(完整word版)四则运算和运算定律知识点整理

合集下载

四则运算知识点归纳总结

四则运算知识点归纳总结

四则运算知识点归纳总结四则运算是基础数学运算,包括加法、减法、乘法和除法。

它是学习数学的重要基础,也是我们日常生活中经常会用到的计算方法。

下面将对四则运算的知识点进行归纳总结,以帮助大家更好地理解和掌握这一内容。

一、加法加法是最基本的运算之一,也是最简单的运算之一。

在加法中,两个数叫做“加数”,它们的和叫做“和”。

加法的运算规则如下:1. 加法交换律:a + b = b + a。

这意味着加法运算可以按照任意顺序进行,结果都是一样的。

2. 加法结合律:(a + b) + c = a + (b + c)。

这意味着多个数相加,可以按照任意方式进行括号配对,结果都是一样的。

3. 加法的零元素:任何数加0等于自身,a + 0 = a。

4. 负数的加法:如果一个数前面有一个减号,表示它是一个负数,那就先将减号去掉,再按照正常的加法规则进行计算。

例如,-3 + 2 = -1。

二、减法减法是加法的逆运算,减法的运算符号是“-”。

在减法中,被减数减去减数等于差。

减法的运算规则如下:1. 减法的定义:a - b表示取a与-b的和,也就是a + (-b)。

例如,5 - 3 = 5 + (-3) = 2。

2. 减法的性质:减法不满足交换律和结合律,即a - b不等于b - a,(a - b) - c 不等于a - (b - c)。

所以,在减法中需要注意减数和被减数的位置。

三、乘法乘法是将两个数相乘得到一个新的数的运算,乘法的运算符号是“×”或“·”。

乘法的运算规则如下:1. 乘法交换律:a ×b = b ×a。

乘法也满足交换律,两个数相乘的结果不受数的位置影响。

2. 乘法结合律:(a ×b) ×c = a ×(b ×c)。

多个数相乘,可以按照任意方式进行括号配对,结果都是一样的。

3. 乘法分配律:a ×(b + c) = a ×b + a ×c。

小学1-6年级数学四则混合运算知识点汇总

小学1-6年级数学四则混合运算知识点汇总

小学数学:四则混合运算知识点总结知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。

括号里面的计算顺序遵循以上1、2、3条的计算顺序。

知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。

字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。

字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。

字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。

字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。

字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。

最新四年级下数学四则运算和运算定律知识点总结

最新四年级下数学四则运算和运算定律知识点总结

1
2
第三单元重点掌握:1、加法和乘法的运算定律。

2、能够结合运算定律的学习进行一些简便运算。

3
4
分数除法计算法则练习题
知识要点回顾:
1、倒数:乘积是1的两个数叫做( )。

求一个数(0除外)的倒数,只要把这个数的分子、分母相互(
)。

2、(1)分数除以整数(0除外),等于分数乘这个整数的( )
(2)一个数除以分数,等于这个数( )除数的( )
(3)分数除法统一法则:甲数除以乙数(0除外),等于甲数( )乙数的( )。

3、拓展提升:在分数除法中,商的变化规律。

(第四题)
一、填空:
1、23 的倒数是( );0.25的倒数是( );( )没有倒数;1的倒数是( )。

2、( )×114 =9×( )=( )×57 =1×( )= 1
3、5的倒数与10的倒数比较,( )的倒数>( )的倒数
4、当a=( )时,a 的倒数与a 的值相等。

5、小红23 小时走4千米,她每小时走( )千米,她走1千米平均用( )小时。

6、如果a除以b等于5除以6,那么b就是a的()
5。

完整版)四则运算和运算定律知识点

完整版)四则运算和运算定律知识点

完整版)四则运算和运算定律知识点四则运算和运算定律是数学中的基础知识点。

首先,四则运算包括加法、减法、乘法和除法,没有括号的算式中,单独的加减法或乘除法按顺序从左往右计算,有混合运算的先算乘除法再算加减法。

如果有括号,要先算括号里面的,再算括号外面的,括号的计算顺序为小→中→大,括号里面的运算遵循以上的计算顺序。

其次,运算定律包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律。

这些定律可以简化计算,例如交换加数位置不影响和的大小,三个数相加可以先把前两个数相加或后两个数相加,积的顺序也可以交换,两个数的和与一个数相乘可以先分别相乘再相加,两个数的差与一个数相乘可以先分别相乘再相减。

此外,还有连减定律和连除定律,也可以简化计算。

最后,我们可以通过简便计算来练四则运算和运算定律的应用,例如常见乘法计算、加法交换律、加法结合律和乘法交换律的简算例题。

掌握好这些知识点,可以帮助我们更快更准确地进行数学计算。

五、乘法结合律的应用:99×125×8可以改写为99×(125×8),再进行简算得到.六、加法交换律和结合律的应用:65+286+35+714可以改写为(65+35)+(286+714),再进行简算得到1100.七、乘法交换律和结合律的应用:25×0.125×4×8可以改写为(25×4)×(0.125×8),再进行简算得到100.八、乘法分配律的应用:1.分解式25×(40+4)可以拆分为25×40+25×4,再进行简算得到1100.2.合并式135×12.3—135×2.3可以拆分为135×(12.3—2.3),再进行简算得到1350.3.特殊例题1:99×25.6+25.6可以拆分为99×25.6+25.6×1,再进行简算得到2560.4.特殊例题2:45×102可以拆分为45×(100+2),再进行简算得到4590.5.特殊例题3:99×26可以拆分为(100—1)×26,再进行简算得到2574.6.特殊例题4:35.3×8+35.3×6—4×35.3可以拆分为35.3×(8+6—4),再进行简算得到353.九、连减的简便运算例子:1.528—6.5—3.5可以拆分为528—(6.5+3.5),再进行简算得到518.2.528—89—128可以拆分为528—128—89,再进行简算得到311.3.52.8—(40+12.8)可以拆分为52.8—12.8—40,再进行简算得到0.十、连除的简便运算例子:3200÷25÷4可以拆分为3200÷(25×4),再进行简算得到32.十一、其他简便运算例子:1.256—58+44可以拆分为256+44—58,再进行简算得到242.2.250÷8×4可以拆分为250×4÷8,再进行简算得到125.。

四则混合运算知识总结

四则混合运算知识总结

四则混合运算知识总结.DOC1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。

括号里面的计算顺序遵循以上1、2、3条的计算顺序。

知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。

字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。

字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。

字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。

字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。

字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。

《四则运算》知识点

《四则运算》知识点

《四则运算》知识点四则运算是数学中最基本的运算之一,包括加法、减法、乘法和除法四种运算。

四则运算是数学学习的基础,也是其他数学运算的基础。

掌握四则运算的规则和方法,不仅可以帮助我们进行简单的计算,还可以培养我们的逻辑思维和数学能力。

下面我们来详细介绍一下四则运算的知识点。

一、加法在进行加法运算时,需要将两个或多个数相加,得到它们的和。

加法的基本规则是:同号相加得正,异号相加得负。

例如:3+5=8,(-3)+(-5)=(-8),(-3)+5=2加法的交换律:a+b=b+a,即加数的顺序可以变换,结果不变。

加法的结合律:(a+b)+c=a+(b+c),即先将两个数相加再将结果与第三个数相加,结果不变。

二、减法在进行减法运算时,需要用第一个数减去第二个数,得到它们的差。

减法的基本规则是:正减正得正,负减负得负,正减负要看绝对值谁大。

例如:7-3=4,(-7)-(-3)=(-4),7-(-3)=10。

减法的运算法则与加法不同,不能随意交换减数和被减数的位置。

三、乘法在进行乘法运算时,需要将两个或多个数相乘,得到它们的积。

乘法的基本规则是:同号相乘得正,异号相乘得负。

例如:2×3=6,(-2)×(-3)=6,(-2)×3=-6乘法的交换律:a×b=b×a,即乘数的顺序可以变换,结果不变。

乘法的结合律:(a×b)×c=a×(b×c),即先将两个数相乘再将结果与第三个数相乘,结果不变。

四、除法在进行除法运算时,需要用被除数除以除数,得到它们的商。

除法的基本规则是:正数除以正数得正数,负数除以负数得正数,正数除以负数或者负数除以正数得负数。

例如:8÷2=4,(-8)÷(-2)=4,8÷(-2)=-4,(-8)÷2=-4除法的运算法则与乘法不同,不能随意交换被除数和除数的位置。

五、混合运算混合运算是指同时包含加、减、乘、除四种运算的计算。

(完整版)四则运算知识点归纳整理与复习

(完整版)四则运算知识点归纳整理与复习

第一单元:四则运算1、整数加法(1)把两个数合并成一个数的运算叫做加法。

(2) 加数 + 加数 = 和,一个加数 = 和-另一个加数2、整数减法(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

(2)被减数 = 差+减数,差 = 被减数-减数,减数 = 被减数—差(3)加法和减法互为逆运算。

3、整数乘法(1)求几个相同加数的和的简便运算叫做乘法。

(2)因数×因数 = 积;一个因数 = 积÷另一个因数4、整数除法(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

(2)乘法和除法互为逆运算。

(3)在除法里,0不能做除数。

(4)被除数÷除数=商,除数=被除数÷商被除数=商×除数。

5、与0有关的运算(1)“0”不能做除数;字母表示:a÷0错误(2)一个数加上0还得原数;字母表示:a+0= a(3)一个数减去0还得原数;字母表示:a-0= a(4)被减数等于减数,差是0;字母表示:a-a = 0(5)一个数和0相乘,仍得0;字母表示:a×0= 0(6)0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 06、四则运算顺序:(1)在没有括号的算式里,只有加、减法,要从左往右按顺序计算。

(3)算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

(4)先乘除、后加减,有括号的先算括号,同级运算从左往右算。

7、租船问题:学校组织去游玩,一共48个人参加,大船限乘5人,每只大船的租金的25元;小船限坐3人,每只小船的租金是20元;怎么租船最省钱?第一步:比单价来选船。

(比较坐大船和小船每人需要多少钱)大船:25÷5=5(元)小船:20÷3=6(元)……2(元)做大船便宜第二步:确定租船方案(优先选择大船,如果每条船都坐满没有空位则这种方案最便宜;如果有空位,要调整减少大船只数选用小船直到没有空位时的方案最便宜)48÷5=9(条)……3(人)【坐小船】 25×9 + 20×1 = 245(元)答:租9条大船和1条小船最便宜。

(完整版)1-----四则运算(五大定律)及公式

(完整版)1-----四则运算(五大定律)及公式

四则运算 (五大定律)
(一)加法运算定律:
字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不
字母公式:(a+b) +c=a+(b+c)
(二)乘法运算定律:
字母公式:a×b=b×a
2、先乘前两个数,或者先乘后两个数,积不变,这叫做
字母公式:(a×b)×c=a×(b×c)
3、两个数的和与一个数相乘,可以先把它们与这个数
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。

用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。

用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。

用字母表示:a÷b÷c=a÷c÷b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四则运算和运算定律知识点整理四则运算是指加法、减法、乘法、除法的计算法则。

一级运算:加、减。

二级运算:乘、除。

运算顺序:先乘除后加减,如果有括号就先算括号内的,然后再算括号外的。

先算小括号,然后算中括号、大括号。

两级运算,先算高一级后算低一级。

即先算乘除后算加减。

(同一级运算中,计算顺序是从左到右)1、如果只有加和减或者只有乘和除,从左往右计算。

(同一级计算)2、如果同时有一级、二级运算,先算二级运算。

即先算乘除后算加减。

3、如果有括号,要先算括号里的数,(不管什么级都要先算)。

4、关于括号里的计算:先算小括号,然后算中括号、大括号,括号中也是先算二级,再算一级。

运算定律1、加法交换律:a+b=b+a有两个加数相加,交换加数的位置,和不变,这叫做加法交换律 .2、加法结合律:a+b+c=(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,在和第一个数相加,和不变,这叫做加法结合律.3、减法的性质:a-b-c=a-(b+c)一个数连续减去两个数,可以用第一个数减轻后面两个数的和,差不变,这作减法的性质.4、乘法交换律:a×b=b×a两个数相乘,交换加数的位置,积不变,这叫做乘法的交换律.5、乘法结合律:a×b×c=(a×b)×c=a×(b×c)三个数相乘,先把前两个数相乘,在和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变,这叫做乘法的结合律.6、乘法分配律:(a+b)×c=a×c+b×c两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积相加起来,积不变,这叫做乘法分配律.7、除法的性质:a÷b÷c=a÷(b×c)一个数连续除以两个数,等于一个数除以两个数的积,商不变,这叫做除法的性质.一般情况下,乘法交换律和结合律会同时应用,只有交换后才可以结合. ★★运算顺序:1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

即先乘除后加减。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

数学运算法则1、整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减;2)哪一位满十就向前一位进。

2、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

(得数的小数部分末尾有0,一般要把0去掉。

)3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变;2)分母不相同时,要先通分成同分母分数再相加、减。

4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。

)5、小数乘法法则:(得数的小数部分末尾有0,一般要把0去掉。

)1)按整数乘法的法则算出积;2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。

6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。

7、整数的除法法则1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;3)每次除后余下的数必须比除数小。

8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;2)然后按照除数是整数的小数除法来除10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子;2)用被除数的分母与除数的分子相乘作为分母。

★★运算顺序:1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

即先乘除后加减。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

四则运算和运算定律知识点整理一、四则运算:加法、减法、乘法、除法统称四则运算。

一级运算:加、减。

二级运算:乘、除。

1、同级运算的运算顺序:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右依次计算。

2、含两级运算的运算顺序:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法、后算加、减法。

3、含小括号的运算顺序:算式里有小括号,要先算小括号里面的,后算小括号外面的。

★小数混合运算顺序与整数相同。

二、运算定律加法的运算定律1、加法的交换律:两个加数交换位置,和不变。

用字母表示:a+b=b+a。

2、加法的结合律:先把前两个数相加,或者先把后两个数相加,和不变。

用字母表示:(a+b)+c=a+(b+c)。

乘法的运算定律1、乘法的交换律:交换两个因数的位置,积不变。

用字母表示:a×b=b×a。

2、乘法的结合律:先乘前两个数,或者先乘后两个数,积不变。

用字母表示:(a×b) ×c=a×(b×c)。

3、乘法的分配律:两个数的和(差)与一个数相乘,可以先把它们与这个数分别相乘,再相加(减)。

用字母表示:(a±b)×c=a×c±b×c。

4、减法的运算定律:从一个数里连续减去两个数,可以从这个数里减去两个数的和。

用字母表示:a-b-c=a-(b+c)。

5、除法的运算定律:一个数连续除以两个数,可以用这个数除以两个数的积。

用字母表示:a÷b÷c=a÷(b×c)。

★灵活运用运算定律可以使计算简便。

★整数的运算定律在小数运算中同样适用。

★★★★★在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

即先乘除后加减。

★★★★在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

数学运算法则1、整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减;2)哪一位满十就向前一位进。

2、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

(得数的小数部分末尾有0,一般要把0去掉。

)3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变;2)分母不相同时,要先通分成同分母分数再相加、减。

4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。

)5、小数乘法法则:(得数的小数部分末尾有0,一般要把0去掉。

)1)按整数乘法的法则算出积;2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。

6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。

7、整数的除法法则1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;3)每次除后余下的数必须比除数小。

8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;2)然后按照除数是整数的小数除法来除10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子;2)用被除数的分母与除数的分子相乘作为分母。

★运算顺序:1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

即先算乘除后加减。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

相关文档
最新文档