牛顿第二定律整体法隔离法专题分析
整体法与隔离法

2、五个质量相等的物体置于光滑的水平面上,如 图所示.现向右施加大小为F、方向向右的水平恒力, 则第3个物体对第4个物体的作用力等于( B )
1
2ห้องสมุดไป่ตู้
A.5F
B.5F
考点二 整体法和隔离法
1、连接体与隔离体
两个或两个以上物体相互连接组成的系统称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体.
2、外力和内力
如果以系统为研究对象,受到系统以外的力,这些 力就是该系统受到的外力,而系统内相互作用的力则 称为内力。(举例)
应用牛顿第二定律求系统的加速度时,不考虑系统 的内力。如果把某物体隔离出来作为研究对象,则这 些力将转化为隔离体的外力。
3
4
C.5F
D.5F
3、如图所示,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M,水平面光滑,当在绳B端挂一质量为m的重物时, 物体A的加速度为a1.当在B端施以F=mg的竖直向下的拉力作 用时,A的加速度为a2.则a1与a2的大小关系是( C )
A.a1=a2 C.a1<a2
B.a1>a2 D.无法确定
5、如下图所示,用一根细线通过一只无摩擦、无 质量的滑轮,把静止在斜面上和悬挂在斜面边缘高 处的两块木块连接起来.悬挂木块的质量为M=16.0 kg,斜面上的木块的质量为m=8.0 kg.已知木块与斜 面间的动摩擦因数为μ=0.2.这两木块从静止释 放.(sin37°=0.6,cos37°=0.8,g=10 m/s2)
(1)木块的加速度为多大? (2)连接两木块的细线的张力为多大?
牛顿第二定律的整体法

牛顿第二定律的整体法、隔离法应用牛顿第二定律是力学的基本规律,是力学的核心知识,在整个物理学中占有非常重要的地位,是高考命题的热点。
整体法和隔离法则是牛顿运动定律中常用的方法。
一、隔离法和整体法1、隔离法和整体法是解决动力学有关问题的一种常用方法,尤其是对于连接体而言,运用隔离法和整体法是很有必要。
2、隔离法是指当我们所研究的问题涉及多个物体组成的系统时,需要求连接体内各部分间的相互作用力,从研究方便出发,把某个物体从系统中隔离出来,作为研究对象,分析受力情况,再利用牛顿第二定律列方程求解。
3、所谓整体法,就是指对物理问题的整个系统或整个过程进行分析的方法。
通过对物理问题的整体分析,可以弄清系统的整体受力情况和全过程的运动情况,整体揭示事物的本质和变化规律而不必追究系统内各物体的相互作用和每个运动阶段的细节。
从而避开了中间量的繁琐计算,简捷巧妙的解决问题,这在高考应试中更显得重要。
4、隔离法和整体法的选择求各部分加速度相同的连接体的加速度或合外力时,优先考虑“整体法”。
如果还要求物体之间的作用力,再用隔离法,且一定要从要求作用力的那个作用面将物体进行隔离。
如果连接体中各部分加速度不相同,一般选用“隔离法”。
5、用整体法时,只需考虑整体所受的各个外力,不考虑系统内各物体间的“内力”;用隔离法时,必须分析隔离体所受到的各个力,也就是说,在利用整体法和隔离法解决问题时,一定要把外力和内力区分清楚。
二、典型例题(一)利用整体法、隔离法求解平衡类问题题当系统整体处于平衡状态时,可对系统整体受力分析,只分析系统所受的外力,不考虑内力,平衡条件为:∑F=0(∑F表示系统整体所受到的合外力)【例1】有一个直角支架AOB,AO是水平放置,表面粗糙.OB竖直向下,表面光滑.OA上套有小环P,OB套有小环Q,两环质量均为m,两环间由一根质量可以忽略.不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO杆对P的支持力F N和细绳上的拉力F的变化情况是:()A.F N不变,F变大B.F N不变,F变小C.F N变大,F变大D.F N变大,F变小【例2】用轻质细线把两个质量未知的小球悬挂起来,如右图所示.今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30°的同样大的恒力,最后达到平衡.请在右图的方框中画出表示平衡状态示意图【针对性练习】1、如图,在粗糙的水平面上放一三角形木块a,若物体b在a的斜面上匀速下滑,则()(A)a保持静止,而且没有相对于水平面运动的趋势(B)a保持静止,但有相对于水平面向右运动的趋势(C)a保持静止,但有相对于水平面向左运动的趋势(D)因未给出所需数据,无法对a是否运动或有无运动趋势作出判断2.A、B、C三物块质量分别为M、m和m0,作如图所示的联结。
牛顿第二定律的应用-整体法与隔离法

解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。
整体法与隔离法的应用详解

再选取物体B为研究对象, 受力分析如图所示, 根据牛顿第二定律:
FN - F2 ma
F2
FN
FN
F2
ma
F2
m F1 F2 2m
F1
F2 2
.
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两
物块作匀加速直线运动,地面光滑。求绳中张力。
解:(1)由牛顿第二定律,
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
二、隔离法:把所研究对象从整体中隔离出来 进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
(2)在使用隔离法解题时,所选取的隔离对象可以使连接体 中的某一部分物体,也可以使连接体中的某一个物体(包含两 个或两个以上的单个物体),而这“某一部分”的选取,也应根 据问题的实际情况,灵活处理.
平面上,其质量为M,它的斜面是光滑的,
在它的斜面上有一质量为m的物体,在用
水平力推斜面体沿水平面向左运动过程中,
物体与斜面体恰能保持相对静止,则下列 说法中正确的是( )
m
F
A.斜面体对物体的弹力大小为mgcosθ
B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速度大小为gsinθ
θ
M
D.水平推力大小为(M+m)gtanθ
[解析]隔离m,由平行四边形定则可得:
FN=mg/cosθ
FN
F合=mgtanθ
θ
整体法与隔离法解题原理及技巧

方法 整体法
隔离法
研究对象 系统:将相互作用的几个 物体作为研究对象 物体:将系统中的某一物 体为研究对象
选择原则 求解物体系整体的 加速度和所受外力 求解物体之间的内 力或加速度
二、系统牛顿第二定律 对系统运用牛顿第二定律的表达式为:
F合 m1a1 m2a2 m3a3 mn an
即系统受到的合外力(系统以外的物体对系统内物体作用 力的合力)等于系统内各物体的质量与其加速度乘积的矢 量和。
若系统内物体具有相同的加速度,表达式为:
F合 (m1 m2 mn ) a
练习2 (2004年全国)如图所示,两个用轻线相连的位于
光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2 方向相反,与轻线沿同一水平直线,且F1>F2。试求在两 个物块运动过程中轻线的拉力T。
解析:设两物块一起运动的加速度为a,则有 F1-F2=(m1+m2)a ① 根据牛顿第二定律,对质量为m1的物块有 F1-T=m1a ②
加速度为( )
A.gsiห้องสมุดไป่ตู้α/2
B.Gsinα
C.3gsinα/2 D.2gsinα
[解析]方法一、隔离法 此题可先分析猫的受力情况,再分析 木板的受力情况,再用牛顿第二定律 求得结果。
对猫由力的平衡条件可得: f= mgsinα 对木板由牛顿第二定律可得: f +Mgsinα=Ma 式中M=2m,联立解得,木板的 加速度a=3gsinα/2
(M+m)gsinα=Ma+0
(M+m)g
第三章 第3课时 专题强化:牛顿第二定律的综合应用

第3课时 专题强化:牛顿第二定律的综合应用 目标要求 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。
2.理解几种常见的临界极值条件,会用极限法、假设法、数学方法解决临界极值问题。
考点一 动力学中的连接体问题多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的物体系统称为连接体。
系统稳定时连接体一般具有相同的速度、加速度(或速度、加速度大小相等)。
1.共速连接体两物体通过弹力、摩擦力作用,具有相同的速度和相同的加速度。
(1)绳的拉力(或物体间的弹力)相关类连接体(2)叠加类连接体(一般与摩擦力相关)例1 如图所示,水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F 向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g ,下列说法正确的是( )A .若水平面是光滑的,则m 2越大,绳的拉力越大B .若木块和地面间的动摩擦因数为μ,则绳的拉力为m 1F m 1+m 2+μm 1g C .绳的拉力大小与水平面是否粗糙无关D .绳的拉力大小与水平面是否粗糙有关答案 C解析 若设木块和地面间的动摩擦因数为μ,以两木块整体为研究对象,根据牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,得a =F -μ(m 1+m 2)g m 1+m 2,以木块1为研究对象,根据牛顿第二定律有T -μm 1g =m 1a ,得a =T -μm 1g m 1,系统加速度与木块1加速度相同,联立解得T =m 1m 1+m 2F ,可知绳子拉力大小与动摩擦因数μ无关,与两木块质量大小有关,无论水平面是光滑的还是粗糙的,绳的拉力大小均为T =m 1m 1+m 2F ,且m 2越大,绳的拉力越小,故选C 。
拓展 (1)两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接。
①如图甲所示,用力F 竖直向上拉木块时,绳的拉力T =__________;②如图乙所示,用力F 沿光滑斜面向上拉木块时,绳的拉力为__________;斜面不光滑时绳的拉力T =__________。
系统牛顿第二定律与整体法详解

F 2F 12F 1F 21 211 2 3...)a 系统的牛顿第二定律与整体法详解在静力学、动力学问题中,涉及到系统外力时,我们往往采用整体法处理,但是很多资料并没有讲清 楚整体法的适用条件,以及背后的理论基础,甚至限定只允许在几个物体相对静止时使用整体法,使得整 体法的适用范围大大缩小。
本文则从系统的牛顿第二定律入手,奠定整体法解决静力学、动力学问题的理 论基础,并通过实例展示整体法的广阔应用空间。
一、系统的牛顿第二定律 1、推导如图所示,两个物体组成一个系统,外界对系统内物体有力的作用(系统外力),系统内物体之间也 有相互作用(系统内力),则对 1: F 1 + F 21 m 1a 1 对 2: F + F =2 12m 2a 2其中, F 21 = -F 12联立,得: F 1 + F 2= m 1a 1 +m 2a 2这个方程中,等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相 加。
上述推导中,研究对象只有两个,但是很容易将上述结论推广到任意多个研究对象,方法仍然是分别 对各个物体列动力学方程,然后相加——由于内力总是成对出现,且每对内力总是等大反向,因此相加的结果仍然是:等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。
这个结论就是系统的牛顿第二定律,其通式为:或者: ∑ F = ∑ F 外 = m 1a 1 + m 2a 2 + m 3a 3 + ..., ∑2、理解外xm 1a 1x + m 2a 2 x + m 3a 3 x + ... F 外y = m 1a 1 y + m 2a 2 y + m 3a 3 y + ... 系统的牛顿第二定律表达式左边只有系统外力,因此它只适用于处理系统外力相关问题,一旦涉及系 统内力,则只能用隔离法。
系统的牛顿第二定律表达式右边为“各个部分的质量乘以相应的加速度然后矢 量相加”,因此并不要求各个部分相对静止——各个部分有相对速度、相对加速度时,仍然可以选系统为 研究对象,使用整体法处理问题。
牛顿第二定律应用整体法隔离法

适用范围
系统内各物体间相互作用力较小,可忽略不计的 情况。 需要分析系统内各物体运动状态的情况。
需要对系统内各物体进行逐一分析的情况。
实例分析
分析一个由滑轮和重物组成的简 单机械系统,当重物被提升时, 分析滑轮和重物的加速度大小和
方向。
分析一个由斜面和滑块组成的简 单机械系统,当滑块沿斜面下滑 时,分析斜面和滑块的加速度大
当系统中的各个物体之间的相互作用 力和加速度关系较为简单时,也可以 使用隔离法进行分析。
实例分析
两个物体在光滑水平面上做匀加速运动,通过整体法可以求 出整体的加速度,再根据牛顿第二定律求出物体之间的相互 作用力。
一个斜面静止在水平面上,斜面上放一个物体,通过整体法 可以求出斜面的支持力和摩擦力,再根据牛顿第二定律求出 物体的重力。
03
隔离法应用
定义与特点
定义
隔离法是牛顿第二定律在分析系统内各物体运动状态时常用的一种方法,即将系统中的物体逐一隔离出来,单独 分析其运动状态,再根据牛顿第二定律列出相应的方程。
特点
隔离法能够将复杂的系统问题简化为多个简单的问题,便于理解和分析。同时,隔离法能够避免对系统整体进行 分析,简化计算过程。
轨道调整
卫星在运行过程中可能需要进行轨道调整,以应对外部干扰因素,如太阳辐射压和地球 引力扰动等。这些调整需要依据牛顿第二定律计算出合适的加速度和速度变化。
轨道衰减预测
卫星轨道会受到大气阻力的影响而逐渐衰减,根据牛顿第二定律可以预测轨道衰减的速 度和时间,从而提前进行轨道维持或卫星回收。
机器人运动控制
火箭发射
火箭发射时,牛顿第二定律解释了 火箭需要足够的推力才能克服地球 引力,将卫星或飞船送入太空。