四则运算和运算定律知识点整理
小学四年级数学:“四则运算”知识点详解

知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算.2、在没有括号的算式里;如果只有加、减法或者只有乘、除法;都要从左往右按顺序计算.3、在没有括号的算式里;既有乘、除法又有加、减法的;要先算乘除法;再算加减法.4、算式有括号;要先算括号里面的;再算括号外面的;大、中、小括号的计算顺序为小→中→大.括号里面的计算顺序遵循以上1、2、3条的计算顺序.知识点二:0的运算1、0不能做除数;字母表示:无;a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身;差是0;字母表示:a-a =05、一个数和0相乘;仍得0;字母表示:a×0 =06、0除以任何非0的数;还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中;交换两个加数的位置;和不变.字母表示:a+b=b+a2、加法结合律:三个数相加;先把前两个数相加;再加另一个加数;或者先把后两个数相加;再加另一个加数,和不变.字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中;交换两个乘数的位置;积不变.字母表示:a×b=b×a4、乘法结合律:三个数相乘;先把前两个数相乘;或先把后两个数相乘;积不变.字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变.字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和;得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中;交换后两个数的位置;得数不变.字母表示:a—b—c=a—c—b;a—b+c=a+c—b7、连除定律:①一个数连续除以两个数, 等于这个数除以后两个数的积;得数不变.字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;②在三个数的乘除法运算中;交换后两个数的位置;得数不变.字母表示:a÷b÷c=a÷c÷b;a÷b×c=a×c÷b知识点四:简便计算例题一、常见乘法计算:1、整数:25×4=100 125×8=10002、小数:0.25×4=1 0.125×8=1二、加法交换律简算例题:50+98+50=50+50+98=100+98=198三、加法结合律简算例题:488+40+60=488+(40+60)=488+100=588四、乘法交换律简算例题:0.25×56×4=0.25×4×56=1×56=56五、乘法结合律简算例题:99×0.125×8=99×(0.125×8)=99×1=99六、含有加法交换律与结合律的简算例题:65+28.6+35+71.4=(65+35)+(28.6+71.4)=100+100=200七、含有乘法交换律与结合律的简算例题:25×0.125×4×8=(25×4)×(0.125×8)=100×1=100八、乘法分配律简算例题:1、分解式25×(40+4)=25×40+25×4=1000+100=11002、合并式135×12.3—135×2.3=135×(12.3—2.3)=135×10=13503、特殊例题199×25.6+25.6=99×25.6+25.6×1=25.6×(99+1)=25.6×100=25604、特殊例题245×102=45×(100+2)=45×100+45×2=4500+90=45905、特殊例题399×26=(100—1)×26=100×26—1×26=2600—26=25746、特殊例题435.3×8+35.3×6—4×35.3=35.3×(8+6—4)=35.3×10=353九、连减简便运算例子:①528—6.5—3.5=528—(6.5+3.5)=528—10=518②528—89—128=528—128—89=400—89=311③52.8—(40+12.8)=52.8—12.8—40=40—40=0十、连除简便运算例子:3200÷25÷4=3200÷(25×4)=3200÷100=32十一、其它简便运算例子:①256—58+44=256+44—58=300—58=242②250÷8×4=250×4÷8=1000÷8=125。
四则运算(五大定律)及公式

四则混合运算加法、减法、乘法、除法,统称为四则运算。
其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算四则混合运算运算顺序:同级运算时,从左到右依次计算;两级运算时,先算乘除,后算加减。
有括号时,先算括号里面的,再算括号外面的;有多层括号时,先算小括号里的,再算中括号里面的,,再算大括号里面的,最后算括号外面的。
要是有乘方,最先算乘方。
在混合运算中,先算括号内的数,括号从小到大,如有乘方先算乘方,然后从高级到低级。
四则混合运算表示方法编辑四则混合运算脱式计算脱式计算即递等式计算,把计算过程完整写出来的运算,也就是脱离竖式的计算。
在计算混合运算时,通常是一步计算一个算式(逐步计算,等号不能写在原式上),要写出每一步的过程。
一般来说,等号要往前,不与第一行对齐。
示例:1+2×(4-3)÷5×[(7-6)÷8×9]=1+2×1÷5×[1÷8×9]=1+2÷5×[0.125×9]=1+0.4×1.125=1+0.45=1.45四则混合运算横式计算示例:1+2×(4-3)÷5×[(7-6)÷8×9]=1+2×1÷5×[1÷8×9]=1+2÷5×[0.125×9]=1+0.4×1.125=1+0.45=1.45四则运算 (五大定律)(一)加法运算定律:字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做---加法结合律。
字母公式:(a+b) +c=a+(b+c)(二)乘法运算定律:字母公式:a×b=b×a字母公式:(a×b)×c=a×(b×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做---乘法分配律。
完整版)四则运算和运算定律知识点

完整版)四则运算和运算定律知识点四则运算和运算定律是数学中的基础知识点。
首先,四则运算包括加法、减法、乘法和除法,没有括号的算式中,单独的加减法或乘除法按顺序从左往右计算,有混合运算的先算乘除法再算加减法。
如果有括号,要先算括号里面的,再算括号外面的,括号的计算顺序为小→中→大,括号里面的运算遵循以上的计算顺序。
其次,运算定律包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律。
这些定律可以简化计算,例如交换加数位置不影响和的大小,三个数相加可以先把前两个数相加或后两个数相加,积的顺序也可以交换,两个数的和与一个数相乘可以先分别相乘再相加,两个数的差与一个数相乘可以先分别相乘再相减。
此外,还有连减定律和连除定律,也可以简化计算。
最后,我们可以通过简便计算来练四则运算和运算定律的应用,例如常见乘法计算、加法交换律、加法结合律和乘法交换律的简算例题。
掌握好这些知识点,可以帮助我们更快更准确地进行数学计算。
五、乘法结合律的应用:99×125×8可以改写为99×(125×8),再进行简算得到.六、加法交换律和结合律的应用:65+286+35+714可以改写为(65+35)+(286+714),再进行简算得到1100.七、乘法交换律和结合律的应用:25×0.125×4×8可以改写为(25×4)×(0.125×8),再进行简算得到100.八、乘法分配律的应用:1.分解式25×(40+4)可以拆分为25×40+25×4,再进行简算得到1100.2.合并式135×12.3—135×2.3可以拆分为135×(12.3—2.3),再进行简算得到1350.3.特殊例题1:99×25.6+25.6可以拆分为99×25.6+25.6×1,再进行简算得到2560.4.特殊例题2:45×102可以拆分为45×(100+2),再进行简算得到4590.5.特殊例题3:99×26可以拆分为(100—1)×26,再进行简算得到2574.6.特殊例题4:35.3×8+35.3×6—4×35.3可以拆分为35.3×(8+6—4),再进行简算得到353.九、连减的简便运算例子:1.528—6.5—3.5可以拆分为528—(6.5+3.5),再进行简算得到518.2.528—89—128可以拆分为528—128—89,再进行简算得到311.3.52.8—(40+12.8)可以拆分为52.8—12.8—40,再进行简算得到0.十、连除的简便运算例子:3200÷25÷4可以拆分为3200÷(25×4),再进行简算得到32.十一、其他简便运算例子:1.256—58+44可以拆分为256+44—58,再进行简算得到242.2.250÷8×4可以拆分为250×4÷8,再进行简算得到125.。
四年级四则运算定律口诀

四年级四则运算定律口诀
四年级学生学习了四则运算,但在运算过程中,有时候会忘记一些定律,所以有必要写一个口诀来帮助他们记忆。
以下是四年级四则运算定律口诀:
一、加法交换律:数字顺序随意换。
例:5+2=2+5
二、加法结合律:先算哪组随便选。
例:(3+4)+5=3+(4+5)
三、减法不满足交换律和结合律。
例:7-2≠2-7和(7-2)-1≠7-(2-1)
四、乘法交换律:数字顺序随意换。
例:3×4=4×3
五、乘法结合律:先算哪组随便选。
例:(2×3)×4=2×(3×4)
六、乘法分配律:先乘后加随便换。
例:2×(3+4)=(2×3)+(2×4)
七、除法不满足交换律和结合律。
例:6÷3=3÷6和(9÷3)÷2≠9÷(3÷2)
八、除数不可以为0。
例:9÷0=无解
九、加减乘除按照先计算括号里的运算。
例:5×(6-2)+3÷3=5×4+1=21
以上口诀可以帮助四年级学生记忆四则运算的定律,使他们能够更加准确和熟练地进行数学运算。
四则运算和运算定律知识点

四则运算和运算定律知识点一、四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
二、运算定律1、加法交换律:两个数相加,交换加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加;或者先把后两个数相加,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘,交换两个因数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先乘前两个数,或先乘后两个数,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:①两个数的和与一个数相乘,可以先把他们与这个数分别相乘,再相加,得数不变,字母表示:(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②两个数的差与一个数相乘,可以先把他们与这个数分别相乘,再相减,得数不变,字母表示:(a—b)×c=a×c—b×c;a×c—b×c=(a—b)×c;6、连减定律:①一个数连续减去两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
字母表示:a—b—c=a—c—b;a—b+c=a+c—b7、连除定律:①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。
字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;②在三个数的乘除法运算中,交换后两个数的位置,得数不变。
四年级下册总复习四则运算及运算定律

分开购票:20×4+40×6=80+240=320(元) 够团体票:30×(4+6)=30×10=300(元) 300元<320元
答:他们应该买团体票,这样300元就够了。
第10页/共12页
四、布置作业
作业:第109页,第1题; 第111页练习二十五,第1题; 第112页练习二十五,第6题。
第11页/共12页
一、知识梳理 我用表格的方式整理了第一 单元四则运算的知识点。
单元 知识点
具体内容
加法的意义和各 把两个数合并成一个数的运算,叫做加法。
部分间的关系 和=加数+加数;加数=和-另一个加数。
第 一 单
减法的意义和各 已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。 部分间的关系 差=被减数-减数;减数=被减数-差;被减数=减数+差。
乘法结合律
(4)(125+70)×8=8× 125+8× 70
乘法分配律
(5)(b+20)×3= b × 3 + 20× 3
乘法分配律
第4页/共12页
二、基础练习
2. 根据加、减、乘、除法各部分间的关系,分别写出另外 两个算式。
92-54=38 54+38=92
92-38=54
75-46=29 75-29=46
第(3)(4)小题,这样算 起来是不是很简便呢?同学 们一定要善于观察呀!
1. 先说一说下面各题的运算顺序,再计算。
(1)(476-23×4)÷6 =(476-92)÷6 =384÷6 =64
(3)4800÷25÷4 =4800÷(25×4) =4800÷100 =48
(2)846÷[6×(31-28)]
右依次计算;如果有乘、除法,又有加、减法,先乘、除后加、减。
总复习(四则运算及运算定律)

交换律是指两个数相加或相乘,交换加数或因数 的位置,和或积不变。
交换律的应用
在加法或乘法中,交换律允许我们改变加数或因 数的顺序,而不改变结果。
交换律的数学表示
a + b = b + a 或 ab = ba。
结合律
结合律定义
结合律是指三个数相加或相乘, 改变加数或因数的组合方式,和
或积不变。
分配律的应用
在乘法和除法中,分配律 允许我们改变乘数或除数 的组合方式,而不改变结 果。
分配律的数学表示
(a + b) × c = a × c + b × c 或 a ÷ (b + c) = a ÷ b - a ÷ c。
03 运算顺序理解
先乘除后加减
乘法和除法在加法和减法之前 进行,这是数学运算的基本顺 序。
有括号先算括号里的
括号内的运算具有最高优先级, 应首先计算括号内的表达式。
例如,在表达式"(2+3)*4"中, 应先计算括号内的加法运算
"2+3=5",然后再与4进行乘法 运算"5*4=20"。
有括号先算括号里的规则确保了 数学表达式的精确计算,避免了
优先级混淆。
04 综合练习与解答
练习题一:基础四则运算
除法
掌握除法的试商方法,能够准确 计算两位数、三位数甚至更多位 数的除法。
练习题二:运算定律应用
总结词
理解并能够应用四则运算中的基本定律, 如加法交换律、乘法交换律等,简化计算 过程。
乘法结合律
掌握乘法结合律的原理,能够在计算中灵 活运用,如$(a×b)×c=a×(b×c)$。
加法交换律
四则运算定律性质整理

四则运算运算定律性质整理一,四则运算运算定律1.加法结合律: 三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,他们的和不变,这叫加法结合律。
字母表达式 : ( a + b )+ c = a + ( b + c ) 例子: 456+455+445=456=456+(455+445)=456+900=13562.乘法结合律:三个数相乘,先把前两个数乘,再乘第三个数,或者先把后两个数相乘,再和第一个数相乘 ,它们的积不变,这叫乘法结合律。
字母表达式:( a xb )xc = a x (b x c ) 例子 : 243x8x125=243x( 8x125)=243x1000=2430003. 加法交换律: 两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。
字母表达式: a + b= b = a 例子: 123+345=345=1234乘法交换律 : 两个数相乘, 交换因数的位置,他们积不变,这叫做乘法交换律。
字母表达式: a x b = b x a 例子: 1276 x762 =762 x12765. 乘法分配律:两个数的和和一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,所得的结果不变,这叫乘法分配律。
字母表达式:( a + b ) x c= a x c + b x c 例子:( 100+ 125 ) x8 = 8 x100 + 8x 125 =800 +1000 =1800二,四则运算性质1.减法运算性质:一个数连续减去两个数,可以先把两个减数加起来,再从被减数里减去。
字母表达式: a - b - c =a - ( b + c ) 例子: 274 – 23 – 177 =274 - (23 + 177 )=274 - 200 = 742.除法运算性质 :一个数连续除以两个数,可以先把两个除数乘起来 , 再去除被除数。
字母表达式: a ÷ b ÷ c = a ÷ ( b x c ) (b≠0 c≠0) 例子: 2000 ÷8÷125 =2000÷(8 x125 ) = 2000 ÷1000= 23.商不变性质:被除数和除数同时乘或除以一个相同的数,(零除外) ,它们的商不变,这叫做商不变性质. 字母表达式: a ÷ b = ( a ÷x c)÷ ( b ÷x c) ( b ≠ 0) ( c≠0 )例子:1100÷25 = (1100 x4 ) ÷ ( 25x 4) =4400÷100 =44。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四则运算和运算定律知识点整理四则运算和运算定律知识点整理四则运算是指加法、减法、乘法、除法的计算法则。
一级运算:加、减。
二级运算:乘、除。
运算顺序:先乘除后加减,如果有括号就先算括号内的,然后再算括号外的。
先算小括号,然后算中括号、大括号。
两级运算,先算高一级后算低一级。
即先算乘除后算加减。
(同一级运算中,计算顺序是从左到右)1、如果只有加和减或者只有乘和除,从左往右计算。
(同一级计算)2、如果同时有一级、二级运算,先算二级运算。
即先算乘除后算加减。
3、如果有括号,要先算括号里的数,(不管什么级都要先算)。
4、关于括号里的计算:先算小括号,然后算中括号、大括号,括号中也是先算二级,再算一级。
运算定律1、加法交换律:a+b=b+a有两个加数相加,交换加数的位置,和不变,这叫做加法交换律 .2、加法结合律:a+b+c=(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,在和第一个数相加,和不变,这叫做加法结合律.3、减法的性质:a-b-c=a-(b+c)一个数连续减去两个数,可以用第一个数减轻后面两个数的和,差不变,这作减法的性质.4、乘法交换律:a×b=b×a两个数相乘,交换加数的位置,积不变,这叫做乘法的交换律.5、乘法结合律:a×b×c=(a×b)×c=a×(b×c)三个数相乘,先把前两个数相乘,在和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变,这叫做乘法的结合律.6、乘法分配律:(a+b)×c=a×c+b×c两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积相加起来,积不变,这叫做乘法分配律.7、除法的性质:a÷b÷c=a÷(b×c)一个数连续除以两个数,等于一个数除以两个数的积,商不变,这叫做除法的性质.一般情况下,乘法交换律和结合律会同时应用,只有交换后才可以结合. ★★运算顺序:1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。
2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
即先乘除后加减。
3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
数学运算法则1、整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减;2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。
)3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变;2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。
)5、小数乘法法则:(得数的小数部分末尾有0,一般要把0去掉。
)1)按整数乘法的法则算出积;2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;2)然后按照除数是整数的小数除法来除10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子;2)用被除数的分母与除数的分子相乘作为分母。
★★运算顺序:1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。
2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
即先乘除后加减。
3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
四则运算和运算定律知识点整理一、四则运算:加法、减法、乘法、除法统称四则运算。
一级运算:加、减。
二级运算:乘、除。
1、同级运算的运算顺序:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右依次计算。
2、含两级运算的运算顺序:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法、后算加、减法。
3、含小括号的运算顺序:算式里有小括号,要先算小括号里面的,后算小括号外面的。
★小数混合运算顺序与整数相同。
二、运算定律加法的运算定律1、加法的交换律:两个加数交换位置,和不变。
用字母表示:a+b=b+a。
2、加法的结合律:先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示:(a+b)+c=a+(b+c)。
乘法的运算定律1、乘法的交换律:交换两个因数的位置,积不变。
用字母表示:a×b=b×a。
2、乘法的结合律:先乘前两个数,或者先乘后两个数,积不变。
用字母表示:(a×b) ×c=a×(b×c)。
3、乘法的分配律:两个数的和(差)与一个数相乘,可以先把它们与这个数分别相乘,再相加(减)。
用字母表示:(a±b)×c=a×c±b×c。
4、减法的运算定律:从一个数里连续减去两个数,可以从这个数里减去两个数的和。
用字母表示:a-b-c=a-(b+c)。
5、除法的运算定律:一个数连续除以两个数,可以用这个数除以两个数的积。
用字母表示:a÷b÷c=a÷(b×c)。
★灵活运用运算定律可以使计算简便。
★整数的运算定律在小数运算中同样适用。
★★★★★在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
即先乘除后加减。
★★★★在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
数学运算法则1、整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减;2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。
)3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变;2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。
)5、小数乘法法则:(得数的小数部分末尾有0,一般要把0去掉。
)1)按整数乘法的法则算出积;2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;2)然后按照除数是整数的小数除法来除10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子;2)用被除数的分母与除数的分子相乘作为分母。
★运算顺序:1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。
2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
即先算乘除后加减。
3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。