工程力学-第18讲-压杆的稳定计算.
压杆稳定计算稳定性的概念

• 屈曲导致构件失效,且这种失效具有突发
性,因此常会给工程带来灾难性的后果。
• 结构设计除了需保证足够的强度和刚度外,还
需保证结构具有足够的稳定性。
3
压杆的失稳或屈曲 • 承受轴向压力的较短粗杆件,在失效前始终保
持直线形式的平衡状态,可以用强度条件来校核 其是否安全。
σ=
FN ≤ [σ c ] A
压杆稳定计算 • 压杆稳定的概念 • 确定细长压杆临界力的欧拉公式 • 压杆的临界应力总图 • 压杆的稳定性计算 • 提高压杆稳定性的措施
1
稳定性的概念 • 结构构件在压缩荷载或其它特定荷载作用下,在
某一位置保持平衡,这一平衡位置称为平衡构形。
• 当荷载小于一定的数值时,微小外界扰动使其偏
离平衡构形,外界扰动除去后,构件仍能回复到初 始平衡构形,则称这种初始平衡构形是稳定的。
λP = π
E
π 2E λP = σP
σP
=π
206 × 109 ≈ 101 200 × 106
铝合金 ( E = 70 GPa, σ p = 175 MPa):
λP ≈ 62.8
木材: λP ≈80
23
非细长压杆的临界应力 临界应力总图 • 当 λ < λ采用以实验为基础的经验公式(直线公 P 时,
式或抛物线公式)计算临界应力。 化曲线。
• 临界应力总图:压杆的临界应力随柔度的变 • 直线公式
σ cr = a − bλ
a, b是与材料有关的常数,由实验测定。 对Q235钢, σ cr = 304 − 1.12λ MPa 直线公式适用范围: λ 0 ≤ λ < λP
当 λ < λ0 时, 破坏属于强度问题。
工程力学——压杆稳定

欧拉公 式
其中:i
I — 截面的惯性半径;为截 面的几何性质; A
=
l
i
称为压杆的柔度(长细 比);反映压杆的柔软 程度。
15N
32 mm
1mm
第一节
压杆稳定的概念
FP<FPcr :直线平衡形式(稳定平衡)
在扰动作用下,直线平衡形式转为弯曲平衡形式,扰动除 去后,能够恢复到直线平衡形式,则称原来的直线平衡构形是 稳定的。 FP>FPcr :弯曲平衡形式(不稳定平衡) 在扰动作用下,直线平衡形式转为弯曲平衡形式,扰动除去 后,不能恢复到直线平衡形式,则称原来的直线平衡形式是不稳 定的。
F
F
1.
计算柔度判断两杆的临界荷载
5m
d
9m
d
d 4 64 d I i 4 d 2 4 A 1 5 L a 125 d i 0 .5 9 4 112.5 b d 4
(a)
(b )
a b
1
0.5
2. 计算各杆的临界荷载
b a P 101
(n ) EI Fcr 2 L Fcr
n 1
kL sin 2
A
适用条件: •理想压杆(轴线为直线,压力 与轴线重合,材料均匀) •线弹性,小变形 •两端为铰支座
y sin
x 挠曲线中点的挠度 l
挠曲线为半波正弦曲线
由此得到两个重要结果:
临界载荷
(a)
z
b
h
正视图:
工程力学压杆稳定

MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。
压杆稳定计算

第二节
欧拉在 1774 年首先解决的。
细长压杆的临界力
现在我们来求压杆的临界力 Plj ,即杆弯曲后在平衡状态时的纵向力 P,这个问题是 设有一根等截面的直杆 AB,长为 L,两端铰支(图 25-2),在纵向力 P 作用下,发生 微小弯曲变形,选取坐标轴如图所示,杆在弯曲状态下,距下端为 x 的任一截面的挠度 为 y,该截面的弯矩为 M(x)= -Py ( a) 压杆开始丧失稳定时,挠度很小,可以根据挠曲线的近似微分方 程来进行分析,将式(a)代入挠曲线近似微分方程得 d2 y EI = M ( x) = − Py d x2 P (b) 令 k2 = EI 那么上面的微分方程就可写成 d2 y + k2 y = 0 d x2 它的通解是 y=c1sinkx+c2coskx 不知道,所以式中的K也是一个待定值。 要确定上述这几个待定值,可以利用杆端的两个边界条件。在 A 端,即 x=0 处,挠 度 y=0,把它代入式(c) ,即可求得 c2=0 因此挠度曲线方程为 y=C1sinkx (d) 又在 B 端,即 x= l 处,挠度 y=0,代入上式得
P lj
=
π
2
EI
2
(0 .7 l )
2 2
(25-4)
综合上述四个公式可得临界力的一般表达式为
P lj =
π EI = π EI 2 2 (μl ) L0
(25-5)
式中 μ 为长度系数,其值取决于压杆两端的约束情况,可见表 25-1。L0= μ l ,为 压杆的计算长度;E为杆件材料的弹性模量:I为杆件截面的惯矩。
k= l
或 (e)
若取C1=0,则由式(d)得挠曲线方程为y=0,表示杆仍保持直线形式,这个结论与原来
压杆稳定计算简介

压杆的稳定条件为
p j[ ]
A
9.5 压杆稳定计算简介
了解压杆稳定的概念。 熟悉临界力和欧拉公式的计算。 掌握压杆稳定的校核。
一、临界压力和欧拉公式
杆件所受压力逐渐增加到某个限度时,压杆将 由稳定状态转化为不稳定状态。这个压力的限
度称为临界压力Pcr。它是压杆保持直线稳定形
状时所能承受的最小压力。
欧拉公式
pcr
2EI ( L) 2
1、熏烟的成分及作用
熏烟的成分很复杂,由气体、液体、固体微粒组成 的混合物,因熏材种类和熏烟的产生温度不同而不同, 且其状态和变化迅速,一般认为熏烟中最重要的成分是 酚、醇、有机酸、羰基化合物和烃类等。
2、熏制加工目的
1、赋予制品特殊的烟熏风味,增加香味 2、使制品外观产生特有的烟熏色,对加硝制品有促进发 色的作用 3、杀菌消毒,防止腐败变质,使制品耐贮藏
醇类:
木材熏烟中的醇种类繁多,最常见的为甲醇,又称木 醇,熏烟中还有伯醇、仲醇和叔醇等,为挥发性物质的载 体,杀菌能力较弱。
3、影响熏制的因素
熏烟质量
熏制的作用取决于熏烟质量如熏烟中成分种类和浓度等,而熏烟质量 的高低与燃料种类、燃烧温度等产生方式和条件有关。
熏制温度
熏制时温度过低,不会得到预期的熏制效果。但温度过高,会由于脂 肪融化、肉的收缩,达不到制品质量要求。常用的熏制温度为35~50℃, 一般熏制时间为12~48h。
EI-抗弯刚度 ;L-压杆的长度
μ-长度(支座)系数 ;固定 一端固定 两端铰支 一端固定
束情况
一端铰支
(整理)压杆稳定计算

第16章压杆稳定16.1压杆稳定性的概念在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。
但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。
当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。
但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某一数值R时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。
我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。
此时,R可能远小于F s(或F b)。
可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。
图16- 1失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。
本章中,我们只研究受压杆件的稳定性。
图16-3所谓的稳定性是指杆件保持原有直线平衡形式的能力。
实际上它是指平衡状态的稳定性。
我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。
第一种状态,小球在凹面的0点处于平衡状态,如图16-5a所示。
先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。
因此,小球原有的平衡状态是稳定平衡。
第二种状态,小球在凸面上的扰力使其偏离原有的平衡位置后,小球原有的干衡状态是不稳定平衡。
第三种状态,小球在平面上的扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置衡,既没有恢复原位的趋势,也没有继续偏离的趋势。
材料力学之压杆稳定课件

分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核
建筑力学压杆稳定课件

由此可以计算压杆在保证稳定的前提下,能承受的最大轴压力,又称为压杆的临界荷载 或容许荷载。当施加的压力小于容许荷载时,构件不会发生失稳破坏,反之,构件将发生失
稳破坏。对于此类问题,一般也要首先计算出压杆的长细比 ,根据 查出相应的折减系 数 ,再按照上式进行计算。
建筑力学压杆稳定
3. 对压杆进行截面设计
建筑力学压杆稳定
• 应用压杆的稳定条件,可以进行三个方面的问题计 算:
• 1. 稳定校核 • 已知压杆的截面形状和尺寸,杆件长度及支承条件
,杆件的轴心压力,根据公式(9-16)即可以验证 压杆是否会发生失稳破坏,即验证其稳定性。
建筑力学压杆稳定
例 9-4 如图 所示,构架由两根直径相同的圆杆构成,杆的材料为 Q235 钢,直径
立,由此可得的适用条件为:
cr
2E 2
p
令
p
2E p
则
p
(9-7) (9-8)
式(9-8)是欧拉公式适用范围的柔度表达形式,表明只有当压杆的实际柔度 p 时,才能
用欧拉公式来计算其临界应力和临界力。显然, p 是应用欧拉公式的最小柔度。压杆的实
际柔度 λ 随压杆的几何形状尺寸和杆端约束条件变化,但 p 是仅由材料性质确定的值。
d=20mm,材料的许用应力 =170MPa,已知 h=0.4m,作用力 F=15kN。试在计算平面内校核
二杆的稳定。
图 9-3
建筑力学压杆稳定
解:(1)计算各杆承受的压力 取结点 A 为研究对象,根据平衡条件列方程
x 0 FAB cos 450 FAC cos 300 0 Y 0 FAB sin 450 FAC sin 300 F 0
建筑力学压杆稳定
第二节 临界力和临界应力 1、影响临界力的因素 实践表明,影响细长压杆临界力的主要因素是材料的特性、截面几何形状和杆件的长度, 以及压杆两端的约束条件。 (1)材料的特性 对于两个截面几何形状及杆件长度相同的木杆和钢杆,受轴向压力 作用,木杆会先失稳,即木杆的临界力比钢杆的小,说明弹性模量 E 小的材料,其临界力也 小。 (2)截面几何形状 当截面尺寸相同,而截面形状不同时,其临界力也会不相同。影 响临界力的截面参数是截面惯性矩,惯性矩越大,杆件就越不容易失稳,说明截面的惯性矩 大,临界力也大。 (3)杆件的长度 其他条件相同时,长杆比短杆更易失去稳定,故临界力要小些。 (4)压杆两端的约束条件 对同一根细长压杆,两端的约束越强,压杆的轴心受压承 载力越大,因而,压杆两端的约束条件对压杆的稳定临界力也有很大的影响。当其他条件相 同时,一端固定、而一端铰支的压杆比两端铰支的更不容易失稳,说明两端支承越牢固,压 杆的临界力就越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两杆均满足稳定条件。
三.提高压杆承载能力的途径
1) 尽量减小压杆长度
Fpcr
2 EI 2 l
对于细长杆,其临界载荷与杆长平方成反 比。 因此,减小压杆长度,可以显著地提高压 杆的承载能力。 在某些情况下,通过改变结构或增加支点 可以达到减小压杆长度、提高压杆承载能力的 目的。
2) 增强支承的刚性
Fpcr
2 EI 2 l
支承的刚性越大,压杆长度系数 μ 值越低,临界载荷也就越大。 例如,将两端铰支的细长杆,变成 两端固定约束的情形,临界载荷将成数 倍增加。
3)合理选用材料
在其他条件均相同的情形下,选用弹 性模量 E 数值大的材料,可以提高大柔度 压杆的承载能力。 例如钢杆临界载荷大于铜、铸铁或铝 制压杆的临界载荷。但是,普通碳素钢、 合金钢以及高强度钢的弹性模量数值相差 不大。因此,对于细长钢制压杆,若选用 高强度钢,对压杆临界载荷的影响甚微, 意义不大,反而造成材料的浪费。 但是,对于粗短杆或中长杆。其临界 载荷与材料的比例极限和屈服强度有关, 这时选用高强度钢会使临界载荷有所提高。
[ N ] 156kN
例2 图示结构由两根材料和直径均相同的圆杆组成, 杆的材料为Q235钢,已知h=0.4m,直径d=20mm, 材料的强度许用应力[σ]=170MPa,荷载F=15kN,试 校核两杆的稳定性。
F y
A
F
A x 1 2
FN2
B 45° 30° C FN1
(a)
(b)
解:为校核两杆的稳定性,首先需要计算每个杆 所承受的压力,为此考虑结点A的平衡,其平衡方 程为
对两杆分别进行稳定性校核:
3 FN1 13 . 44 10 6 83 10 Pa 83MPa [ ] 2 1 A 0.515 0.02 / 4 3 FN 2 10 . 98 10 6 128 10 Pa 128MPa [ ] 2 A 0.272 0.022 / 4
A
B
C
2.10 压杆的稳定性计算
一、稳定条件
Fp A cr
式中 cr — 临界应力的许用值。 其中 cr — P.107
— 折减系数( 0 1 )。 当材料一定时, 值仅决定于 值。
则稳定条件为
Fp A
二、稳定计算
4)选择合理截面
合理截面是使压杆的临界压力尽可能大的截面。
l
i
从横截面的角度,要使小,只有i增大,即 截面I大。
i I A
尽可能使I增大; 尽可能使各方向值相等。
1.压杆稳定问题中的长细比反应了杆的 截面形状 )( 约束 )对临界压力的综 尺寸,( 合影响。
2.两根细长压杆a与b的长度、横截面 面积、约束状态及材料均相同,若其横截 面形状分别为正方形和圆形,则二压杆的 临界压力Facr和Fbcr的关系为( C )。 A.Facr=Fbcr;B.Facr<Fbcr;C.Facr>Fbcr;D.不确定
巩固练习
F
如图所示3根压杆的材 料及截面都相同,那一种情 况的压杆最容易发生失稳? 说明理由(时间:3分钟)。
F F
5m
A
7m
B
9m
C
F F F
A: B: C:
l 1 5 5
l 0.7 7 4.9
l 0.5 9 4.5
5m
7m
9m
最易失稳: A 最难失稳: C
1. 校核压杆的稳定性
Fp A
P.109,例2.13
2. 确定许用荷载
Fp A
3. 选择截面 Fp A
P.109,例2.14
P.110,例2.15,2.16
例1
图示结构,立柱CD为外径D=100mm,
内径d=80mm的钢管,其材料为Q 235钢,
1 0.566 1 113 i d /4 0.02 / 4 l2 l2 1 0.8 2 160 i d / 4 0.02 / 4
l1
l1
查表2.3,并插值可得两杆的折减系数分别为
3 1 0.536 (0.460 0.536) 0.515 10 2 0.272
i
2 2 ( D d ) 64 2 16 2 (D d ) 4 2 2
(D4 d 4 )
(100 80 ) 32mm 16
两端铰支
=1
1 3.5 109 i 0.032
l
2E 2 200 109 p 100 6 p 200 10
P=200MPa,
s=240MPa,
E=200GPa, 稳定安全系数为 nst=3。 试求容许荷截[F]。
A
C
3m
F
B
D
解 : 由杆 ACB 的平衡条件易求得外力 F 与 CD 杆轴向压力的关系
F 5 N 2 F 2 N 5
为:
i
I A
xA A
C N 3m
yA 2m
F B
图示两端铰支压杆的截面为矩形。当其失稳时, ( B)。 A.临界压力Fcr=π2EIy/L2,挠曲线位于xy面内; B.临界压力Fcr=π2EIy/L2,挠曲线位于xz面内; C.临界压力Fcr=π2EIz/L2,挠曲线位于xy面内; D.临界压力Fcr=π2EIz/L2,挠曲线位于xz面内。
∴ 可用欧拉公式
2 EI 2 200 109 2.9 106 Pcr 2 ( l ) 3.52
467 103 N 467 kN
由稳定条件
Pcr n 3 N
Pcr 467 N 156kN 3 3
2 [ F ] [ N ] 62.4kN 5
Fx 0 ,
FN1 cos 45 FN 2 cos30 0 FN1 sin 45 FN2 sin 30 F 0
Fy 0 ,
由此解得两杆所受的压力分别为 FN1=0.896F=13.44kN FN2=0.732F=10.98kN 两杆的长度分别为 l1=h/sin45°=0.566 l2=h/sin30°=0.8m 两杆的柔度分别为