药物的构效关系

合集下载

药物的构效的关系-山西大同大学

药物的构效的关系-山西大同大学

药物的构效的关系山西大同大学医学院药理教研室李进霞1学习目标※掌握药物构效关系的含义;※掌握药物结构产生药效的主要因素;※了解药物的理化性质,电子云密度、立体结构、脂水分配系数和解离度与药效的关系;※了解识别结构特异性和结构非特异性药物;※了解不同类别药物的构效关系。

2构效关系 药物的化学结构和药效之间的关系,简称构效关系(structure-activity relationships SAR)。

3•非特异性结构药物:主要受药物的理化性质的影响•特异性结构药物依赖于药物分子的特异的化学结构,及其某种特异的空间关系,作用于体内特定的受体46(一)药物在作用部位的浓度药物必须药物必须以一定的浓度到达作用部位以一定的浓度到达作用部位,才,才能产生应有的药效该因素与药物的转运(吸收、分布、排泄)密切相关理化性质一、药物产生药效的决定性因素 口服抗疟药 人体胃肠道粘膜血流红细胞膜疟原虫细胞膜疟原虫体内(二)药物和受体的相互作用7受体与配体间的作用具有三个主要特征:①特异性;②饱和性;③高度的亲和力和内在活性。

8(三)其他因素⏹化学稳定性⏹药物的配伍⏹药物剂型⏹给药途径⏹……910二、药物的基本结构对药效的影响具有相同药理作用的药物,将其化学结构中相同的部分,称为基本结构或药效结构 (pharmacophore )或药效团(pharmacophore )ArCOX(CH 2)nN局部麻醉药磺胺类药物NSROCHNOCH 3CH 3COOH青霉素类药物第二节药物理化性质和药效的关系⏹溶解度⏹ 分配系数⏹ 解离度⏹ 官能团1213一、溶解度对药效的影响水是生物系统的基本溶剂–体液血液和细胞浆液的实质都是水溶液脂质的生物膜 包括各种细胞膜、线粒体和细胞核的外膜等二、分配系数对药效的影响分配系数P:药物在互不混溶的非水相和水相中分配平衡后,在非水相中的浓度Co的比值。

即:和水相中的浓度Cw非水相中的浓度C oP =水相中的浓度C w14药物的化学结构决定其水溶性和脂溶性⏹药物分子中引入-COOH、-NH2、-OH等极性基团时→增强水溶性,可使脂水分配系数下降。

药物的构效关系

药物的构效关系

药物的构效关系药物的构效关系是指药物分子结构与其生物学活性之间的关系。

通过研究药物的构效关系,可以帮助科学家设计和改进药物分子结构,以提高药物的活性、选择性、药代动力学和毒性等方面的性能。

构效关系研究可以帮助研究人员预测药物分子结构的活性,从而提高药物的有效性,并减少不必要的合成实验和临床试验的成本。

药物的构效关系研究可以从以下几个方面入手:1. 影响药物活性的基本结构单元:通过研究药物分子结构中的基本结构单元的功能和特点,可以发现特定结构单元与药物活性之间的关系。

例如,研究大环、环氧、酮、酯、醚、杂环等基本结构对药物活性的影响。

2. 功能团的关键性质:药物分子中的功能团通常具有决定其生物活性的重要作用。

通过研究不同功能团的性质和作用机制,可以揭示功能团与药物活性之间的关系。

例如,羟基、氨基、羧基等功能团对药物的亲水性、溶解度和代谢途径等方面起到重要的影响。

3. 空间构型的影响:药物分子的空间构型对其生物活性具有重要影响。

通过研究不同空间构型对药物活性的影响,可以揭示空间立体构型与药物相互作用的关系。

例如,立体异构体的研究可以帮助研究人员理解立体结构对药物活性的影响机制。

4. 分子杂化:通过将两种或更多的药物结构和/或配体结构合并为一个新的结构,可以产生具有更高活性和选择性的药物分子。

分子杂化是一种重要的构效关系研究方法,可以通过合并两种结构的优点,从而改善药物的性能。

药物的构效关系研究是一项复杂而综合的工作,除了上述几个方面,还需要考虑诸如药物与靶标分子之间的相互作用、代谢途径、毒性等因素的影响。

通过多种研究方法,如计算化学、分子模拟、合成化学和生物学实验等,来揭示药物的构效关系,可以为药物的设计和优化提供有力的支持。

总之,药物的构效关系研究是药物研究的重要组成部分,它可以帮助科学家了解药物分子结构与其生物学活性之间的关系,从而为药物的设计和优化提供指导。

这项研究需要综合考虑药物的基本结构单元、功能团的特性、空间立体构型以及分子杂化等多个因素,并与药物与靶标的相互作用、代谢途径和毒性等进行综合研究。

药物化学构效关系

药物化学构效关系

药物化学构效关系1.局部麻醉药的构效关系:①亲脂性部分:可变范围较大,可为芳环或芳杂环,但以苯环的作用较强,是局麻药物的必需部位。

当酯类药物苯环的邻位或对位引入给电子集团,如氨基、烷氧基时,局麻作用均较未取代得苯甲酸衍生物强;对氨基苯甲酸酯类苯环的邻位上若再有其他取代基如氯、氨基、烷氧基时,由于位阻作用而延长了酯的水解,因此活性增强,作用时间延长。

②中间连接部分:由羰基部分和烷基部分共同组成。

羰基部分与麻醉药持效时间及作用强度有关,作用持续时间为:酮﹥酰胺﹥硫代酯﹥酯;麻醉作用强度:硫代酯﹥酯﹥酮﹥酰胺。

烷基部分碳原子数以2~3个为好,当烷基部分为—CH2CH2CH2—时,麻醉作用最强。

③亲水性部分:大多数为叔胺,易形成可溶性的盐类。

氮原子上取代基的碳原子总和以3~5时作用最强,也可为酯环胺,其中以哌啶的作用最强。

2. 苯二氮卓类药物的构效关系:① 1、2位拼入三氮唑环,使代谢稳定性增加,提高与受体的亲和力,活性显著增加;② 3位引入手性碳,分子构想更稳定,对受体亲和力增强;③ 4、5位引入恶唑环,增强稳定性;④7位有吸电子取代基时,药物活性明显增强,且吸电子性越强,活性增加越明显,NO2>Br>CF3>Cl;⑤ 5位苯环的2’位引入体积较小的吸电子基团如F、Cl,可使活性增强。

①镇静作用的强度和起效快慢,与药物的理化性质有关。

【酸性解离常数pKa】巴比妥酸和5位取代的巴比妥类有较强的酸性,在生理pH=7.4几乎全都电离成离子状态,不易透过血脑屏障,无镇静催眠作用;5,5-二取代的巴比妥类,酸性减弱,生理pH条件下不易电离,易进入脑中发挥作用,显效快,作用强。

【脂水分配系数】5位无取代基时,分子有一定极性,亲脂性强,不易透过血脑屏障,无镇静催眠作用;5位取代基碳原子总数在7~8之间作用最强,若亲脂性过强,作用下降甚至出现惊厥。

药物有最适当的的脂溶性,有利于药物透过细胞膜和血脑屏障,起效快,作用强。

药物化学构效关系

药物化学构效关系

局部麻醉药构sheng效关系1.分类芳酸酯类、酰胺类、氨基醚类、氨基酮类、其他类2.构效关系亲酯部分中间链亲水部分⑴亲脂部分:芳烃或芳杂环,这一部分修饰对理化性质变化大,但苯环作用较强。

苯环上引入给电子取代基,麻醉作用增强,而吸电子取代基则作用减弱。

⑵中间部分:此部分决定药物稳定性,和局麻作用持续时间有关⑶亲水部分:常为仲胺和叔胺,仲胺刺激性较大;烃基链3~4个碳原子作用最强,杂环以哌啶环作用最强巴比妥类药构效关系(1)、分子中5位上应有两个取代基。

(2)、5位上的两个取代基的总碳数以4—8为最好(3)、5位上的两个取代基的总碳数以4—8为最好. (4)、在酰亚胺氮原于上引入甲基,可降低酸性和增加脂溶性。

(5)、将C2上的氧原子以硫原子代替,则脂溶性增加,起效快,作用时间短。

苯二氮卓类药物的构效关系(1)1,3-二氢-5-苯基-2H-1,4-苯二氮卓-2-酮是此类药物基本结构;(2)环A7位引入吸电子取代基活性增加(3)环B为七元亚胺-内酰胺结构是产生药理作用的必要结构(4)5位苯环上的取代基时产生药效的重要结构之一,(5)1,2位的酰胺键和4,5位的亚胺键在酸性条件下易水解开环.吩噻嗪类药构效关系R1 部分必须由三个成直链的碳原子组成,若为支链,与多巴胺受体B 部分立体上不匹配,抗精神病活性明显下降,抗组胺作用增强。

顺式吩噻嗪类药物与多巴胺的优势构象能部分重叠,活性高(当侧链与氯取代的苯环同侧时,成为顺式构象)。

丁酰苯类药物的构效关系(1)丁酰苯基为必需的基本骨架(2)侧链末端连一碱性叔胺(3)苯环的对位一般具有氟取代(4)侧链湠基于碱基之间以三个碳原子最好镇痛药的一般特征(1)分子中具有一个平坦的芳香结构(2)有一个碱性中心能在生理PH条件下大部分电离为阳离子(3)含有哌啶或类似于哌啶的空间结构吗啡的构效关系(半合成类镇痛药)叔胺是镇痛活性的关键基团,氮原子引入不同的取代基可使μ 受体激动剂转变为拮抗剂。

药物的构效关系及作用原理简介

药物的构效关系及作用原理简介
靶点结构解析
利用X射线晶体学、核磁共振等 技术解析靶点的三维结构。
药物设计
基于靶点结构,设计能够与之 结合并调节其功能的小分子药 物。
药物优化
通过构效关系研究,优化药物 的结构和性质,提高其药效和
选择性。
基于计算机辅助设计技术的新药开发
01
02
03
04
分子建模
利用计算机图形学技术建立药 物分子的三维模型。
研究构效关系的意义在于通过了解药 物结构与活性之间的关系,指导新药 的设计、合成与优化,提高药物研发 的效率与成功率。
药物结构与活性关系
药物的基本结构
药物通常具有一个核心结构,称为药效团(pharmacophore), 它与生物靶标相互作用产生药效。
结构修饰与活性变化
通过对药物基本结构进行修饰,如添加或替换基团、改变键合方式 等,可以改变药物的理化性质、药代动力学性质及药效。
药物的分子结构对其穿透血脑屏障的能力也有重要影响。 一些具有脂溶性的神经系统药物更容易穿透血脑屏障,从 而发挥中枢神经系统作用。
心血管系统药物构效关系
心血管系统药物的构效关系主要表现在药物与心血管系统靶点的相互作用上。例如,β受体阻滞剂通过阻 断β受体而降低心肌收缩力和心率,从而降低血压和减少心肌耗氧量。
药物的构效关系及作 用原理简介
目录
CONTENTS
• 药物构效关系概述 • 药物作用原理简介 • 各类药物构效关系分析 • 新型药物设计与开发策略 • 未来展望与挑战
01
药物构效关系概述
构效关系定义与意义
构效关系(Structure-Activity Relationship,SAR)是指药物分子 的化学结构与其生物活性之间的关系。

药物构效关系

药物构效关系

构效关系1.巴比妥酸无镇静催眠作用➢当5位的两个氢被取代后才呈现活性。

5位基团取代成不同的巴比妥类药物➢作用强弱和快慢----药物的理化性质➢作用时间长短----药物的体内代谢速度➢位基团不同取代生成不同的巴比妥类药物(1)解离常数(2)脂水分配系数。

作用时间长短----药物的体内代谢速度胆碱酯类M受体激动剂的构效关系2.胆碱酯类M受体激动剂3.苯乙醇胺类拟肾上腺素药物的构效关系4.局部麻醉药的构效关系亲脂性部分•可为芳烃、芳杂环,以苯环作用较强。

•苯环上邻对位给电子取代基如氨基、烷氧基有利于增加活性;而吸电基会使活性下降。

中间部分-决定药物稳定性•作用时间:-CH2CO->-CONH->-COS->-COO-•作用强度:-COS->-COO-> -CH2CO-> -CONH-•通常以n = 2-3碳原子为最好•在苯环和羰基之间插入-CH2-,-O-,破坏了共轭体系,活性下降;插入-CH=CH-,则保持活性。

亲水性部分•可为仲胺和叔胺,或脂环胺如吡咯烷、哌啶、吗啉等,以叔胺最为常见。

•不可以是伯胺,不稳定而且毒性大。

5.b受体阻滞剂的构效关系1,4-二氢吡啶环是必需结构,吡啶或六氢吡啶环则无活性,1位N不被取代为佳。

2,6-位取代基应为低级烷烃。

若C4有手性,立体结构有选择作用。

4位取代苯基上邻、间位有吸电子基团时活性较佳。

3,5-位取代基酯基是必要结构,-COCH3,-CN活性降低,硝基则激活钙通道。

7.组胺H2受体拮抗剂的构效关系(SAR)9.喹诺酮类抗菌药物的构效关系(1)吡啶酮酸的A 环是抗菌作用必需的基本药效基团,变化较小。

其中3位COOH和4位C=O与DAN螺旋酶和拓扑异构酶Ⅳ结合,为抗菌活性不可缺少的部分。

3位的羧基被磺酸基、乙酸基、磷酸基、磺酰氨基等酸性替团替代以及4位酮羰基被硫酮基、亚氨基等取代均使抗菌活性减弱。

(2)B环可作较大改变,可以是并合的苯环(X=CH,Y=CH)、吡啶环(X=N,Y=CH)、嘧环(X=N,Y=N)等。

构效关系总结

构效关系总结
HS
O O
N H
引入双键后,成平 面环,保持活性
换成-PO3H2、-CONHOH等 基团,活性有所减弱,酯化 后酯溶性增强,有利于吸收
OH
引入亲脂取代基,增强 活性,延长作用时间
16.AngⅡ受体拮抗剂的构效关系
5
17.天然及半合成强心苷类药物构效关系 地高辛 digoxin
18.他汀类药物的构效关系 洛伐他汀 lovastatin
R构型异构体活性强, S构型异构体活性降低 或消失
13.二氢吡啶类钙拮抗剂构效关系
N H H OH
CH3 CH3
4
3,5位取代酯基不同, 为手性中心,酯基大小 对活性影响不大,但不 对称酯基影响作用部位
取代基与活性关系 依次为(增加): H<甲基<环烷基< 苯基或取代苯基
H N
O O
O ONO2
为活性必需,变 成吡啶环或六氢 吡啶环活性消失
6.吗啡类 Morphine
A-D(N)为基本结构
7.胆碱酯类 M 受体激动剂的构效关系
2
8.合成 M 受体拮抗剂的构效关系
----R1 和 R2 部分为较大基团,通过疏水性力或范德华力与 M 受体结合,阻碍乙酰胆碱与受 体的接近和结合。当 R1 和 R2 为碳环或杂环时,可产生强的拮抗活性,两个环不一样时活 性更好。R1 和 R2 也可以稠合成三元氧蒽环。但环状基团不能过大,如 R1 和 R2 为萘基时 则无活性。 ----R3 可以是 H,OH,CH2OH 或 CONH2。由于 R3 为 OH 或 CH2OH 时,可通过形成氢键 使与受体结合增强,比 R3 为 H 时抗胆碱活性强,所以大多数 M 受体强效拮抗剂的 R3 为 OH。 ----氨基部分通常为季铵盐或叔胺结构。R4、R5 通常以甲基、乙基或异丙基等较小的烷基为 好。N 上取代基也可形成杂环。 ----环取代基到氨基氮原子之间的距离,以 n=2 为最好,碳链长度一般在 2~4 个碳原子之间, 再延长碳链则活性降低或消失。 9.苯乙醇胺类拟肾上腺素药物的构效关系

药物的构效关系(SAR)

药物的构效关系(SAR)
方向性:N-H…O=C键角, N-H…O为150~180o; C=O…H为100~180o hydrogen bond donor; hydrogen bond acceptor Chelation: 常见五元/六元螯合环,或含硫四元环。螯合剂可解重金属中毒(普鲁士 蓝解铊中毒)
熵变:结合后转动自由度受阻。刚性分子与受体的结合构象变化较小,更有利(RO5)
#Hydrogens - #Halogens]/2 3. Acquire 1H, HSQC and HMBC, write down chemical shifts and build
connectivity 4. Acquire 1D TOCSY & NOESY to resolve ambiguity 5. Draw a tentative structure and check consistency with spectra
Note: the presence of peaks can be proof of nuclear and its connectivity the absence of peaks can NOT be proof of no connectivity!
2nI+1 Rule: I=1/2 for 1H, 19F, 13C and 15N; I=1 for 2H;
跨膜蛋白,400~700AA,胞外结构域同源性较低,胞内序列保守,膜附近是ATP结
合位点,ATP磷酸化蛋白的tyrosine。受体激活后刺激癌基因(oncogene)的转录
和表达,是抗癌药物的重要靶标(表3-3)
F F
CH3
O
N
O
F
H3C N
NH
NH N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

药物的构效关系
药物的构效关系是通过研究药物的分子结构和生物活性之间的关系来揭示药物的作用
机制。

构效关系的研究有助于设计和合成更有效的药物。

药物的分子结构可以通过化学合成或天然来源获得。

药物的分子结构包括分子的骨架、官能团、立体构型等。

在药物的分子结构中,不同的官能团、官能团的位置和立体构型等
因素会对药物的生物活性产生重要影响。

药物的生物活性可以通过化学试验和生物试验来评价。

化学试验主要包括溶解度、稳
定性等方面的评价,而生物试验主要包括体内、体外的药效学和药代动力学研究。

在药物的构效关系研究中,常见的方法包括结构活性关系(SAR)研究和定量构效关系(QSAR)研究。

SAR研究是通过对一系列结构类似但稍有差异的化合物进行生物活性评价,从而寻找
药效与结构之间的关系。

通过SAR研究可以确定哪些结构因素对药物的活性起关键作用,
进而指导设计更活性的药物。

QSAR研究则是将药效与分子结构进行定量相关分析,建立数学模型来预测和优化药物的活性。

通过QSAR研究可以预测药物的活性、选择性、毒性等性质,为药物的设计和优化提供有价值的信息。

相关文档
最新文档