图论习题

合集下载

图论习题答案

图论习题答案

习题一1. 一个工厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。

若每点的度数为3,则总度数为27,与图的总度数总是偶数的性质矛盾。

若仅有四个点的度数为偶数,则其余五个点度数均为奇数,从而总度数为奇数,仍与图的总度数总是偶数的性质矛盾。

2. 若存在孤立点,则m 不超过K n-1的边数, 故 m <= (n-1)(n-2)/2, 与题设矛盾。

3.4. 用向量(a 1,a 2,a 3)表示三个量杯中水的量, 其中a i 为第i 杯中水的量, i = 1,2,3.以满足a 1+a 2+a 3 = 8 (a 1,a 2,a 3为非负整数)的所有向量作为各结点, 如果(a 1,a 2,a 3)中某杯的水倒满另一杯得到 ( a ’1, a ’2, a ’3 ) , 则由结点到结点画一条有向边。

这样可得一个有向图。

本题即为在此图中找一条由( 8, 0, 0 )到( 4, 4, 0 )的一条有向路,以下即是这样的一条:5. 可以。

7. 同构。

同构的双射如下:8. 记e 1= (v 1,v 2), e 2= ( v 1,v 4), e 3= (v 3,v 1), e 4= (v 2,v 5), e 5= (v 6,v 3), e 6= (v 6,v 4), e 7= (v 5,v 3), e 8= (v 3,v 4), e 9 = (v 6,v 1), 则邻接矩阵为: 关联矩阵为:∑∑∑∑∑∑∑==+====-=++=-==---=--=ni i n i i n i n i n i ni i i n i i n i i i i a a n n a a a n n n a n a v v 1111121212/)1()1(2)1(])1[(。

, 所以 因为 ,+ 的负度数,则为结点的正度数,为结点记-----22 222 i i C a a ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------100110000001001000010100010011010100000001001100000111, 001101000100000000001001010000001010⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡( 8, 0, 0 ) ( 5, 3, 0 ) ( 5, 0, 3 ) ( 2, 3, 3 ) ( 2, 5, 1 )(7, 0, 1 ) ( 7, 1, 0 ) ( 4, 4, 0 )( 4, 1, 3 )边列表为:A= (1,1,3,2,6,6,5,3,6), B= (2,4,1,5,3,4,3,4,1). 正向表为:A= (1,3,4,6,6,7,10), B= (2,4,5,1,4,3,3,4,1).习题二1. 用数学归纳法。

图论复习题

图论复习题

图论复习题(二)图论复习题一、选择题1.设图G =<V , E >,v ∈V ,则下列结论成立的是 ( C ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v Vv 2)deg(=∑∈ [PPT 23] D .Ev Vv =∑∈)deg(定理1 图G=(V ,E )中,所有点的次之和为边数的两倍 2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( B ).A .6B .5C .4D .33、 设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数解释:K n 每个结点的度都为n -1,所以若存在欧拉回路则n -1必为偶数。

n 必为奇数。

4.欧拉回路是( B )A. 路径B. 简单回路[PPT 40]C. 既是基本回路也是简单回路D.既非基本回路也非简单回路5.哈密尔顿回路是( C )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路[PPT 40]:哈密尔顿回路要求走遍所有的点,即是基本回路的点不重复,也可以是简单回路的边不重复。

6.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是( C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边7.下列哪一种图不一定是树(C )。

A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8.在有n 个结点的连通图中,其边数(B )A.最多有n-1条B.至少有n-1条C.最多有n 条D.至少有n 条9.下列图为树的是(C )。

A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a GB 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a GC 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 10、下面的图7-22是(C )。

图论选择题解析docx

图论选择题解析docx

数据结构——图选择题整理1.设完全图Kn,有n个结点(n≥2),m条边,当()时,K,中存在欧拉回路。

A.m为奇数B.n为偶数C.n为奇数D.m为偶数解析:答案C完全图是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连。

n 个端点的完全图有n个端点以及n(n-1)/2条边,因此完全图Kn的每个结点的度都为n-1,所以若存在欧拉回路则n-1必为偶数。

n必为奇数。

选C。

2、若从无向图的任意顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是()A、强连通图B、连通图C、有回路D、一棵树解析:选B对于A,强连通图的概念是在有向图中的。

对于B,连通图证明任意两个顶点之间一定能够相连,因此一定可以到达。

对于C,有环图不一定是连通图不一定任意两个顶点均能到达。

对于D,树是可以,但是不是树也可以,题目中说的太肯定了,不能选,比如下图就不是树,但可以完成题目中要求的功能。

2、对于一个有n个顶点的图:若是连通无向图,其边的个数至少为();若是强连通有向图,其边的个数至少为()A、n-1,nB、n-1,n(n-1)C、n,nD、n,n(n-1)解析:选A对于连通无向图,至少需要n-1条边。

对于强连通有向图,只要能形成一个大环就可以从任意一点到另一点。

3、设有无向图G=(V,E)和G'=(V',E'),若G’是G的生成树,则下列不正确的是()a.G'为G的连通分量b.G'为G的无环子图c.G'为G的极小连通子图且V'=VA、a和bB、只有cC、b和cD、只有a解析:选D极大连通子图简称连通分量,生成树是极小连通子图。

故a不对,c对。

生成树无环,故b对4.带权有向图G用邻接矩阵存储,则vi的入度等于邻接矩阵中()A、第i行非∞的元素个数B、第i列非∞的元素个数C、第i行非∞且非0的元素个数D、第i列非∞且非0的元素个数解析:选D带权有向图的邻接矩阵中,非0和∞的数字表示两点间边的权值。

图论习题

图论习题

第三章 平面图
7.若G的顶点数不少于11个,则G c 不是平面图 证明:ε (G ) + ε (G c ) = v(v − 1) 2 , 又ε (G ) ≤ 3v(G ) − 6 则ε (G c ) ≥ 1 (v 2 − 7v + 12) 2 当v ≥ 11时,ε (G c ) > 3v(G c ) − 6, 从而G c 不是平面图
第四章 匹配理论及其应用
• 2.树上是否可能有两个不同的完备匹配?为什么? • 解:不可能。
设M1,M 2为两个不同的完备匹配,则M1 ⊕ M 2 ≠ φ 且T[M1 ⊕ M 2 ]中的每个顶点的度为2. 由例1.9可知,T中包含圈。这与T为树矛盾。
第五章 着色理论
• 1.求n顶轮的边色数 • hints:n-1
' '
第五章 着色理论
第一条边颜色不变,其余边两色互换。 直至vl −1处无i h 色,多i l -1色; 得出矛盾:v l -1v l 着i h 色; vl 处i h = i l 色出现至少三次; 从而G中i h 和i l -1色边的导出子图中含v l的分支不可能是奇圈, 从而得出矛盾。
第五章 着色理论
• 8. 4名老师4个班级上课问题。 • 计算,一天应分几节课?若每天8节课,需几 间教室? • hints: ∆(G ) = 16, ε (G ) = 48
16 = 4 一天分4节课 5 48 = 2 需2间教室 5*8
若 13. δ是单图G顶的最小次数,证明;若δ > 1则存在δ − 1边着色, 使与每顶关联的边种有δ − 1种颜色。 h int s : 反证法:设C = (E1 , E 2 ,..., E δ −1 )为G的(δ − 1) − 最佳边着色 构造点列:v1 , v2 ,..., vh , vh +1 ,....., vl ,.... v1处无i 0色,v j v j +1着i j色,且在v j点处i j 色重复出现,仅一个i j-1色;h = i l i 着色调整:v j v j +1着i j-1色( j = 1,2,..., h) 奇圈,颜色互换:E( Eih ∪ Eik )(k = h + 1, h + 2,..., l − 2),

图论习题

图论习题

课前练习一、填空题1、图G 是简单图当且仅当 。

2、简单图G 是二部图当且仅当 。

3、若简单图G 满足(G)δ≥3,则G 中存在长度至少为 的圈。

4、连通图G 具有欧拉通路,而无欧拉回路的充要条件为 。

5、一颗树有两个2度分支点,一个3度分支点,三个4度分支点,则该树有 片树叶。

6、设T 为高为k 的二叉树,则T 最多有 个顶点。

7、设图G 是具有6条边、4个顶点的平面图,则图G 的面数为 。

8、一个图为非平面图当且仅当 。

9、S V ⊂,S 是图G 的极大独立集,则()V G S -是图G 的 。

10、带权为1,3,5,7,8,11,13的最优二叉树T 的权W(T)= 。

二、解答题1、求下图G 1的色多项式,并指出其色数、点连通度和边连通度。

图G 12、(1)证明自补图的阶数n 4k =或者n 4k 1=+,k 为某个自然数。

(2)找出所有4阶的自补图。

3、(1)证明:设G 是有v 个顶点ε条边,且G 是自对偶平面图,则2v 2ε=-。

(2)已知一颗无向树T 有三个3度结点,一个二度结点,其余都是1度结点。

①T 有几个1度结点?②试画出两棵满足上述度数要求的非同构的无向树。

4、通过布尔变量的运算,求下图3的全部极小支配集。

V 16 图3图G 25、用破圈法求下图G 3中的一颗最小生成树,写出具体过程,并计算生成树的权。

图G 36、设简单图,, |V|=n, |E|=m,G V E =<> 若有212n m C -≥+,则G 是哈密尔顿图。

7、证明:5K 不是平面图.8、证明:若,(,1)m n K m n ≥是哈密顿图,则必有.m n = 9、若,m n K 是树,求,m n 应满足的条件.132411253e 6e 1e 2e 3e 4e 5e 7e 8e 9。

图论练习题——精选推荐

图论练习题——精选推荐

图论练习题一、基本题1、设G 是由5个顶点构成的完全图,则从G 中删去(A )边可以得到树。

A .6 B .5 C .8 D .4 2、下面哪几种图不一定是树(A )。

A .无回路的连通图B .有n 个结点,n-1条边的连通图C .对每对结点间都有通路的图D .连通但删去任意一条边则不连通的图3、5阶无向完全图的边数为(B )。

A .5 B .10 C .15 D .20 4、设图G 有n 个结点,m 条边,且G 中每个结点的度数不是k ,就是k+1,则G 中度数为k 的节点数是()A .n/2 B .n(n+1) C .nk-2m D .n(k+1)-2m 5、设G=<V ,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是(B )。

A .强连通图B .单向连通图C .弱连通图D .不连通图6、在有n 个结点的连通图中,其边数(B )A .最多有n-1条B .至少有n-1条C .最多有n 条D .至少有n 条7、设无向简单图的顶点个数为n ,则该图最多有(,则该图最多有(C C )条边。

A .n-1 B n-1 B..n(n-1)/2 C n(n-1)/2 C.. n(n+1)/2 D n(n+1)/2 D..n28、要连通具有n 个顶点的有向图,至少需要(个顶点的有向图,至少需要(A A )条边。

A .n-lB n-l B..nC n C..n+lD n+l D..2n9、n 个结点的完全有向图含有边的数目(个结点的完全有向图含有边的数目(B B )。

A .n*n n*n B.B.B.n n (n +1)+1) C C C..n /2 D 2 D..n*n*((n -l )1010、在一个无向图中,所有顶点的度数之和等于所有边数(、在一个无向图中,所有顶点的度数之和等于所有边数(、在一个无向图中,所有顶点的度数之和等于所有边数(B B )倍。

图论复习题

图论复习题

图论及网络总复习题一、选择题1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。

A.6 B.5 C.8 D.42、下面哪几种图不一定是树()。

A.无回路的连通图B.有n个结点,n-1条边的连通图C.对每对结点间都有通路的图D.连通但删去任意一条边则不连通的图。

3、5阶无向完全图的边数为()。

A.5 B.10 C.15 D.204、把平面分成x个区域,每两个区域都相邻,问x最大为()A.6 B.4 C.5 D.35、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 6、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。

A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件7、设G=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是()。

A.强连通图B.单向连通图C.弱连通图D.不连通图8、无向图G中的边e是G的割边(桥)的充分必要条件是()。

A.e是重边B.e不是重边C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中9、在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条10.设无向简单图的顶点个数为n,则该图最多有()条边。

A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n211.n个结点的完全有向图含有边的数目()。

A.n*n B.n(n+1) C.n/2 D.n*(n-l)12.在一个无向图中,所有顶点的度数之和等于所有边数()倍。

A.1/2 B.2 C.1 D.413.连通图G是一棵树,当且仅当G中()A.有些边不是割边B.所有边都是割边C.无割边集D.每条边都不是割边14.4个顶点的完全图G,其生成树个数是()。

图论试题及答案解析图片

图论试题及答案解析图片

图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。

答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。

答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。

答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。

答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。

答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。

答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。

2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。

四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。

答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图论及其应用》习题课教材目录第一章图的基本概念1.1 图和简单图1.2 子图与图的运算1.3 路与图的连通性1.4 最短路及其算法1.5 图的代数表示及其特征1.6 极图1.7 交图与团图习题1第二章树2.1 树的概念与性质2.2 树的中心与形心2.3 生成树2.4 最小生成树习题2第三章图的连通度3.1 割边、割点和块3.2 连通度3.3 应用3.4 图的宽距离和宽直径习题3第四章欧拉图与哈密尔顿图4.1 欧拉图4.2 高效率计算机鼓轮的设计4.3 中国邮路问题4.4 哈密尔顿图4.5 度极大非哈密尔顿图4.6 旅行售货员问题4.7 超哈密尔顿图4.8 E图和H图的联系4.9 无限图中的欧拉,哈密尔顿问题习题4第五章匹配与因子分解5.1 匹配5.2 偶图的匹配与覆盖5.3 Tutte定理与完美匹配5.4 因子分解5.5 最优匹配与匈牙利算法5.6 匹配在矩阵理论中的应用习题5第六章平面图6.1 平面图6.2 一些特殊平面图及平面图的对偶图6.3 平面图的判定及涉及平面性的不变量6.4 平面性算法习题6第七章图的着色7.1 图的边着色7.2 顶点着色7.3 与色数有关的几类图7.4 完美图7.5 着色的计数,色多项式习题27.6 List着色7.7 全着色7.8 着色的应用习题7第八章Ramsey定理8.1 独立集和覆盖8.2 Ramsey定理8.3 广义Ramsey数8.4 应用习题8习题 11. 证明在n阶连通图中(1)至少有n-1条边。

(2)如果边数大于n-1,则至少有一条闭通道。

(3)如恰有n-1条边,则至少有一个奇度点。

证明(1) 若对∀v∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ⇒ m≥n>n-1,矛盾!若G中有1度顶点,对顶点数n作数学归纳。

当n=2时,G显然至少有一条边,结论成立。

设当n=k时,结论成立,当n=k+1时,设d(v)=1,则G-v是k阶连通图,因此至少有k-1条边,所以G 至少有k条边。

(2) 考虑v1→v2→⋯→v n的途径,若该途径是一条路,则长为n-1,但图G的边数大于n-1,因此存在v i,v j,使得v i adgv j,这样,v i→v i+1→⋯→v j并上v i v j构成一条闭通道;若该途径是一条非路,易知,图G有闭通道。

(3) 若不然,对∀v∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ⇒ m≥n>n-1,与已知矛盾!2.设G是n阶完全图,试问(1)有多少条闭通道?(2)包含G中某边e的闭通道有多少?(3)任意两点间有多少条路?答(1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n-2)…1.3.证明图1-27中的两图不同构:图1-27证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。

4. 证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。

5. 证明:四个顶点的非同构简单图有11个。

证明由于四个顶点的简单图至多6条边,因此上表已经穷举了所有情形,由上表知:四个顶点的非同构简单图有11个。

图1-28 (a)v 2 v 3 u 4u (b)6. 设G 是具有m 条边的n 阶简单图。

证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。

证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫ ⎝⎛2n 。

7. 证明:(1)m (K l ,n ) = ln ,(2)若G 是具有m 条边的n 阶简单偶图,则m ≤ ⎥⎦⎥⎢⎣⎢42n 。

证明 (1) K l,n 的总度数为2ln ,所以,m (K l ,n ) = ln 。

(2) 设G 的两个顶点子集所含顶点数分别为n 1与n 2,G 的边数为m,可建立如下的二 次规划:m=n 1n 2 s.t n 1+n 2=nn 1≥1, n 2≥ 1当n 为偶数时,n 1=n 2=n/2时,m 取最大值:m=n 2/4当n 为奇数时,取n 1=(n+1)/2, n 2=(n-1)/2时,m 取最大值:m=(n 2-1)/4所以,m ≤ ⎥⎦⎥⎢⎣⎢42n 。

8. 设△和δ是简单图G 的最大度和最小度,则δ≤2m / n ≤△。

证明∆≤≤∴≥∆⇒∆==≤⇒≥=∑∑∈∈n m n m n v d m n m n v d m Vv Vv 22)(22)(2δδδ9. 证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。

证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。

10. 证明:由两人或更多个人组成的人群中,总有两人在该人群中恰好有相同的朋友数。

证明将人用图的顶点表示,图的两顶点邻接当且仅当人群中的两人相认识,于是,问题转化为:证明在任意一个简单图中必有一对度数相等的顶点。

若图G为连通单图,则对∀v∈V(G),有1≤d(v)≤n-1,因此,n个顶点中必存在两个顶点,其度数相同;若G为非连通图,设G1为阶数n1的连通分支,则∀v∈V(G1),有1≤d(v)≤n1-1,于是在G1中必存在两个顶点,其度数相同。

11.证明:序列(7,6,5,4,3,3,2) 和(6,6,5,4,3,3,1) 不是图序列。

证明由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2) 不是图序列;(6,6,5,4,3,3,1)是图序列⇔(5,4,3,2,2,0)是图序列,然(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1) 不是图序列。

12.证明:若δ≥2,则G包含圈。

证明只就连通图证明即可。

设V(G)={v1,v2,…,v n},对于G中的路v1v2…v k,若v k与v1邻接,则构成一个圈。

若v i1v i2…v in是一条路,由于δ≥ 2,因此,对v in,存在点v ik与之邻接,则v ik⋯v in v ik构成一个圈。

13.证明:若G是简单图且δ≥2,则G包含长至少是δ+1的圈。

证明设v0v1…v k为G中一条最长路,则v0的邻接顶点一定在该路上,否则,与假设矛盾。

现取与v0相邻的脚标最大者,记为l,则l≥δ,于是得圈v0v1v2⋯v l v0,该圈长为l+1,显然不小于δ+1。

`14.G的围长是指G中最短圈的长;若G没有圈,则定义G的围长为无穷大。

证明:(1)围长为4的k的正则图至少有2k个顶点,且恰有2k个顶点的这样的图(在同构意义下)只有一个。

(2)围长为5的k正则图至少有k2+1个顶点。

证明(1) 设u,v是G中两相邻顶点,则S(u)⋂S(v)=φ,否则,可推出G中的围长为3,与已知矛盾。

因此,G中至少有2(k-1)+2个顶点,即有2k个顶点。

把S(u)⋃⎨v⎬,S(v)⋃⎨u⎬连为完全偶图,则得到2k个顶点的围长为4的图,由作法知,这样的图是唯一的。

(2) 对u∈V(G),设u的邻接顶点为u1,u2,⋯u k,由于G的围长为5,所以,u1,u2,⋯u k互不邻接。

又设u i的邻接顶点为u i1,u i2,⋯u ik-1,(i=1,2,…,k),显然,S(u i)⋂S(u j)=⎨u⎬(i≠j),否则,G 中有长为4的圈,所以,G的顶点数至少有k2+1个。

15.对具有m条边的阶n图G,证明:(1)若m≥n,则G包含圈;(2)若m≥n+4,则G包含两个边不重的圈。

证明(1)若G含有环或平行边,则G有圈。

假定G为n阶简单图。

若G中顶点度大于等于2,则G中有圈。

设G中有一度顶点,去掉该顶点和其关联的边得图G1,由条件,显然有m(G1)≥∣V(G1)∣,若G1中有一度顶点,去掉该顶点和其关联的边得图G2,有m(G2)≥∣V(G2)∣,⋯,如此进行下去,该过程不可能进行到n=1或n=2的情形,否则,不满足m≥n所以,过程进行到Gm,Gm 是度数≥2的图,它含有圈。

(2) 只就m=n+4证明就行了。

设G 是满足m=n+4,但不包含两个边不相交的圈的图族中顶点数最少的一个图。

可以证明G 具有如下两个性质:1) G 的围长g ≥5。

事实上,若G 的围长≤4,则在G 中除去一个长度≤4的圈C 1的一条边,所得之图记为G ',显然,m(G ') ≥ ∣V(G)∣=∣V(G ')∣,由(1),G '中存在圈C 2, 使C 1,C 2的边不相交这与假定矛盾;2)δ (G)≥3。

事实上,若d(v 0)=2,设v 0v 1,v 0v 2∈E(G),作G 1=G-v 0+⎨v 1v 2⎬;若d(v 0)≤1,则 G 1为在G 中除去v 0及其关联的边(d(v 0)=0,任去G 中一条边)所得之图。

显然,m(G 1)=⎜V(G 1)⎜+4,G 1仍然不含两个边不重的圈之图。

但∣V(G 1)∣<∣V(G)∣,与假定矛盾。

由2),n+4=m ≥3n/2 ⇒ n ≤ 8. 但另一方面,由1),在G 中存在一个圈Cg ,其上的顶点之间的边,除Cg 之外,再无其它边,以S 0表示Cg 上的顶点集,故由2),S 0上每个顶点均有伸向Cg 外的的边。

记与S 0距离为1的顶点集为S 1,则S 0的每一个顶点有伸向S 1的边,反过来,S 1中的每个顶点仅有唯一的一边与S 0相连,不然在G 中则含有长不大于g/2+2的圈,这与G 的围长为g 相矛盾,故⎪S 0⎪≤⎪ S 1⎪,于是有:n ≥⎪S 0⎪+⎪ S 1⎪≥g+g ≥10,但这与n ≤8矛盾。

所以,假定条件下的G 不存在。

16. 在图1-13的赋权图中,找出a 到所有其它顶点的距离。

解 1. A 1= {a },t (a ) = 0,T 1 = Φ2.()113b v =3. m 1 = 1, a 2 = v 3 , t (v 3) = t (a ) + l (av 3) = 1 (最小),T 2 ={av 3} 2. A 2 ={a , v 3}, 2)2(21)2(1,v b v b ==3. m 2 = 1, a 3 = v 1 , t (v 1) = t (a ) + l (av 1) = 2 (最小),T 3 ={av 3, av 1} 2. A 3 ={a , v 3, v 1}, 4)3(32)3(22)3(1,,v b v b v b ===3. m 3 = 3, a 4 = v 4 , t (v 4) = t (v 1) + l (v 1v 4) = 3 (最小),T 4 ={av 3, av 1, v 1v 4}2. A 4 = {a , v 3, v 1, v 4},b 1(4) = v 2,b 2(4) = v 2,b 3(4) = v 2, b 4(4) = v 53. m 4 = 4, a 5 = v 5 , t (v 5) = t (v 4) + l (v 4v 5) = 6 (最小),b 图1-13T 5 ={av 3, av 1, v 1v 4, v 4v 5}2. A 5 = {a , v 3, v 1, v 4, v 5},b 1(5) = v 2,b 2(5) = v 2,b 3(5) = v 2 , b 4(5) = v 2, b 5(5) = v 23. m 5 = 4, t (v 2) = t (v 4) + l (v 4v 2) = 7 (最小),T 6 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2}2. A 6 = {a , v 3, v 1, v 4, v 5, v 2}, b 2(6) = v 6, b 4(6) = b ,b 5(6) = v 6,b 6(6) = v 63. m 6 = 6, a 7 = v 6 , t (v 6) = t (v 2) + l (v 2v 6) = 9 (最小),T 7 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6}2. A 7 = {a , v 3, v 1, v 4, v 5, v 2, v 6}, b 4(7) = b ,b 5(7) =b ,b 7(7) =b3. m 7 = 7, a 8 = b , t (b ) = t (v 6) + l (v 6b ) = 11 (最小),T 8 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6, v 6b }于是知a 与b 的距离d (a , b ) = t (b ) = 11由T 8导出的树中a 到b 路1426av v v v b 就是最短路。

相关文档
最新文档