药物化学结构与药效的关系

合集下载

药物结构与药效关系

药物结构与药效关系

根据药物化学结构对生物活性的影响程度,或根据作用方式,宏观上将药物分为非特异性结构药物和特异性结构药物。

前者的药理作用与化学结构类型关系较少,主要受理化性质影响。

大多数药物属于后一类型,其活性与化学结构相互关联,并与物定受体的相互作用有关。

决定药效的主要因素有二:(1)药物必须以一定的浓度到达作用部位,才能产生应有的药效。

(2)药物和受体相互作用,形成复合物,产生生物化学和生物物理的变化。

依赖于药物的特定化学结构,但也受代谢和转运的影响。

第一节药物的基本结构和结构改造作用相似的药物结构也多相似。

在构效关系研究中,对具有相同药理作用的药物,剖析其化学结构中的相同部分,称为基本结构。

基本结构可变部分的多少和可变性的大小各不相同,有其结构的专属性。

基本结构的确定却有助于结构改造和新药设计。

第二节理化性质对药效的影响理化性质影响非特异性结构药物的活性,起主导作用。

特异性结构药物的活性取决于其与受体结合能力,也取决于其能否到达作用部位的性质。

药物到达作用部位必须通过生物膜转运,其通过能力有赖于药物的理化性质及其分子结构。

对药物的药理作用影响较大的性质,既有物理的,又有化学的。

一、溶解度、分配系数对药效的影响药物转运扩散至血液或体液,需有一定的水溶性(又称亲水性或疏脂性)。

通过脂质的生物膜转运,需有一定的脂溶性(又称亲脂性或疏水性)。

脂溶性和水溶性的相对大小一般以脂水分配系数表示。

即化合物在非水相中的平衡浓度Co 和水相中的中性形式平衡浓度Cw之比值:P=Co/Cw因P值效大,常用lgP。

非水相目前广泛采用溶剂性能近似生物膜、不吸收紫外光、可形成氢键及化学性质稳定的正辛醇。

分子结构的改变将对脂水分配系数发生显著影响。

卤原子增大4~20倍,—CH2—增大2~4倍。

以O代-CH2-,下降为1/5~1/20。

羟基下降为1/5~1/150。

脂氨基下降为1/2~1/100。

引入下列基团至脂烃化合物(R),其lgP的递降顺序大致为:C6H5 > CH3 > Cl > R > -COOCH3 > -N(CH3)2 > OCH3 > COCH3 > NO2 > OH > NH2 > COOH > CONH2引入下列基团至芳烃化合物(Ar),其lgP的递降顺序大致为:C6H5 > C4H9 >> I > Cl > Ar > OCH3> NO2 ≥COOH > COCH3> CHO > OH > NHCOCH3> NH2 > CONH2 > SO2NH2作用于中枢神经系统的药物,需通过血脑屏障,需较大的脂水分配系数。

药物化学结构和药效的关系

药物化学结构和药效的关系
式更易发挥作用。因此药物应有适宜的解离度.
例:
资料仅供参考,不当之处,请联系改正。
2.6 药物的电子云密度分布对药效的影响
如果药物分子中的电荷分布正好和其特定 受体相适应,药物与受体通过形成离子键、偶 极-偶极相互作用、范德华力、氢键等分子间引 力相互吸引,就容易形成复合物,而具有较高 活性。
资料仅供参考,不当之处,请联系改正。
下例为苯甲酸酯类局麻药分子与受体通过形成 离子键,偶极-偶极相互作用,范德华力相互作 用形成复合物的模型。
资料仅供参考,不当之处,请联系改正。
(2)增加药物分子的位阻:
抵抗青霉素酶得水解
资料仅供参考,不当之处,请联系改正。
(3)电性的影响:
资料仅供参考,不当之处,请联系改正。
2.卤素对药物生物活性的影响
强吸电子基,影响电荷分布
3.羟基、醚键对药物生物活性的影响
-OH增强与受体的结合力(氢键),增加水溶性,改变生物活性 -O-有利于定向排布,易于通过生物膜
资料仅供参考,不当之处,请联系改正。
药物的化学结构与生物活性(药效)间 的关系,通常称为构效关系(Structureactivity relationships, SAR),是药物化 学研究的主要内容之一。
资料仅供参考,不当之处,请联系改正。
本章内容
药物作用机制 受体学说 影响药物产生作用的主要因素 药物结构的官能团对药效的影响 药物的理化性质对药效的影响 药物的电子云密度分布对药效的影响 药物的立体结构对药效的影响
4.磺酸基、羧基与酯对药物生物活性的影响
-SO3H、-COOH使水溶性、解离度增大,不易通过生物膜, 生物活性减弱;
-COOR使脂溶性增大,生物活性增大
5.酰胺基与胺基对药物生物活性的影响

19章 药物的化学结构与药效关系

19章  药物的化学结构与药效关系
大多数药物属于后一种类型。
决定药效的主要因素
(一)药物发生药效的生物学基础
1、药物作用的体内靶点
与药物在体内发生相互作用的生物大分子被称为药物 的作用靶点,即致病基因编码的蛋白质和其他生物大 分子,如酶、受体、离子通道、核酸等。
2、药物发生药效的体内过程
药物的体内过程是吸收、分布、代谢和排泄,这中间 的每一个过程都影响药物的药效。 药物发生药效的决定因素有两个: 一:是药物必须以一定的浓度到达作用部位,药物的转 运过程(吸收、分布、排泄)将影响药物在作用部位的 浓度,而转运过程又受药物理化性质的影响。 二:是药物和受体的相互作用,这一因素与结构特异性 药物的生物活性有关。
根据药物在体内分子水平上的作用方式分类:
结构非特异性药物:生物活性主要受理化性质影响,与化学 结构关系不大。结构改变,对生物活性无明显影响。
结构特异性药物; 生物活性除与药物分子的理化性质相关外, 主要取决于药物的化学结构,即受药物分子和受体的相互作 用影响,药物结构稍加改变,就会直接产生药效学变化。
引入烷基、卤素、芳环、酯基和硝基等可以增加 药物的脂溶性。如要透过血脑屏障,作用于中枢 神经系统的药物,需要较强的亲脂性。
药物分子中如引入亲水性的磺酸基、羧基、羟基、 酰胺基、胺基等,一般导致水溶性增高。
2 解离度对药效的影响
多数药物具弱酸性或弱碱性,在体液中可部分解离。 药物的解离度取决于解离常数pKa和介质的pH。
第十九章
药物的化学结构与药效的关系
第一节
药物的构效关系概述
构效关系的概念
构效关系(Structure activity relationship SAR)是指药物的化学结构 与生物活性(包括药理与毒理作用)之间 的关系,是药物化学的中心内容之一,也 是药物化学和分子药理学长期以来所共同 探讨的问题。

药物的化学结构与药效

药物的化学结构与药效

第二章药物的化学结构与药效的关系本章以药物的化学结构为主线,重点介绍药物产生药效的决定因素、药物的构效关系、药物的结构与性质,药物的化学结构修饰和新药的开发途径及方法。

第一节药物化学结构的改造药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。

由分子生物学、分子药理学、量子有机化学和受体学说等学科的进一步发展,促使药物构效关系的深入研究和发展一、生物电子等排原理在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在生物领域里表现为生物电子等排,已被广泛用于药物结构的优化研究中。

所以把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。

利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。

生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。

(一)经典生物电子等排体1.一价原子和基团如F、Cl、OH、-NH2、-CH3等都有7个外层电子。

2.二价原子和基团如O、S、—NH—、—CH2—等都有6个外层电子。

3.三价原子和基团如—CH=、—N=等都有5个外层电子。

4.四价基团如=C=、=N+=、=P+=等都有四个外层电子。

这些电子等排体常以等价交换形式相互替换。

如普鲁卡因(3-1)酯键上的氧以NH取代,替换成普鲁卡因胺(3-2),二者都有局部麻醉作用和抗心律失常作用,但在作用的强弱和稳定性方面有差别。

(3-2)(3-1)O NHCH 2CH 2N(C 2H 5)2O C H 2N CH 2CH 2N(C 2H 5)2OCH 2N(二)非经典生物电子等排体常见可相互替代的非经典生物电子等排体,如—CH =、—S —、—O —、—NH —、—CH 2—在药物结构中可以通过基团的倒转、极性相似基团的替换、范德华半径相似原子的替换、开链成环和分子相近似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。

药物的化学结构与药效的关系共28页文档

药物的化学结构与药效的关系共28页文档
7.胺类 –胺是碱性基团,易与蛋白质或核酸 的酸性基团发生作用,其氮原子上的未共用电 子对又可形成氢键,能与多种受体结合,表现 出多样的生物活性。
三、电子云密度分布对药效的影响
受体和酶都是以蛋白质为主要成分的生物大分子, 蛋白质分子从组成上来讲是由各种氨基酸经肽键结合 而成,在整个蛋白质的链上存在各种极性基团造成电 子云密度分布的不均匀,有些区域的电子云密度高, 形成负电荷或部分负电荷;有些区域的电子云密度低, 即带有正电荷或部分正电荷。如果药物分子中的电子 云密度分布正好和受体或酶的特定位点相适应时,由 于电荷产生的静电引力,有利于药物分子与受体或酶 结合,形成比较稳定的药物-受体或药物-酶的复合物。
和水相中平衡浓度CW之比值。 2.脂水分配系数表示方法 P值 LgP (因P数值较大) 3.数学表达式为:
4.意义
P C0 CW
4.意义: P值表示药物的脂溶性的大小。药物分子结构的
改变对脂水分配系数发生显著的影响;不同类 型的药物对脂水分配系数的要求不同,只有适 合的脂水分配系数,才能充分发挥药物的疗效。
导入新课:
药物的化学结构与药效这之间的关系,简称药 效关系。药物在体内的作用机制以及药物的化 学结构与药效之间的关系,已成为现代新药研 究和设计的基础。
影响药物产生药效的主要因素
影响药物产生药效的主要因素有两个方面: 1、药物到达作用部位的浓度 药物只有到达作用部位并具有一定的浓度,才能产
特异性结构药物:大多数药物属于特异性 结构药物,其生物活性与药物的理化性质 相关外,主要受药物的化学结构与受体相 互作用关系的影响。这类药物的化学结构 稍微改变,就可影响其药效。
第一节药物的理化性质与药效的关系
一、药物的溶解度和分配系数对药效的影响:

药物的化学结构与药效的关系—结构改造与药效的关系(药物化学课件)

药物的化学结构与药效的关系—结构改造与药效的关系(药物化学课件)

3.成酰胺修饰:含氨基药物常常被修饰成酰胺
O H2N
O
O
CH2OCNH2 H2N
O CH2OCNH2
OCH3
H3C
N
O
NH
OCH3
H3C
N
O
NCCH3
丝裂裂霉霉素素
O
乙乙酰酰丝丝裂裂霉素霉素
➢ 作用:成酰胺修饰后,可增加药物的化学稳定性,增加药物的 组织选择性,降低毒副作用,延长药物作用时间。
4.其他修饰
OCOCH3
COOH
阿司匹林
与赖氨酸成盐
OCOCH3 COO H3NCH(CH2)4NH3
COO -
赖氨匹林
水溶性增大,可制 成注射剂,避免胃 肠道副反应
CH3SO2
水溶性差 剂型受限
H NHCOCHCl2 CH2OR
OH H
R=H
甲甲砜砜霉霉素素
R=COCH2NH2 HCl 甲甲砜砜霉霉素素甘甘氨氨酸酯酸盐酯酸盐盐酸盐
成盐
苯海拉明
副作用: 使人困倦
茶苯海明
消除抗组胺 药的副作用
OCOCH3 成酯 COOH
阿司匹林
R
COO
OCOCH3
贝诺酯
NHCOCH3
对胃无刺激作用, 不良反应少,病 人易于耐受
OCOCH3 COOH
阿司匹林
成酰胺
OH
CONH2
水杨酰胺
对胃肠道几 乎无刺激
小结
1.使药物在特定部位发挥作用 2.提高药物的稳定性 3.延长药物作用时间 4.改善药物的吸收 ,提高生物利用度 5.改善药物的溶解性 6.消除药物的不良味觉 7.降低毒副作用
先与甘氨酸成酯,再 与盐酸成盐,水溶性 增大,可制成注射剂

药物的化学结构与治疗效果

药物的化学结构与治疗效果

药物的化学结构与治疗效果药物是指用于预防、诊断、治疗、缓解或控制疾病的物质。

药物的化学结构与治疗效果密切相关,不同的化学结构决定了药物的性质和作用机制,进而影响其治疗效果。

本文将从药物的化学结构与治疗效果的关系、药物分类以及药物研发等方面进行探讨。

一、药物的化学结构与治疗效果的关系药物的化学结构是指药物分子中各个原子的排列方式和连接方式。

药物的化学结构直接决定了药物的性质和作用机制,从而影响其治疗效果。

1. 结构与活性关系药物的活性通常与其分子结构密切相关。

药物分子中的不同基团、官能团以及它们之间的连接方式会影响药物与生物体内靶点的相互作用。

例如,药物分子中的特定官能团可以与靶点结合形成稳定的药物-靶点复合物,从而发挥治疗效果。

因此,通过调整药物的化学结构,可以改变药物与靶点的相互作用,进而调节药物的治疗效果。

2. 结构与药代动力学关系药物的化学结构还会影响药物在体内的吸收、分布、代谢和排泄等药代动力学过程。

药物分子的化学结构特征决定了药物在生物体内的溶解度、脂溶性、离子化程度等性质,进而影响药物的吸收和分布。

此外,药物的化学结构还会影响药物在体内的代谢和排泄速率,从而影响药物的药效持续时间和剂量调整。

二、药物的分类根据药物的化学结构和作用机制,药物可以分为多个不同的类别。

常见的药物分类包括以下几种:1. 化学药物化学药物是指通过化学合成得到的药物,其化学结构和活性成分是已知的。

化学药物通常具有明确的作用机制和治疗效果,如抗生素、抗癌药物等。

2. 生物制剂生物制剂是指通过生物技术手段制备的药物,如基因工程药物、蛋白质药物等。

生物制剂的化学结构复杂多样,其治疗效果通常与生物分子的相互作用有关。

3. 中药中药是指以天然药材为原料,通过炮制、提取等工艺制备的药物。

中药的化学结构复杂多样,其中的有效成分通常是多种多样的化合物混合物。

中药的治疗效果与其中的活性成分和药物组分的相互作用密切相关。

4. 药物类别根据药物的作用机制和治疗效果,药物还可以分为多个类别,如抗生素、抗炎药、抗癌药、心血管药等。

17药物的化学结构与药效的关系

17药物的化学结构与药效的关系

(2) 由带电荷的大分子层所组成的细胞膜, 能排斥或吸附离子,阻碍离子的通过 -----(如组成蛋白质的部分氨基酸可解离 为羟基负离子和铵基正离子)
计算公式
弱酸或弱碱类药物在体液中解离后,离 子与未解离分子的比率由酸(或碱的共轭 酸)的解离常数(pKa值)和体液介质的pH 值决定。
弱酸性药物在胃中的吸收
药物的化学结构与生物活性(包括 药理与毒理作用)之间的关系,简称构 效关系(structure-activity relationships SAR)。 研究药物的构效关系是药物化学的中 心内容之一。
根据药物化学结构对生物活性的影 响程度或药物在体内分子水平上的作用 方式,宏观上将药物分子分为两种类型: 结构非特异性药物 (structurally nonspecific drug) 结构特异性药物 (structurally specific drug)
分布 组织 血浆蛋白 排泄
(一)药物在作用部位的浓度
药物必须以一定的浓度到达作用部位, 才能产生应有的药效 ---该因素与药物的转运(吸收、分布、 排泄)密切相关,如
口服 抗疟药 人体 胃肠道粘膜
血流
红细胞膜
疟原虫体内
疟原虫细胞膜
(二)药物作用的体内靶点
• 药物的作用靶点:是指与药物在体内发生 相互作用的生物大分子,如酶、受体、离 子通道、核酸等。
• • 巴比妥酸的pKa值约为4.12, 在生理pH7.4时,有99%以上呈离子型, 不能通过血脑屏障进入中枢神经系统而起 作用。
O H R O R
5
OH NH N N OH OHH+ R
-O
ON N O-
N H
O
HO
苯巴比妥的生物活性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

药物化学结构与药效的关系
药物化学结构与药效之间存在密切的关系。

药物化学结构决定了药物
的物理化学性质、代谢途径和药效特点等。

药物的化学结构特点直接影响
了药物在体内的吸收、分布、代谢和排泄等方面的药代动力学过程,进而
影响药物在生物体内产生的药效。

首先,药物化学结构影响药物的吸收。

药物分子的溶解度、离子性以
及脂溶性等因素可以影响药物在胃肠道内的解离、溶解和吸收。

药物分子
的大小、电荷等特点也决定了药物是否能够穿透细胞膜,进而进入细胞内
发挥药效。

其次,药物化学结构影响药物在体内的分布。

药物分子的极性和非极
性部分、药物分子的离子性以及蛋白结合性等特点决定了药物在体内组织
和细胞内的分布情况。

药物分子的极性可影响药物通过血脑屏障或胎盘屏
障的能力,从而影响药物对中枢神经系统或胎儿的影响程度。

此外,药物化学结构还影响药物的代谢途径和代谢产物。

药物分子含
有特定的官能团和化学键,决定了药物在体内的代谢途径,如氧化、还原、羟基化、脱甲基化等。

药物的代谢产物可能具有不同的活性和药理效应,
药物化学结构对药物代谢过程的选择性和速度也有一定影响。

最后,药物化学结构决定药物的药效特点。

药物分子的化学结构与药
物与靶点之间的相互作用密切相关。

药物分子与靶点之间的相互作用方式
包括非共价作用和共价作用。

药物分子的大小、形状、电荷分布等特点决
定了药物与靶点之间的空间匹配程度,进而影响药物与靶点的亲和力和选
择性。

药物与靶点的结合对药物的治疗效果起到关键作用,药物化学结构
对药物的药效和副作用具有重要影响。

总之,药物化学结构与药效之间存在紧密的关系。

药物化学结构可以影响药物的吸收、分布、代谢和药效特点,对药物的药效产生直接影响。

因此,在药物研究与开发过程中,药物化学结构设计是重要的策略之一,通过合理设计药物分子的化学结构,可以调控药物的药代动力学过程和药效特点,以达到更好的药物治疗效果。

相关文档
最新文档