按比分配的应用题归类

合集下载

按比分配的应用题

按比分配的应用题

按比分配的应用题某公司发放年终奖金给员工,根据员工的工作表现,决定将奖金按比分配。

请根据以下情景,计算每位员工的奖金金额。

情景一:假设公司将年终奖金总额设定为100,000元,共有3位员工,他们的工作表现分别为甲员工80分,乙员工90分,丙员工85分。

经公司规定,根据工作表现分数的比例,分配奖金。

情景二:根据公司的规定,除了基于工作表现分数比例来分配奖金外,还要考虑员工的工作年限。

公司增加一个因素,员工每工作一年,可额外获得2000元奖金。

三位员工的工作年限分别为甲员工5年,乙员工3年,丙员工4年。

情景三:公司收到一位员工的投诉,称自己在分配奖金时被不公正对待。

该员工认为自己的工作表现明显优于其他员工,但奖金比例却低于其他员工。

请按照公司的规定来重新计算该员工的奖金,并判断是否存在不公平的情况。

根据以上情景,我们来逐一计算每位员工的奖金金额。

首先,我们根据情景一的要求,按照工作表现分数的比例来分配奖金。

根据甲员工80分,乙员工90分,丙员工85分的情况,我们可以计算出他们对应的奖金金额。

甲员工的奖金金额 = 100,000 * (80 / (80 + 90 + 85))乙员工的奖金金额 = 100,000 * (90 / (80 + 90 + 85))丙员工的奖金金额 = 100,000 * (85 / (80 + 90 + 85))接下来,根据情景二的要求,我们需要考虑员工的工作年限。

根据甲员工5年,乙员工3年,丙员工4年的情况,我们可以按照每年2000元的奖金计算出他们的额外奖金。

甲员工的额外奖金 = 2000 * 5乙员工的额外奖金 = 2000 * 3丙员工的额外奖金 = 2000 * 4将额外奖金加到每位员工的奖金金额中,得到最终的奖金数额。

甲员工的最终奖金金额 = 甲员工的奖金金额 + 甲员工的额外奖金乙员工的最终奖金金额 = 乙员工的奖金金额 + 乙员工的额外奖金丙员工的最终奖金金额 = 丙员工的奖金金额 + 丙员工的额外奖金最后,我们来解决情景三的问题。

按比例分配说题命题

按比例分配说题命题

按比例分配说题命题
一、定义理解
按比例分配是指按照一定的比例将总量分成若干份,每一份的数量都按照这个比例来确定。

在日常生活和工作中,这种分配方式非常常见,比如工资按照工作量和职位高低来分配,投资按照出资比例来分配等。

二、计算方法
按比例分配的计算方法通常是将总量除以要分配的份数,得出每一份的量,然后再乘以自己应该得到的份数,就可以得到自己应该得到的量。

例如,如果有100个苹果,要按照2:3的比例分给甲和乙两个人,甲应该得到20个苹果,乙应该得到30个苹果。

三、实例分析
以一个具体例子来说明按比例分配的计算方法。

假设一家公司需要将1000万元的投资额按照4:5:3的比例分给甲、乙、丙三个人,那么甲应该得到400万元,乙应该得到500万元,丙应该得到100万元。

四、注意事项
在按比例分配的过程中,需要注意以下几点:
1. 确定比例:在进行分配之前,需要先确定好比例,确保比例合理、公正。

2. 计算准确:在进行计算时,要保证计算的准确性,避免出现误差。

3. 记录详细:在进行分配时,需要详细记录每一份的数量和分配情况,以便后续核对和查证。

4. 透明公开:在进行分配时,需要保证分配的透明公开,避免出现不公和不透明的情况。

五、应用拓展
按比例分配不仅在日常生活和工作中有着广泛的应用,还可以拓展到其他领域。

例如,在科学研究领域中,多个研究团队可能会按照贡献比例来分配论文的署名权;在教育领域中,教师可能会按照学生的成绩比例来分配奖学金等等。

通过掌握按比例分配的计算方法,我们可以在这些领域中更加灵活地运用相关规则和方法。

六年级上册数学第四单元按比分配解决问题(类型)

六年级上册数学第四单元按比分配解决问题(类型)

按比分配解决问题分类专项姓名:得分:第一类:已知两个量之和1,奶茶店要配一杯新型水果茶,水果和茶的比是1:11.要配24升这样的水果茶,需要水果和茶各多少升?2,练一练:学校买了足球和篮球一共80个,足球和篮球的数量比是5:3,足球和篮球各有多少个?第二类:已知两个量的差3,小明读一本书,第一天读的页数与第二天读的页数之比是7:3,第二天比第一天少读了60页。

小明第一天读了多少页?4,练一练:李师傅和刘师傅加工一批零件,已知他们做的零件个数比是5:3,并且李师傅比刘师傅多做60个零件。

他们两分别做了几个零件?第三类:已知其中一个量5,裤子的单价与毛衣的单价比是2:3,裤子的单价是160元,问毛衣的单价是多少钱?6,练一练:甲、乙两数的比是4:3,已知甲数是28,问乙数是多少?第四类:“剩下的”如何分配1,剩7,工厂要加工144个零件,已经做好全部的4余的任务按5:4分给甲乙两个车间,两个车间各做多少个?8.练一练:阳光电器城运进800台烤箱,卖出150台后,剩下的按10:3的比分配给甲乙两个商场,甲乙两个商场各分得几台?第五类:三个量连比9,妈妈想泡一杯咖啡,说明书上写着咖啡豆、水、糖的比是2:7:3,如果要泡一杯300g的咖啡,需要咖啡豆、水、糖各多少g?10,练一练:超市购进1880kg的水果,苹果和香蕉的数量比是3:4,香蕉和橘子的数量比是5:3,这三种水果分别有多少kg?第六类:按比分配11,学校收到一批公益书,有150本,按人数分给四五年级,四年级有140人,五年级有160人,每个年级应分得多少本?12,练一练:小明带了4位朋友,小红带了3位朋友一起去用餐,一共花费了450元,两个人决定按人数分摊餐费,小明和小红各付多少钱?第七类:几何问题13,用56米的栅栏围成一个鸡圈,长和宽的比是5:2,这个长方形的面积是多少?14,练一练:三角形三条边的长度比是2:3:4,这个三角形的周长是360cm,三角形三条边分别是多少厘米?参考答案:第一类:1,24÷(1+11)=2(升)水果:2×1=2(升)茶:2×11=22(升)答:需要水果2升,茶22升。

按比分配应用题

按比分配应用题
的人数比为3:2,一(1)班男生有
多少人?全班有多少人?
一个三角形的周长为30厘米, 它的三边之比为1:2:3,这个三角
形的三边的长各是多少?
生活中的数学
一项工程,甲投资40万,乙投资
60万,该工程完成后共得到工程款180 万,甲乙各应分得多少工程款?
我们共同努力
500毫升稀释液
检验: 解法二:(分数乘除法)
浓缩液 : 500 x
水 : 500 x
= 100(mL)
= 400(mL)
浓缩液体积 :水的体积
=100 : 400 =1 : 4
1、六(1)班共有60人,男女生的
人数比为3:2,一(1)班男生、女 生各有多少人?
2、六(1)班有女生24人,男女生
毫升的稀释液,需要浓缩液和 水的体积分别是多少毫升?
浓缩液 :
1 我们共同努力 : 4

稀释液
按 1:4 的比配制一瓶500毫升的稀释液,需要浓缩
液和水的体积分别是多少毫升?
1 :
浓缩液 :
4

解法一: (整数乘除法)
总份数 :1 + 4 = 5(份) 每份 每份是 :500 5= 100(mL) 浓缩液 : 100 x 1 = 100 (mL) 水 :100 x 4 = 400 (mL)
1、果园里有桃树120棵,李树的棵树是桃树的
1 李树有多少棵? 4
,2、果园Leabharlann 有桃树120棵,桃树的棵树是李树的
1 李树有多少棵? 4

3、男生和女生的比为2 :3,男生是女生的 (
2 总人数的( 5
2 3
),女生是男生的(
3 ),女生是总人数( 5

比例分配应用题及答案

比例分配应用题及答案

比例分配应用题及答案在数学中,比例分配是一种常见的应用问题。

它涉及到将一个整体按照一定的比例分割成若干部分。

这种问题经常出现在实际生活中,比如将某笔资金按照不同比例分配给不同的部门或个人,或者将一块土地按照一定比例分配给不同的用途等。

本文将介绍一些常见的比例分配应用题,并提供详细的解答。

1. 问题描述:某公司的财务部门决定将一笔资金按照2:3的比例分配给两个分部门A和B。

已知部门A获得的金额是8000元,请问部门B获得的金额是多少?解答:由于部门A和部门B之间的比例是2:3,我们可以设部门B获得的金额为x,那么有以下等式成立:2/3 = 8000/x通过交叉相乘,我们可以得到:2x = 3 * 80002x = 24000最后,将方程两边同时除以2,可以得到:x = 12000所以,部门B获得的金额是12000元。

2. 问题描述:某家电公司决定将销售利润按照7:3的比例分配给销售员和其他员工。

已知销售员分得的利润为8400元,请问其他员工分得的利润是多少?解答:由于销售员和其他员工之间的比例是7:3,我们可以设其他员工分得的利润为x,那么有以下等式成立:7/3 = 8400/x通过交叉相乘,我们可以得到:7x = 3 * 84007x = 25200最后,将方程两边同时除以7,可以得到:x = 3600所以,其他员工分得的利润是3600元。

3. 问题描述:某公司决定将一块土地按照5:2的比例分配给住宅用地和商业用地。

已知商业用地的面积为1200平方米,请问住宅用地的面积是多少平方米?解答:由于住宅用地和商业用地之间的比例是5:2,我们可以设住宅用地的面积为x平方米,那么有以下等式成立:5/2 = x/1200通过交叉相乘,我们可以得到:5 * 1200 = 2x6000 = 2x最后,将方程两边同时除以2,可以得到:x = 3000所以,住宅用地的面积是3000平方米。

4. 问题描述:某公司决定将一笔利润按照比例分配给A、B和C三个股东,其中A获得的比例是2:5,B获得的比例是1:4,C获得的比例是1:10。

六年级比的应用题型归纳

六年级比的应用题型归纳

六年级比的应用题型归纳一、按比例分配基础题型。

1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。

三个班各应栽树多少棵?- 解析:首先求出三个班的人数比为46:44:50 = 23:22:25。

总份数为23 +22+25 = 70份。

那么一份是70÷70 = 1棵树。

一班应栽树23×1 = 23棵,二班应栽树22×1 = 22棵,三班应栽树25×1 = 25棵。

2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。

现有水泥12吨,需要沙子和石子各多少吨才能配制成这种混凝土?- 解析:水泥、沙子和石子的比例为2:3:5,水泥占2份,已知水泥12吨,那么一份是12÷2 = 6吨。

沙子占3份,所以沙子需要3×6 = 18吨;石子占5份,所以石子需要5×6 = 30吨。

3. 用120厘米的铁丝做一个长方体的框架。

长、宽、高的比是3:2:1。

这个长方体的长、宽、高分别是多少?- 解析:长方体的棱长总和 =(长 + 宽+高)×4,所以长 + 宽 + 高=120÷4 = 30厘米。

长、宽、高的比是3:2:1,总份数为3 + 2+1 = 6份,一份是30÷6 = 5厘米。

长是3×5 = 15厘米,宽是2×5 = 10厘米,高是1×5 = 5厘米。

4. 甲、乙、丙三个数的比是2:3:4,这三个数的平均数是18,求这三个数。

- 解析:三个数的平均数是18,则三个数的和是18×3 = 54。

甲、乙、丙三个数的比是2:3:4,总份数为2+3 + 4=9份,一份是54÷9 = 6。

甲数是2×6 = 12,乙数是3×6 = 18,丙数是4×6 = 24。

5. 某班男女生人数比是5:4,男生比女生多5人,这个班男女生各有多少人?- 解析:男女生人数比是5:4,男生比女生多5 - 4 = 1份,已知男生比女生多5人,所以一份是5人。

按比分配及其运用

按比分配及其运用

按比分配及其运用老师的话:按比分配的中心思想是找数量与份数,先求出一份是多少。

一、按比分配的基础题型(总÷总,差÷差,单÷单):老师的话:下面这一类题目非常简单,相信你肯定会做。

1、农场有鸡和鸭共500只,鸡和鸭的只数比是3:2,求鸡和鸭各有多少只?2、学校有女生和男生的比是5:7,其中男生比女生多120人,求男女生各有多少人?3、六年级和五年级植树棵树的比是5:3,其中六年级植树200棵,求五年级植树多少棵?二、把分率转化为比,再按比分配:老师的话:学习这个知识点之前,我们来复习一下简单的分数乘除法应用题,就是单位“1”知道用乘法,单位“1”不知道用除法的题型。

(你会判断单位“1”吗?别忘了“的前比后”!)例1、甲数是乙数的31。

分析:看到上面那个条件了吗?乙数是单位“1”,如果乙数知道,那就是单位“1”知道用乘法,乙数×31=甲数;如果乙数不知道,知道甲数的话,那就是单位“1”不知道用除法,甲数÷31=乙数。

如果甲数和乙数都不知道的话,那你无论是乘以31还是除以31都是错的。

例2、甲数比乙数多31。

分析:这个条件你也会经常看到,这里面乙数是单位“1”,如果乙数知道,那就是单位“1”知道用乘法,乙数×(1+31)=甲数;如果乙数不知道,知道甲数的话,那就是单位“1”不知道用除法,甲数÷(1+31)=乙数。

如果甲数和乙数都不知道的话,那你无论是乘以(1+31)还是除以(1+31)都是错的。

例3、甲数比乙数少31。

分析:和例2一样,少31,就是(1-31)。

老师的话:现在你知道什么时候该用“单位1知道用乘法,单位不知道用除法”这个方法了吧?那就是在一个分率关系里面,两个量至少要知道其中一个。

那万一两个量都不知道呢?问的好,看下面。

例4、甲数和乙数一共280,甲数是乙数的31,求甲数和乙数各是多少? 分析:这道题不知道乙数和甲数,但是知道总和,所以一旦把分率转化为比,就可以按比分配了。

按比例分配题型总结

按比例分配题型总结

按比例分配题型总结按比例分配常见的题型一共有两大类,一类是利用总数和比,求比的各项;另一类是利用比和比的某一项,求比的其他项或者总数。

另外,还要注重利用比和分数的互相转化来解题,进一步理解按比例分配应用题中数量间的对应关系,重视审题。

一、利用总数和比,求比的各项(基本题)1.已知分配的总数和比,求比的各项。

例1:一种糖水是糖与水按照1:19的比例混合而成。

现在要配制这样的糖水2千克,需要糖和水各多少千克?[解析]:这种题是按比例分配的基础题型,已知总数和比,而且这个总数就是要分配的总数,所以在解题时可以按照按比例分配的两种方法直接求解。

方法一:归一法方法二:分数乘法1+19=20份(求出2千克的总份数) 1+19=20份2÷20=0.1千克(求出每份的质量) 2×120=0.1千克(糖占糖水的120)0.1×1=0.1千克(求出糖的质量) 2×1920=1.9千克(水占糖水的1920)0.1×19=1.9千克(求出水的质量)练习1:一种足球是由32块黑色五边形和白色六边形皮块制成的,其中黑、白皮块块数的比是3∶5。

黑色和白色皮块各有多少?练习2:用84厘米长的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5。

这个三角形的面积是多少平方厘米?练习3:一套桌椅560元,桌子和椅子的价钱比是3:1,求椅子的价钱。

例2:研究发现,8岁以上的儿童按5∶3安排一天的活动与睡眠的时间是最合理的。

一天的睡眠时间应是多少小时?[解析]:这种题也是已知总数和比,而且这个总数就是要分配的总数,只是题中的总数是隐藏的,需要我们自己找准确。

常见的隐藏总数的如24小时,180°等。

在解这个题时还要注意:看清题目中求的是比的哪一项。

找准问题所对应的份数。

方法一:归一法方法二:分数乘法5+3=8份(求出24小时的总份数) 5+3=8份24÷8=3小时(求出每份的时间) 24×38=9小时(睡眠时间占一天的38)3×3=9小时(求出睡眠的时间)练习1:一个三角形的三个内角度数的比是1∶2∶3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答按比例分配问题时,所给出的比如果不是最简比,必须化成最简单的整数比,否则计算出的结果是错误的。

按比分配的应用题(共9种类型)
知道各种数量的比和总和直接按比分配:
1、用1份浓缩果汁和6份水来冲兑果汁,要冲兑这种果汁700ml。

需要浓缩果
汁和水各多少毫升?
2.甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?
3.红药水是红汞与蒸馏水按1:50配制而成的,要配制3.06千克的红药水,需要红汞与蒸馏水各多少千克?
4.永宁乡有块4.5公顷耕地,种粮食作物、经济作物,油料作物的面积比是9:4:2。

3种作物各种了多少公顷?
5.学校买来红、蓝、黑3种墨水共165瓶,它们的比是6:5:4。

红、蓝、黑3种墨水各买了多少瓶?
先算出剩下的再按比分配:
1.张大伯家的苗圃有240平方米,其中2/5的面积已经种了玫瑰花,剩下的按1:3的面积比种兰花和郁金香。

三种花的面积分别是多少平方米?
2、学校的菜园有350平方米,其中4/5的面积已经种了土豆,剩下的按3:4的面
积比种西红柿和茄子。

三种蔬菜的面积分别是多少平方米?
铁丝的长是长方形的周长,要先用周长除以2算出长宽共几分米,再按比分配:1.用48分米的铁丝做一个长方形框架,长和宽的比是5:3,这个长方形的面积分
别是多少?
2.一个长方形的周长是360为米,长与宽的比是4:2,这个长方形的长和宽各是多少?
3.一个长方形长与宽的比是5:2,这个长方形的周长是280厘米,它的面积是多少平方厘米?
铁丝的长是长方体的棱长之和,要先用棱长总和除以4求出长、宽、高的和再按比分配:
1.用180厘米的铁丝做一个长方体框架。

长、宽、高的比是3:2:1.这个长方体的长、宽、高各是多少厘米?
2.长方体的长、宽、高的比是5:3:1,棱长之和是144米,这个长方体的体积是多少立方米?
3.一个长方体的棱长总和是96米,长宽高的比是4:3:5,求这个长方体的表面积和体积?
三角形的周长就是三条边长的总和,直接按比分配:(注意,等腰三角形的两条腰相等)
1.一个三角形三条边的长度之比是2:3:4,这个三角形的周长是270厘米。

这个三角形的三条边的长度分别是多少厘米?
2.用96厘米长的铁丝围成一个三角形,这个三角形3条边长度的比是3:4:5。

3条边的长各是多少?
3.用120厘米长的铁丝围成一个三角形,这个三角形3条边长度的比是2:3:5。

3条边的长各是多少?
4.锐角三角形的两个角的比是2:3,这个三角形两个锐角各是多少度?
三角形的内角和是180度,用180直接按比分配:(注意,等腰三角形的两个底角相等,直角三角形的两个锐角和等于90度)
1. 一个三角形三个内角的度数之比是1:2:3这个三角形的三个内角各是多少度?
2. 一个三角形三个内角度数的比是1:3:5,求这个三角形各个内角的度数,
并说明它是什么三角形。

3.一个三角形铁框,三个内角度数的比是1:2:3,这个铁框的三个角分别是多少度?
只知道比和其中的一个量,把比转化成分数来做。

或者先求出一份是几,再求几份是多少:
1.甲乙丙分别有些邮票,他们邮票数量比是7:4:3,丙有60枚邮票,甲和乙各有多少枚
邮票?
2.商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?
3.学校进来一批图书,按3:4:5分配给四、五、六年级。

五年级分得120本,其他年级各分得多少本?
已知两个量或几个量的比和其中两个量的差,求另一个量。

(用两个量的差÷两个量对应的
份数差=每份数,每份数×总份数=总数量。


1.甲乙丙三人各有邮票数的比是5:8:2,甲比乙少21枚,求甲乙丙三人各有邮票数多少枚?
2.一个工厂有甲、乙、丙三个车间,甲、乙、丙三个车间的人数比是2:3:5,丙车间比乙车间多40人。

甲、乙、丙三个车间各有多少人?
3.甲乙两数比是2:5,乙数比甲数多15,甲乙两数各是多少?
4 把一批粮食按4:5:3分配给甲乙丙三个生产小组,已知甲组比乙组少分得6吨,求甲乙丙三个生产小组各分得多少吨?
已知两个量或几个量的比和其中两个量的差,求总量:(用两个量的差÷两个量占总量几分之几的差=总数量。


1.小华和爷爷的年龄比是1:6,已知小华比爷爷小50岁,小华和爷爷的年龄和是多少?
2.客货两车分别从甲乙两地同时相对开出,相遇时客车的行程与货车行程的比是5:3,已知客车比货车多行了122千米,甲乙两地相距多少千米?
3.图书馆里科技书和连环画的比8:5,科技书比连环画多90本,图书馆有科技书和连环画共有多少本?。

相关文档
最新文档