数据结构顺序表的修改算法
《数据结构与算法》课后习题答案

2.3 课后习题解答2.3.2 判断题1.线性表的逻辑顺序与存储顺序总是一致的。
〔×〕2.顺序存储的线性表可以按序号随机存取。
〔√〕3.顺序表的插入和删除操作不需要付出很大的时间代价,因为每次操作平均只有近一半的元素需要移动。
〔×〕4.线性表中的元素可以是各种各样的,但同一线性表中的数据元素具有一样的特性,因此属于同一数据对象。
〔√〕5.在线性表的顺序存储构造中,逻辑上相邻的两个元素在物理位置上并不一定相邻。
〔×〕6.在线性表的链式存储构造中,逻辑上相邻的元素在物理位置上不一定相邻。
〔√〕7.线性表的链式存储构造优于顺序存储构造。
〔×〕8.在线性表的顺序存储构造中,插入和删除时移动元素的个数与该元素的位置有关。
〔√〕9.线性表的链式存储构造是用一组任意的存储单元来存储线性表中数据元素的。
〔√〕10.在单链表中,要取得某个元素,只要知道该元素的指针即可,因此,单链表是随机存取的存储构造。
〔×〕11.静态链表既有顺序存储的优点,又有动态链表的优点。
所以它存取表中第i 个元素的时间与i 无关。
〔×〕12.线性表的特点是每个元素都有一个前驱和一个后继。
〔×〕2.3.3 算法设计题1.设线性表存放在向量A[arrsize] 的前 elenum 个分量中,且递增有序。
试写一算法,将x 插入到线性表的适当位置上,以保持线性表的有序性,并且分析算法的时间复杂度。
【提示】直接用题目中所给定的数据构造〔顺序存储的思想是用物理上的相邻表示逻辑上的相邻,不一定将向量和表示线性表长度的变量封装成一个构造体〕,因为是顺序存储,分配的存储空间是固定大小的,所以首先确定是否还有存储空间,假设有,那么根据原线性表中元素的有序性,来确定插入元素的插入位置,后面的元素为它让出位置,〔也可以从高低标端开始一边比拟,一边移位〕然后插入x ,最后修改表示表长的变量。
int insert (datatype A[],int *elenum,datatype x)/* 设 elenum 为表的最大下标*/ {if (*elenum==arrsize-1)return 0;/* 表已满,无法插入*/else {i=*elenum;while (i>=0 && A[i]>x)/* 边找位置边移动*/{A[i+1]=A[i];i--;}/* 插入成功 */A[i+1]=x;(*elenum)++;return 1;}}时间复杂度为O(n) 。
codeblock数据结构算法实现-顺序表基本操作

数据结构算法实现-顺序表基本操作序号一、引言二、顺序表的定义三、顺序表的基本操作1.初始化操作2.插入操作3.删除操作4.查找操作四、顺序表的实现五、总结一、引言数据结构是计算机科学中非常重要的一部分,它是计算机存储、组织数据的方式。
而顺序表是其中的一种基本数据结构,它采用一组位置区域连续的存储单元依次存放线性表中的元素。
本文将着重介绍顺序表的基本操作及其算法实现。
二、顺序表的定义顺序表是一种基本的线性表,顺序表中元素的逻辑顺序和物理顺序是一致的。
顺序表的特点是利用一组连续的存储单元依次存放线性表中的元素。
顺序表可以用数组实现,其元素在内存中是连续存储的,可以通过下标直接访问元素。
由于顺序表的存储方式,使得其在查找、插入和删除等操作上具有较好的性能。
三、顺序表的基本操作顺序表的基本操作包括初始化、插入、删除和查找等。
下面分别介绍这些操作的实现方法。
1.初始化操作初始化操作是指将一个空的顺序表初始化为一个具有初始容量的顺序表,并为其分配内存空间。
初始化操作的实现方法主要有两种,一种是静态分配内存空间,另一种是动态分配内存空间。
静态分配内存空间时,需要预先指定顺序表的容量大小,然后在程序中创建一个数组,并为其分配指定大小的内存空间。
动态分配内存空间时,可以根据需要动态创建一个数组,并为其分配内存空间。
下面是一个简单的初始化操作的实现示例:```C代码#define MAXSIZE 100 // 定义顺序表的最大容量typedef struct {ElementType data[MAXSIZE]; // 定义顺序表的元素数组int length; // 定义顺序表的当前长度} SeqList;2.插入操作插入操作是指将一个新元素插入到顺序表的指定位置。
插入操作的实现方法主要包括在指定位置插入元素,同时对其他元素进行后移操作。
下面是一个简单的插入操作的实现示例:```C代码Status Insert(SeqList *L, int i, ElementType e) {if (i < 1 || i > L->length + 1) { // 判断插入位置是否合法return ERROR;}if (L->length >= MAXSIZE) { // 判断顺序表是否已满return ERROR;}for (int j = L->length; j >= i; j--) { // 插入位置及之后的元素后移L->data[j] = L->data[j - 1];}L->data[i - 1] = e; // 插入新元素L->length++; // 顺序表长度加1return OK;}```3.删除操作删除操作是指将顺序表中指定位置的元素删除。
学习数据结构心得体会

学习数据结构心得体会数据结构研究总结通过一学期对《数据结构与算法》的研究,大概的了解了基本的数据结构和相应的一些算法。
下面总结一下自己一个学期研究的收获和心得。
数据结构是什么:数据结构是计算机存储、组织数据的方式。
数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。
通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。
数据结构往往同高效的检索算法和索引技术有关。
数据结构重要性:一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。
对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。
一个逻辑数据结构可以有多种存储结构,且各种存储结构影响数据处理的效率。
在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。
许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。
许多时候,确定了数据结构后,算法就容易得到了。
有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。
不论哪种情况,选择合适的数据结构都是非常重要的。
选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。
这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。
常见的数据结构:1.顺序表:定义:顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构。
线性表采用顺序存储的方式存储就称之为顺序表。
顺序表是将表中的结点依次存放在计算机内存中一组地址连续的存储单元中。
基本运算:置表空:sqlsetnull(l)判表满:sqlempty(l)求表长:sqllength(l)插入:sqlinsert(l,i,x)按序号取元素:sqlget(l,i)删除:sqldelete(l,i)按值查找:sqllocate(l,x)2.链表定义:链表是一种物理储备单元上非连续、非顺序的储备结构,数据元素的逻辑顺序是经由过程链表中的指针链接次序实现的。
数据结构实验一顺序表

数据结构实验一1、实验目的∙掌握线性表的逻辑特征∙掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算2、实验内容:建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空;1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作:∙创建一个新的顺序表,实现动态空间分配的初始化;∙根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表;∙根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除);∙利用最少的空间实现顺序表元素的逆转;∙实现顺序表的各个元素的输出;∙彻底销毁顺序线性表,回收所分配的空间;∙对顺序线性表的所有元素删除,置为空表;∙返回其数据元素个数;∙按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回;∙按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回;∙判断顺序表中是否有元素存在,对判断结果进行返回;.编写主程序,实现对各不同的算法调用。
2.实现要求:∙“初始化算法”的操作结果:构造一个空的顺序线性表。
对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间;∙“位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ;操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1;∙“位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ;操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ;∙“逆转算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换;∙“输出算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行输出;∙“销毁算法”初始条件:顺序线性表L 已存在;操作结果:销毁顺序线性表L;∙“置空表算法”初始条件:顺序线性表L 已存在;操作结果:将L 重置为空表;∙“求表长算法”初始条件:顺序线性表L 已存在;操作结果:返回L 中数据元素个数;∙“按序号查找算法”初始条件:顺序线性表L 已存在,元素位置为i,且1≤i≤ListLength(L)操作结果:返回L 中第i 个数据元素的值∙“按值查找算法”初始条件:顺序线性表L 已存在,元素值为e;操作结果:返回L 中数据元素值为e 的元素位置;∙“判表空算法”初始条件:顺序线性表L 已存在;操作结果:若L 为空表,则返回TRUE,否则返回FALSE;分析: 修改输入数据,预期输出并验证输出的结果,加深对有关算法的理解。
李春葆《数据结构教程》(第4版)课后习题-第一章至第十二章(圣才出品)

第二部分课后习题第1章绪论1.简述数据与数据元素的关系与区别。
答:凡是能被计算机存储、加工的对象统称为数据,数据是一个集合。
数据元素是数据的基本单位,是数据的个体。
数据与元素之间的关系是元素与集合之间的关系。
2.数据结构和数据类型有什么区别?答:数据结构是互相之间存在一种或多种特定关系的数据元素的集合,一般包括三个方面的内容,即数据的逻辑结构、存储结构和数据的运算。
而数据类型是一个值的集合和定义在这个集合上的一组运算的总称,如C语言中的int数据类型是由-32768~32767(16位机)的整数和+、-、*、/、%等运算符组成。
3.设3个表示算法频度的函数f、g和h分别为:f(n)=100n3+n2+1000g(n)=25n3+5000n2h(n)=n1.5+5000nlog2n求它们对应的时间复杂度。
答:f(n)=100n3+n2+1000=O(n3),g(n)=25n3+5000n2=O(n3),当n→∞时,√n>log2n,所以h(n)=n1.5+5000nlog2n=O(n1.5)。
4.用C/C++语言描述下列算法,并给出算法的时间复杂度。
(1)求一个n阶方阵的所有元素之和。
(2)对于输入的任意三个整数,将它们按从小到大的顺序输出。
(3)对于输入的任意n个整数,输出其中的最大和最小元素。
答:(1)算法如下:本算法的时间复杂度为O(n2)。
(2)算法如下:本算法的时间复杂度为O(1)。
(3)算法如下:本算法的时间复杂度为O(n)。
5.设n为正整数,给出下列各种算法关于n的时间复杂度。
(1)(2)(3)答:(1)设while循环语句执行次数为T(n),则:(2)算法中的基本运算语句是if(b[k]>b[j])k=j,其执行次数T(n)为:(3)设while循环语句执行次数为T(n),则:则6.有以下递归算法用于对数组a[i..j]的元素进行归并排序:求mergesort(a,0,n-1)的时间复杂度。
数据结构中顺序表的基本操作

数据结构中顺序表的基本操作
顺序表是一种线性表的存储结构,使用一组连续的存储单元来存储元素,其基本操作包括:
1. 初始化:创建一个空顺序表,设置其长度为0。
2. 插入元素:在顺序表的指定位置插入一个元素,需要将插入位置之后的元素依次向后移动,然后将新元素放入插入位置,并更新顺序表的长度。
3. 删除元素:删除顺序表中的指定位置的元素,需要将删除位置之后的元素依次向前移动,然后更新顺序表的长度。
4. 查找元素:根据元素的值,查找顺序表中第一个与该值相等的元素,并返回其位置。
如果不存在,则返回-1。
5. 获取元素:根据位置,返回顺序表中指定位置的元素。
6. 修改元素:根据位置,修改顺序表中指定位置的元素。
7. 清空顺序表:将顺序表的长度设置为0,即清空元素。
这些基本操作可以根据具体需求进行使用和扩展。
《数据结构排序》PPT课件

讨论:若记录是链表结构,用直接插入排序行否?折半插入 排序呢?
答:直接插入不仅可行,而且还无需移动元素,时间效率更 高!但链表无法“折半”!
折半插入排序的改进——2-路插入排序见教材P267。 (1)基本思想: P267 (2)举 例:P268 图10.2 (3)算法分析:移动记录的次数约为n2/8
13 20 39 39 42 70 85
i=8
0
1
2
3
4
5
6
7
8
Hj
折半插入排序的算法分析 • 折半查找比顺序查找快,所以折半插入排序
就平均性能来说比直接插入排序要快。
• 在插入第 i 个对象时,需要经过 log2i +1
次关键码比较,才能确定它应插入的位置。 • 折半插入排序是一个稳定的排序方法。
for ( j=i-1;j>=high+1;--j) L.r [j+1] = L.r [j];// 记录
后移
L.r [high+1] = L.r [0];
// 插入
} // for
} // BInsertSort
初始
30 13 70 85 39 42 6 20
012345678
i=2 13
30
13
数逐渐变多,由于前面工作的基础,大多数对象已基本有 序,所以排序速度仍然很快。
时间效率: O(n1.25)~O(1.6n1.25)——经验公式
空间效率:O(1)——因为仅占用1个缓冲单元 算法的稳定性:不稳定——因为49*排序后却到了49的前面
希尔排序算法(主程序)
参见教材P272
void ShellSort(SqList &L,int dlta[ ],int t){
数据结构25:矩阵转置算法(三元组顺序表)

数据结构25:矩阵转置算法(三元组顺序表)矩阵的转置实际上就是将数据元素的⾏标和列标互换,即 T(i,j) = M(j,i) 。
例如:图1 矩阵的转置相应地,三元组表转变为:图2 三元组表矩阵的转置,经历了三个步骤:矩阵的⾏数 n 和列数 m 的值交换;将三元组中的i和j调换;转换之后的表同样按照⾏序(置换前的列序)为主序,进⾏排序;实现三元组的转换,重点在第三步,实现算法有两种。
普通算法普通算法的实现过程为:1. 将矩阵的⾏数和列数进⾏调换;2. 遍历表 a 的 j 列(查找 j 的值,从 1 ⼀直到未转置之前的矩阵的列数 m ),遍历的过程,就可以⾃动存储为表 b 的形式。
因为在表 a 中 i 列的数值是从⼩到⼤的,在根据 j 列由上到下的遍历时, i 列同样也是有序的。
实现代码:TSMatrix transposeMatrix(TSMatrix M, TSMatrix T){ //⾏和列置换 T.m = M.n; T.n = M.m; T.num = M.num; if (T.num) { int q = 0; //依次遍历M矩阵的列(从1开始),的遍历的过程中将⾏标和列标置换,得到置换后的三元表T for (int col=1; col<=M.m; col++) { for (int p=0; p<M.num; p++) { if (M.data[p].j == col) { T.data[q].i = M.data[p].j; T.data[q].j = M.data[p].i; T.data[q].data = M.data[p].data; q++; } } } } return T;}此算法的时间复杂度关键在于嵌套的两个 for 循环,时间复杂度为O(m*num),和矩阵的列数以及⾮ 0 元素的个数的乘积成正⽐,如果稀疏矩阵的⾮ 0 元素很多的情况,使⽤这个算法,虽然⼀定程度上节省了空间,但是时间复杂度会很⾼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构顺序表的修改算法
顺序表是一种常用的数据结构,它由一组连续的存储单元组成,用于存储线性表中的数据元素。
在实际应用中,我们经常需要对顺序表进行修改操作,例如插入、删除、修改元素等。
本文将详细介绍顺序表的修改算法,并给出相应的示例代码。
顺序表的修改操作主要包括插入、删除和修改元素三个部分。
下面我们将分别介绍这三个操作的算法。
一、插入元素
插入元素是将一个新元素插入到顺序表中的指定位置。
具体算法如下:
1. 首先判断顺序表是否已满,若已满则无法插入元素,否则继续下一步。
2. 将插入位置后的所有元素向后移动一个位置,为新元素腾出空间。
3. 在插入位置处插入新元素,并修改顺序表的长度。
示例代码如下:
```
void insertElement(int* list, int* length, int position, int element) {
if (*length == MAX_SIZE) {
printf("顺序表已满,无法插入元素\n");
return;
}
for (int i = *length; i >= position; i--) {
list[i] = list[i - 1];
}
list[position - 1] = element;
(*length)++;
}
```
二、删除元素
删除元素是将顺序表中的某个元素删除。
具体算法如下:
1. 首先判断顺序表是否为空,若为空则无法删除元素,否则继续下一步。
2. 将删除位置后的所有元素向前移动一个位置,覆盖被删除的元素。
3. 修改顺序表的长度。
示例代码如下:
```
void deleteElement(int* list, int* length, int position) {
if (*length == 0) {
printf("顺序表为空,无法删除元素\n");
return;
}
for (int i = position - 1; i < *length - 1; i++) {
list[i] = list[i + 1];
}
(*length)--;
}
```
三、修改元素
修改元素是将顺序表中的某个元素修改为新的值。
具体算法如下:
1. 首先判断顺序表是否为空,若为空则无法修改元素,否则继续下一步。
2. 根据给定的位置找到需要修改的元素,并将其值修改为新值。
示例代码如下:
```
void modifyElement(int* list, int length, int position, int newElement) {
if (length == 0) {
printf("顺序表为空,无法修改元素\n");
return;
}
list[position - 1] = newElement;
}
```
顺序表的修改算法包括插入、删除和修改元素三个部分。
通过对顺序表的相关操作,我们可以灵活地对数据进行增删改查。
在实际应用中,我们可以根据具体需求选择适合的操作来修改顺序表,以满足我们的需求。