最新第六章习题答案-数值分析

合集下载

数值分析课后参考答案06

数值分析课后参考答案06

第六章习题解答1、设函数01(),(),,()n x x x φφφ 在[,]a b 上带权()x ρ正交,试证明{}()nj j x φ=是线性无关组。

证明:设0()nj jj l x φ==∑,两端与01()(,,,)kx k n φ= 作内积,由()jx φ的正交性可知,200(),()((),())((),())()()n n b k j j j k j k k k k k a j j x l x l x x l x x l x x dx φφφφφφρφ==⎛⎫==== ⎪⎝⎭∑∑⎰, 于是有001(,,,)k l k n == ,即{}()nj j x φ=是线性无关组。

2、试确定系数,a b 的值使22(()cos )ax b x dx π+-⎰达到最小。

解:定义02,[,]f g C π∈上的内积为20fgdx π⎰,取011(),()x x x ϕϕ==,()s x ax b =+,()cos f x x =,则法方程为0001010111(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中()2000112,dx ππϕϕ=⨯=⎰,()2201018,xdx ππϕϕ=⨯=⎰,()3211024,x xdx ππϕϕ=⨯=⎰,()2001,cos f xdx πϕ==⎰,()21012,cos f x xdx ππϕ==-⎰,于是方程组为22312812824a b πππππ⎛⎫⎛⎫ ⎪⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,解之得1158506644.,.a b ==-。

3、已知函数11()(,)f x x =∈-,试用二类Chebyshev 多项式()n U x 构造此函数的二次最佳平方逼近元。

解:法一、取20121(),(),(),x x x x x ϕϕϕ===()()()00112222235,,,,,ϕϕϕϕϕϕ===,()()()011202203,,,,ϕϕϕϕϕϕ===,同时由二类Chebyshev 多项式的性质知 ()()()11101211028,,,,,f f f x ππϕϕϕ---======⎰⎰⎰于是可得法方程为0122203220003220835c c c ππ⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭ ⎪⎝⎭,解之得0121.0308,0,0.7363c c c ===-, 于是()f x 的二次最佳逼近元是2001122() 1.03080.7363x c c c x ϕϕϕϕ=++=-法一、二类Chebyshev 多项式2012()1,()2,()41U x U x x U x x ===-,取内积权函数()()x f x ρ==,于是11200114(,)(1)3f U fU dx x dx ρ--==-=⎰⎰,1121111(,)2(1)0f U fU dx x x dx ρ--==-=⎰⎰,112222114(,)(41)(1)15f U fU dx x x dx ρ--==--=-⎰⎰ 由()n U x 正交性及(,)2n n U U π=可得0000(,)8(,)3f U c U U π==,1111(,)0(,)f U c U U ==,2222(,)8(,)15f U c U U π==-, 于是()f x 的二次最佳逼近元为001122()x c U c U c U ϕ=++=21632515x ππ- 4、设012{(),(),()}L x L x L x 是定义于[0,)+∞上关于权函数()xx eρ-=的首项系数为1的正交多项式组,若已知01()1,()1L x L x x ==-,试求出二次多项式2()L x 。

数值分析-课后习题答案

数值分析-课后习题答案

1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
6
0.518889
1-4.求方程x2-56x+1=0的两个根,使它们至少具有四 位有效数字 ( 7832.798)2.
解 x1=28+27.982=55.982,x2=1/x1=0.017863
精选课件
2
二.习题2 (第50页)
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
2.11
3-4.用J迭代法和G-S迭代法求解方程组Ax=b,其中
A 1 1
问取何值时这两种迭代法是收敛的? 解 J迭代法和G-S迭代法的迭代矩阵分别为
B 0 0
G 0 0
2
易得:(B)=||,(G)=2.故当||<1时两种方法都收敛.
3-7.给定方程组
精选课件
16
(1 ) 3 x 1 x 1 2 2 x x 22 3 4
x2 0
1 4 1
x3
0
1 4 1x4 0
1精选课4件x5 200
8

4 1 1 4 1
44
111 444
11

数值分析习题(含答案)

数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

数值分析第六章课后习题答案

数值分析第六章课后习题答案

第六章课后习题解答(1)()()123(1)()213(1)()()312(01.21125551154213351010(1,1,1),17( 4.0000186,2.99999k k k k k k k k k Tx x x x x x x x x x x+++ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-(17)解:(a )因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。

(b )雅可比法的迭代格式为取迭代到次达到精度要求(1)()()123(1)(1)()213(1)(1)(1)312(0)(8)15,2.0000012)21125551154213351010(1,1,1),8( 4.0000186,2.9999915,2.0000012)Tk k k k k k k k k TTx x x x x x x x x x++++++-ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-高斯塞德尔法的迭代格式为x 取迭代到次达到精度要求1212:00.40.4.0.400.80.40.80||(0.8)(0.80.32)()1.09282031,00.40.4()00.160.6400.0320.672DL U I BD L U l l l l--骣--÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--÷ç桫-=-+-=>-æ--çççç=-=-ççççèlJJJS解(a )雅可比法的迭代矩阵B()BB故雅可比迭代法不收敛高斯塞德尔法迭代矩阵131()||||0.81022101220||022023002SJBDL U I BD L Ul l¥--ö÷÷÷÷÷÷÷÷÷÷ç÷ø?<骣-÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--ç÷桫-=骣-÷ç÷ç÷ç÷ç÷=-=-ç÷ç÷÷ç÷ç÷ç桫llSJJ SB故高斯-塞德尔迭代法收敛。

数值分析课后习题答案

数值分析课后习题答案

7、计算的近似值,取。

利用以下四种计算格式,试问哪一种算法误差最小。

〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。

解:在计算机上计算该级数的是一个收敛的级数。

因为随着的增大,会出现大数吃小数的现象。

9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。

10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。

解:此算法是数值稳定的。

第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。

〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

设A是n×n的正交矩阵。

证明A-1也是n×n的正交矩阵。

证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。

设A是非奇异的对称阵,证A-1也是非奇异的对称阵。

A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。

证A-1也是单位上〔下〕三角阵。

证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。

R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0的根底解系。

A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。

数值分析课后答案

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。

由于ni i inn n n n i n x x x x x x x x x x V ...1...1 (1))(21110200---=,.1,...,1,0-=n i故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。

又)(x V n 的最高次幂nx 的系数为)(...1...1..................1),...,,(101121112222102001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -==∏-≤<≤-----------。

故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V6、解:(1)设.)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n对)(x f 构造Lagrange 插值多项式,),()(0x l x x L j nj k j n ∑==其0)()!1()()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ,ξ介于j x 之间,.,...,1,0n j =故),()(x L x f n =即.,...,1,0,)(0n k xx l x kjnj k j ==∑=特别地,当0=k 时,10)(=∑=nj x j l。

(2)0)()1(1)()1()()(0000=-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--=-===∑∑∑∑k j j i j i k j ki i j ii k j nj ki i j knj j x x x x i k x l x x i k x l x x )利用(。

7、证明:以b a ,为节点进行线性插值,得)()()(1b f ab ax a f b a b x x P --+--=因0)()(==b f a f ,故0)(1=x P 。

第六章习题答案数值分析

第六章习题答案数值分析

第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。

解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。

4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()b a P x dx Z =⎰现分析截断误差:令'()()()()()()-()222a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数2()()()()()2a b K t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()22b bb baaa af a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-Q 在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()224baa b b a f x dx Z R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯可解得:212.85n ≥即至少剖分213等分。

数值分析第二版(丁丽娟)答案

数值分析第二版(丁丽娟)答案
第一章答案
第二章答案
第三章答案
0 0.5 0.5 1 1 2.5000
5.0000 5.5000
第四章答案
2 10.5000 19.0000 19.5000
3 42.5000 91.0000 91.5000
4 170.5000 315.0000 315.5000
5 682.5000 1467.0000 1467.5000
第八章答案
练习: 第一章
答案
练习二 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反幂法中,为什么每步都要将迭代向量规范化?
1.32
1.68
2.08
2.52
3.00
解答下列问题 (1)试列出相应的差分表; (2)写出牛顿向前插值公式; (3)用二次牛顿前插公式计算 f(0.225);
例3已知当 x=-1,0,2,3时,对应的函数值为




,求 的四次 Newton 插值多项式。
例4 设 对 n=1,2,3时
,证明:
例5 设 (1)
第一章答案第二章答案第三章答案第四章答案050525000500005500010500019000019500021000000000000000380001950004250009100009150001700000000000000018199999999999999166363636363636371705000315000031550001623809523809523716578947368421051161794871794871796825000146700001467500016058823529411764161208791208791201603825136612021827305000505100005051500016014662756598241160349206349206351601109350237717910922500023483000023483500016003663003663004160074982958418521600238500851788743690500080827000080827500016000915583226515160021777865769151600069286350589则开根号得400011444626607140002722140595534000086607000640对应的特征向量为第五章答案第六章答案2727930204331053600038939418364475947673代入数据得132解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。

解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。

4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()b a P x dx Z =⎰现分析截断误差:令'()()()()()()-()222a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数2()()()()()2a b K t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()22b bb baaa af a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()224baa b b a f x dx Z R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯可解得:212.85n ≥即至少剖分213等分。

②由复化梯形公式的误差限4(4)5411()()10288028802S b a R f h f e n η--=-≤≤⨯ 可解得: 3.707n ≥即至少剖分4等分。

7、以0,1,2为求积节点,建立求积分3()I f x dx =⎰的一个插值型求积公式,并推导此求积公式的截断误差。

解:在0,1,2节点构造二次lagrange 插值多项式,则有2012()()(0)()(1)()(2)P x l x f l x f l x f =++(1)(2)(0)(2)(1)(0)(0)(1)(2)(01)(02)(10)(12)(21)(20)x x x x x x f f f ------=++------则(3)233()()()()()(1)(2)3!f f x P x x x x x x ξωω=+=--对上式在[0,3]上求积分,则有(3)333230()()()()3!f f x dx P x dx x dx ξω=+⎰⎰⎰其中333322220000323323323000(0)(2)()(32)((1))(2)()22(0)131(2)11[2](1)[][]2323232(0)3(2)9+222239(0)+(2)44f f P x dx x x dx f x x dx x x dxf f x x x f x x x x f f f f =-++--+-=-+--+-=⨯⨯=⎰⎰⎰⎰插值型求积公式3321039()()(0)(2)=44I f x dx P x dx f f I =≈=+⎰⎰34319()=32442.f x x =⨯≠⨯=取,代入求积公式,左边右边代数精度为 由于(1)(2)x x x --在[0,3]上不保持常号,故考虑构造一个二次多项式2()P x 满足下列插值条件:222(0)(0),(2)(2),'(2)'(2)P f P f P f ===由Hermite 插值方法,有(3)2()23!()()(2),f f x P x x x a b ξξ-=-≤≤对上式在[0,3]上求积分,则有(3)2333()23!0()()(2)f f x dx P x dx x x dx ξ-=-⎰⎰⎰因为2()P x 为二次多项式,所以322203939()(0)(2)(0)(2)4444P x dx P P f f =+=+⎰(3)3210(3)(3)32(3)0()(2)3!()()93(2)()3!3!48f I I x x dxf f x x dx f ξξξη-=-=-==⎰⎰8、(1)试确定下列求积公式中的待定系数,指出其所具有的代数精度。

)](')0('[)]()0([2)(20h f f h h f f hdx x f h-++≈⎰α解:分别将1)(=x f ,x 代入求积公式,易知求积公式精确成立。

代入2)(x x f =,令求积公式精确成立,于是有:33323,3h h h α-==右左 可解得:121=α 代入3)(x x f =,于是有442,44444h h h h =-==右左 左=右,求积公式成立。

代入4)(x x f =,于是有632,55555h h h h =-==右左 右左≠,求积公式不精确成立。

综上可知,该求积公式具有三次代数精度。

9、对积分dx x x f ⎰-12)1)((,求构造两点Gauss 求积公式,要求:(1)在[0,1]上构造带权21)(x x -=ρ的二次正交多项式; (2)用所构造的正交多项式导出求积公式。

解:(1)构造在[0,1]上构造带权函数21)(x x -=ρ的正交多项式)(0x Q 、)(1x Q 、)(2x Q ,取1)(0=x Q 、)()()(011x Q x x Q α-= ,其中83)1()1()](),([)](),([10210200001=--==⎰⎰dxxdxx x x Q x Q x Q x xQ α, 则83)(1-=x x Q 。

同理,95111916)(22+-=x x x Q ,求)(2x Q 的零点得: 17306907.00=x ,66903619.01=x求积系数:39523617.0)(100≈=⎰dx x l A ρ27143053.0)(111≈=⎰dx x l A ρ(2)求(1)可导出求积公式:)()()1)((110012x f A x f A dx x x f +≈-⎰)66903619.0(27143053.0)17306907.0(39523617.0f f +=11、试用三点Gauss-Legendre 公式计算dx x⎰311并与精确值比较。

解:设三点Gauss-Legendre 求积节点为:5150-=t ,01=t ,5152=t 相应求积系数为:950=A ,981=A ,952=A ,1=a ,3=b , x x f 1)(=,令t a b b a x 22-++=则dt t a b b a f a b dx x ⎰⎰--++-=1131)22(21 09803922.1)22(220≈-++-≈∑=i i i t a b b a f A a b 精确值为:ln3=1.09861229, 二者误差:R ≈5.7307×10-4。

13、对积分11()ln f x dx x⎰导出两点Gauss 求积公式 解:在[0,1]上构造带权1()ln x xρ=的正交多项式0()x ϕ、1()x ϕ、2()x ϕ0()x ϕ=1,1000110110001ln ((),())1()()()1((),())4ln x dxx x x x x x x x x dx xϕϕϕαϕαϕϕ=-====⎰⎰11()4x x ϕ∴=-同理可得22517()7252x x x ϕ=-+求2()x ϕ的零点可得010.112008810.60227691x x ==以0x 、1x 作为高斯点两点高斯公式,1n =,应有3次代数精度,求积公式形如1001101()ln ()()f x dx A f x A f x x=+⎰将()1,f x x =代入上式两段,1010100111ln 1ln dx A A x x dx x A x Ax ⎧=+⎪⎪⎨⎪=+⎪⎩⎰⎰联立解出:010.71853932,0.28146068A A ≈≈ 所以所求两点Gauss 求积公式1001101()ln ()()0.71853932(0.11200881)0.28146068(0.60227691)f x dx A f x A f x f f x=+=+⎰15、利用三点Gauss-Laguerre 求积公式计算积分211dx x +∞+⎰解:原积分201()1xI dx e f x dx x +∞+∞-==+⎰⎰,其中2()1x e f x x =+ 由三点Gauss-Laguerre 求积节点:0130.4157745568, 2.2942803063, 6.2899150829x x x ===相应求积系数0120.7110930099,0.2785177336,0.010*******A A A ===则2() 1.49790652KK K I Af x ==≈∑16、设()f x 四阶连续可导,0,0,1,2i x x ih i =+=。

相关文档
最新文档