分为0分,最高得分为50分,分数在0~50分之间,由于1分,2分,4分,7分,47分,49分都不可能出现,所以共有45种得分情况,至少:45×3+1=136(人);答:若保证至少有4人得分相同,参加这次测验的学生至少要有136人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杯赛真题精选(中)
例1
(第七届“中环杯”小学生思维能力训练活动五年级初赛第一大题填空题第9题)
一只魔袋里装有30种不同颜色的魔球各30只,现在请你闭上眼睛到袋中去摸球,每次限摸3只。
要使摸出的球至少有三种颜色是不少于3只的,那么至少要摸( )次。
例1拓
一只魔袋里装有4种不同颜色的筷子各10双,现在请你闭上眼睛从袋中拿筷子,每次限拿一根。
要使摸出的筷子至少能配成五双,那么至少要摸( )次。
例2
(第六届“中环杯”四年级初赛)
果园里有桃树、梨树、苹果树共552棵。
桃树的棵数比梨树棵数的2倍多12棵;苹果树的棵数比梨树棵数少20棵。
那么苹果树有( )棵,梨树有( )棵,桃树有( )棵。
例3
在一次数学测试中,四(2)班的全班同学平均88分,男生平均92分,女生平均82分,则男生人数是女生人数的多少倍?
例4
(第六届“中环杯”小学生思维能力训练活动五年级复赛第一大题填空题第8题)(中环杯初赛诊断试题第10题)2005年小明家养了一只大母羊,第二年春天它生了2只小公羊和3只小母羊。
每只小母羊从出生的第三年起也生了2只小公羊和2只小母羊。
那么到2010年,小明家共有( )只羊。
例5
(中环杯模拟题)
玲玲用25元买了5支圆珠笔和4支铅笔,对于余下的钱,如果买1支圆珠笔就少1元,如果买1支铅笔就正好。
那么每支铅笔、圆珠笔各多少钱?
例6
一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_______个。
例7
用1到7可以组成_____个没有重复数字,且能被11整除的七位数。
例8
(第五届“华杯赛”决赛)
将自然数的平方按从小到大依次排列成一串有序数列:1491625364964……,问第612个位置的数字是几?
测试题
1.口袋里有70只球,其中20只是红球,20只是绿球,20只是黄球,其余的是白球和黑球。
任意从中
取出( )只球,可确保取出的球中至少有10只同色的球。
2. 小军比小亮早出生几天,但是他俩的生日都在6月份,而且都生于星期四。
如果两人的生日日期的和
是34,那么小军的生日是6月( )日。
3.六位同学的数学考试的平均成绩是92分,他们的成绩是互不相同的整数,最高的是98分,最低的81分,
那么按高到低的顺序,居第四名的同学至少得多少分?
4.一只布袋里有50只大小形状完全一样的球,其中红色的球10只,绿色的球10只,黄色的球10只,
蓝色的球10只,其余的是白色的和黑色的球。
如果要确保取出同样颜色的球7只,至少要取( )只球。
5.(2008 年第八届“春蕾杯”小学数学邀请赛决赛)小丁买甲、乙两种练习本共30本,付出54元,找回0.5
元。
甲种练习本每本1.5元。
乙种练习本每本2元。
问甲种练习本买了( )本。
6.1222×1223×1224×1225×……×2006×2007×2008的积的末尾有( )个零。
答案
1.答案:这是一道抽屉问题,根据最不巧原则,将袋中其余的10只(黑球和白球)都取出,红、绿、黄球
各取出9只,那么,再多取1只(无论是何颜色),都能满足问题的要求,确保至少有10只同色
的球。
10+9×3+1=38(只)
2.答案:他俩的生日都在6月份,而且都生于星期四,故两人生日日期的差是7的倍数。
又因两人生日
日期之和已知,此题属和差问题,可用(和一差)÷2的算式求出小军的生目。
尝试(34—7) ÷2
=13.5,显然不对,则(34—72) ÷2=10是本题的解。
3.答案:根据平均分得到总分为92×6=552(分)
552-98-97-96-81=180 (分)
180÷2+1=91(分)
4.答案:我们从最“坏”的情况分析,设已经取出红色、绿色、黄色、蓝色的球各6只。
根据最不利原则,我们假设,白球和黑球均不到7只,那么,我们就可以取出所有的白球和黑球。
这时,
我们就已经取出了共6×4=34只,这时只要再多取出一只,便可一确保取出同样颜色的球7
只。
所以,至少要取出35只。
5.答案:若全部买甲练习本,需要1.5×30=45元,所以乙练习本买了(53.5-45)÷(2-1.5)=17(本),甲种练习本30-17=13(本)。
6.答案:从1222至2008共有2008-1222+1=787个数。
在这些因数中,若有一个“2”和一个“5”,末尾就有一个0。
而在这787个因数中,因数2的个数远远多于因数5的个数,所以只需判断
因数5的个数即可。
判断因数中含有因数5的个数,我们可以用以下方法求得。
2008÷5=401......3,40l÷5=80......1,80÷5=16+,16÷5=3 (1)
1——2008中含因数5:401+80+16+3=500(个)
122l÷5=244......1,244÷5=48......4,48÷5=9......3,9÷5=l (4)
l~1221中含因数5:244+48+9+1=302(个)
所以1222-2008共含有因数5:500-302=198(个),得积的末尾有198个零。