红外光谱的研究与发展

红外光谱的研究与发展
红外光谱的研究与发展

红外光谱的发展与展望

红外光谱一般分为近红外(Near InfraredSpectrum),中红外(Middle Infrared Spectrum)和远红外(Far Infrared Spectrum)三个区域,波长分别为780)3000nm, 3000)25000nm和25)50Lm。众所周知中红外光谱是广泛应用的一种分析手段。近红外光谱几十年来一直没有在理论上和应用受到重视,其主要原因在于该区内的吸收是O)H、N)H、C)H等基团的振动吸收。这些吸收谱带复杂,多为合频吸收,且吸收强度较弱,难以在分析上应用。近年来,随着仪器制造技术的发展,新的光谱理论和光度分析新方法不断建立,特别是化学计量学的深入研究和广泛使用,促进了NIR分析技术的复兴和发展。

1 近红外光谱分析技术

根据NIR光谱的发生机理,使用的NIR分析技术主要有以下几种:

1.透射测定法使用于透明样品的分析,透射光强度与物质量间的吸收关系符合比尔定律。

2.漫透射测定法试样中含有光散射物质(折射率与基体材料不同的小颗粒),光在穿透分析样品时,除了吸收外还有多次的散射,在这个过程中比尔定律不适用。

3.反射测定法近红外光照射到样品表面后,根据样品表面状态和结构的不同,光线可以有规则的反射、漫反射和透反射三种。这种方法常用于粗糟和粉末状样品的测定。目前市场上常见的NIR光谱仪大多属于反射型尤其是漫反射型,有个别的专用的NIR分析仪器是在UV/IR光度计基础上改进的NIR透射型分析仪。NIR 和MIR一样,反映的是分子的振动频谱,其结果直接与分子的内部结构、分子官能团及分子状态有关,从NIR谱中同样可以得到分子的定量定性信息。与MIR不同的是NIR反射谱还可以得到一系列物理性质,如密度、粒子尺寸、纤维直径、大分子聚合度等特殊信息。根据NIR光谱发生的机理可知NIR谱带较弱,这样给长光程试样池特别是粘滞样品、流体试样的在线分析提供了极大的便利。使得分析时不需要对分析样品进行复杂预处理,池长对分析结果影响较小,定量分析的范围大等优点。NIR光谱分析的另一个特点是光源强度较大,探测器的反应灵敏度较高,因而检测信噪比高,尤其在散射效应强时,散射/吸收比高。在反射和散射NIR中,高的信噪比,可以得到良好的线性关系,对分析样品的外观宽容度大,既可以用于清澈的气、液、固样品的测定,又可对粉末状、糊状、丝状和不规则状样品的分析。NIR分析还有价格便宜耐用的透明材料(一般的光学玻璃)作为分析窗口,便于实现快速、实时、在线分析和控制。光纤传感技术的迅速发展,也为NIR分析技术提供了长距离检测传输、遥测、遥控等应用的可能性,特别是在有毒、易爆、放射性及其它难以直接测量的样品或现场更有意义。NIR光谱在使用中也有一定的局限性,主要是结构复杂,谱图重叠多,在进行定性定量分析中必须采用一定的数据处理才能获得准确可靠的分析结果。在定量分析中,导数光谱的应用可明显的消除基线漂移的影响,二阶导数可消除基线倾斜所造成的误差,两个相邻波长的一阶导数之比,可对光谱重叠和光谱干扰进行校正。多元线性回归分析方法是进行多组分分析的常用方法,选择合适的波长点和波长间隔,可用统计分析的方法验证分析结果。偏最小二乘法(partial least-square PLS)则是一种全光谱分析方法,该法充分利用了多个波长下的有用信息,不须刻意的选择波长,并且能滤去原始数据的噪音,提高信噪比可解决一些有交互影响的非线性问

题,很适合在NIR中使用。主成分分析法(principal componentregression PCR)与PLS法一样可以利用较多的光谱仪信息,在NIR光谱分析中得到广泛的应用。它可以从全谱图上抽取主成分和得到定量分析结果。人工神经网络方法(artifical neural net-works ANN)是近几年得到迅速推广的一种算法,在NIR 分析中也显出了优越性,复杂的NIR谱图可以方便的建立起ANN定量分析模型。PLS、PCR、ANN等方法的处理结果都优于简单的线性回归法。

2 近红外光谱在药物分析中的应用

NIR分析技术自上世纪七十年代以来在应用方面也取得了重要进展,农产品析中已把NIR分析技术作为小麦和奶类中蛋白测定的标准方法,NIR分析技术在药物分析中也得到了重视,已有大量文献介绍NIR了分析技术在这些方面的应用。OZAKI YUKIHIRO用30篇文献综述NIR了光谱在生物化学、生物物理和药物分析中的应用,Blanco.M介绍了NIR分析技术制药工业中作为质量控制分析的作用和前景,Morisseau.K.M介绍了NIR在制药行业的应用可能性,指出NIR分析方法以其方便、灵活、快速和节约的特点,在医药行业会得到良好的应用。NIR分析技术在药物分析中得到普偏重视与医药工业的发展有着密切的关系。就国际范围来讲,一个整体的趋势是政府和管理部门对药品生产和销售提出了越来越严格的质量控制标准和要求,生产过程、销售过程甚至在使用过程中的药物分析也越来越严格。寻找合适的分析方法去满足越来越严格的控制要求而又降低费用已成为医药行业一个迫切需要解决的问题,NIR分析方法所具有分析速度快、分析操作简单、所需样品少可以无损原位直接测量液体、固体、粘稠流体等特点,很好的符合医药分析的要求,引起了制药工业的极大兴趣。CIURCZAK.E.W详细的评述了在药物生产过程中NIR的应用范围,从原料分析

的角度来讲,NIR分析方法改变了传统的从车间到实验室,再从实验室到车间这样一个费事的过程,可在极短的时间内对固体和液体进行分析,这种分析是建立在待测样品已有NIR分析专家系统的基础之上。通过采集样品的光谱数据和标光谱数据进行对比判定原料是否达到生产要求;如果与标准一致,则顺利进行生产;若达不到则需要进行调整。整个分析过程实现了时间同步和地点原位、无损的特点。固体混合物中的各个组分的测定在制剂过程中是一个很关键的步骤,采用

传统的分析方法,如色谱分析方法,需要进行取样、溶解、分析、报告结果等几个步骤,既需要花费较多的时间又要求训练有素的科技人员来完成。NIR分析方法可以直接对固体样品在几分钟内完成这种定量定性分析。对于固体样品的分析除了原料外还可以对片剂和胶囊进行无损分析。NIR分析方法还可以测定药物的形状和颗粒大小。SASABE YASUZOU等利用多种方法建立了过程分析体系。NIR分析方法测定固体中的水分是一个常用的方法。药物分析中的水分测定也用到了NIR 分析方法,CIURCZAK.E.W论述了用NIR分析方法测定制剂中的水分和溶剂

的过程,从而得到了最佳干燥时间和失水百分率;Hammon.S设计了制剂专门测定仪,用于测定制剂的含量;龚健等人设计了一个药厂专用的NIR水分测定仪,主要用于制药行业的在线分析。Dreassi.E应用NIR方法测定了制剂过中原料分析,其中包括晶型、状态、密度等。他还测定了抗生素片剂生产过程的含量和水分,都得到了较好的结果;Buback.M详细介绍了NIR分析技术在流体分析中的特色;和在药物分析中的应用;NIR在生产过程中的无损分析已有

成功的应用;NIR分析在制药过程分析中显示了极大的潜力。NIR分析技术在临床药物分析中也得到了较多的应用,Hiramatsu.M等测定了皮肤下的水分分布情况,

通过测定散射NIR光谱可以得到水分在皮肤中得分布变化,为经皮给药和化妆品的使用提供了依据;Marcu.L等用激光光源和光道传输NIR光谱仪测定了人体肌肉内的Hbo、Hbr、Hbt的含量,在线研究了他们的变化。

Schrouder.B讨论了用FTNIR技术在医药诊断方面的应用;Hall.J.W论述了体内NIR光谱可以提供的分析内容。随着NIR技术的发展,在临床中的应用也会越来越多。

3 近红外光谱分析技术的展望

NIR分析技术以其快速方便、适应在线分析和无损分析的特点,在药物分析中得到了重视和应用,各种不同用途的分析仪器和计算机软件都不断的设计出来。可以预计NIR分析方法在药物分析中的理论研究和应用也会越来越多,NIR技术在医药研究和医药生产中有着及其广阔的应用前景。

红外光谱的研究与发展

红外光谱的发展与展望 红外光谱一般分为近红外(Near InfraredSpectrum),中红外(Middle Infrared Spectrum)和远红外(Far Infrared Spectrum)三个区域,波长分别为780)3000nm, 3000)25000nm和25)50Lm。众所周知中红外光谱是广泛应用的一种分析手段。近红外光谱几十年来一直没有在理论上和应用受到重视,其主要原因在于该区内的吸收是O)H、N)H、C)H等基团的振动吸收。这些吸收谱带复杂,多为合频吸收,且吸收强度较弱,难以在分析上应用。近年来,随着仪器制造技术的发展,新的光谱理论和光度分析新方法不断建立,特别是化学计量学的深入研究和广泛使用,促进了NIR分析技术的复兴和发展。 1 近红外光谱分析技术 根据NIR光谱的发生机理,使用的NIR分析技术主要有以下几种: 1.透射测定法使用于透明样品的分析,透射光强度与物质量间的吸收关系符合比尔定律。 2.漫透射测定法试样中含有光散射物质(折射率与基体材料不同的小颗粒),光在穿透分析样品时,除了吸收外还有多次的散射,在这个过程中比尔定律不适用。 3.反射测定法近红外光照射到样品表面后,根据样品表面状态和结构的不同,光线可以有规则的反射、漫反射和透反射三种。这种方法常用于粗糟和粉末状样品的测定。目前市场上常见的NIR光谱仪大多属于反射型尤其是漫反射型,有个别的专用的NIR分析仪器是在UV/IR光度计基础上改进的NIR透射型分析仪。NIR 和MIR一样,反映的是分子的振动频谱,其结果直接与分子的内部结构、分子官能团及分子状态有关,从NIR谱中同样可以得到分子的定量定性信息。与MIR不同的是NIR反射谱还可以得到一系列物理性质,如密度、粒子尺寸、纤维直径、大分子聚合度等特殊信息。根据NIR光谱发生的机理可知NIR谱带较弱,这样给长光程试样池特别是粘滞样品、流体试样的在线分析提供了极大的便利。使得分析时不需要对分析样品进行复杂预处理,池长对分析结果影响较小,定量分析的范围大等优点。NIR光谱分析的另一个特点是光源强度较大,探测器的反应灵敏度较高,因而检测信噪比高,尤其在散射效应强时,散射/吸收比高。在反射和散射NIR中,高的信噪比,可以得到良好的线性关系,对分析样品的外观宽容度大,既可以用于清澈的气、液、固样品的测定,又可对粉末状、糊状、丝状和不规则状样品的分析。NIR分析还有价格便宜耐用的透明材料(一般的光学玻璃)作为分析窗口,便于实现快速、实时、在线分析和控制。光纤传感技术的迅速发展,也为NIR分析技术提供了长距离检测传输、遥测、遥控等应用的可能性,特别是在有毒、易爆、放射性及其它难以直接测量的样品或现场更有意义。NIR光谱在使用中也有一定的局限性,主要是结构复杂,谱图重叠多,在进行定性定量分析中必须采用一定的数据处理才能获得准确可靠的分析结果。在定量分析中,导数光谱的应用可明显的消除基线漂移的影响,二阶导数可消除基线倾斜所造成的误差,两个相邻波长的一阶导数之比,可对光谱重叠和光谱干扰进行校正。多元线性回归分析方法是进行多组分分析的常用方法,选择合适的波长点和波长间隔,可用统计分析的方法验证分析结果。偏最小二乘法(partial least-square PLS)则是一种全光谱分析方法,该法充分利用了多个波长下的有用信息,不须刻意的选择波长,并且能滤去原始数据的噪音,提高信噪比可解决一些有交互影响的非线性问

近红外光谱仪操作规程

NIR-Antaris II 傅立叶变换近红外光谱仪 一、工作环境 1.供电电源:AC220V±10%;50±1Hz单相交流电。 2.环境温度:15-35℃;空气相对湿度:45-80%RH。 3.仪器应置于固定的工作台上,不应有强震动源。 4.室内无电磁干扰及有害有毒气体。 二、开机 打开计算机电源开关,打开近红外光谱仪电源开关,电源指示灯(Power)亮,光谱仪开机预热1 h等仪器稳定后再使用。 三、工作流(Workflow)的建立 1.先计划好该工作流保存的路径、各样品分析报告和光谱保存路径,然后将所分析指标对应的分析模型建立到对应的文件夹中。 2.从桌面或“开始”菜单中打开RESULT-Integration软件。 3.从“文件”菜单中的“新建工作流”选项或工具栏上的“新建”工具新建一个工作流,并点击“另存为”工具将其保存到预先计划好的路径下。 4.点击工具栏上的“向导”,在弹出窗口中的“样品物质”处输入样品名称,并分别设置以下各项: ①采集 ?采集方式的选 ?背景和样品采集时的提示信息 ?采集次数、分辨率、光谱数据格式 ②测量 ?当前工作流的保存路径 ?建模方法 ?测定类型 ③报告 ?表头、表格、光谱、打印报告 ④归档

⑤点击确定,关闭当前窗口 5.在“执行”和“注释”下的文字框中输入对该工作流的描述信息,如说明该工作流的用途和方法等。 6.点击导视窗口中的各项Event前面的,将其下的子事件展开。 7.分别在导视窗口点到各项子事件,在右边的显示和参数设置窗口中设置的各项事件参数: ①设置采集项 在使用向导时已经设置过分辨率、扫描次数。在样品光谱采集时,还要看 是否使用样品杯旋转器,所以可以通过“样品规格”后面的“详细信息”按键 进入到下一个界面。对于积分球方式,如果使用,“样品杯旋转器”后面可以选 择“旋转样品杯”,不使用则选择None。 ②设置测试项 点击“详细信息”按键,选择对应的模型文件、建模所使用的方法、设置 模型测定的指标。 ③设置报告项 鼠标点击导视窗口的“报告”,点击“详细信息”按键,可设置报告的名称; 使用窗口下方的“添加”和“删除”按钮可添加或删除各项,“向上”和“向下” 按钮可对报告中的各项进行上下排序。使用右方的“新建”按钮可以新建报告 项,“详细信息”按钮可以查看和设置各项的详细参数。 ④设置存档项 在该处可设置需要存档的项目、保存路径、报告和光谱保存格式、报告和 光谱存档文件名等。 8.使用工具栏的“添加”按钮添加事件(Event)。 根据设置工作流程的需要,可以使用工具栏上的“添加”按钮添加各种Event,然后按类似于前面各步的方法设置各项参数,在导视窗口中根据需要设置好次序,以达到按既定的程序对样品进行分析的目的。 9.工作流的测试。 按前述方法建立好工作流后,可以通过工具栏上的“测试”按钮,对工作流进行测试,以检查工作流是否能够按照预定的程序运行。

近红外光谱仪主要性能指标及研究进展

综 述 近红外光谱仪主要性能指标及研究进展 张 琳1 周金池2 (11北京林业大学林学院森林保护系,北京,100083;21北京林业大学分析测试实验中心,北京,100083) 摘 要 介绍了近红外光谱仪的主要性能指标;对国内外在仪器硬件、测样附件、软件开发及新型仪器研制等方面的进展作了评述。总结了我国近红外光谱仪发展的成就与不足。讨论了近红外光谱仪的发展趋势,特别是我国近红外光谱仪发展中的关键问题。 关键词 近红外光谱仪 性能指标 国内外进展 资助项目:北京林业大学/211工程0三期研究生创新人才培养建设计划子项目。 作者简介:张琳,女,北京林业大学森林保护系在读硕士生。E -mail:Zhanglin20051986@https://www.360docs.net/doc/052565363.html, 通讯联系人:周金池,男,汉族,1971年出生,山东省德州市人,副教授,专业方向:仪器分析与造林新技术的应用。E -m ail:zjc@https://www.360docs.net/doc/052565363.html, 1 引 言 近红外(NIR)光谱仪是近年来发展较为迅速的一种高新分析测试技术,是光谱测量技术、计算机技术、化学计量学技术与基础测量技术的有机结合。与传统分析技术相比,近红外光谱仪具有无损检测、分析效率高、分析速度快、分析成本低、重现性好、样品测量一般勿需预处理、光谱测量方便、适合于现场检测(如大批量抽检)和在线分析等独特优势[1] 。 NIR 光谱仪的类型较多,主要有滤光片型、发光二极管(LED)型、光栅色散型、傅里叶变换干涉仪型、声光可调滤光片型(AOTF)、多通道检测型(二极管阵列PDA 、电荷耦合器件CCD)等[2]。光栅色散型仪器又可分为扫描-单通道检测器和固定光路-阵列检测器两种类型。除了采用单色器分光以外,也有仪器采用多种不同波长的发光二极管(LED)作光源,即LED 型近红外光谱仪。尽管我国NIR 光谱仪硬件研制相对较晚,但以上提到的6种类型NIR 光谱仪,在我国都有相关单位进行研发[3]。 2 近红外光谱仪器的主要性能指标 211 分辨率 近红外光谱仪的分辨率是指仪器对于紧密相邻 的峰可以分辨的最小波长间隔,表示仪器实际分开相邻峰的能力,即M /$M 或(K /$K ),M 为两峰中任一峰的波数,$M 为两峰波数之差。它是仪器的最主要指标之一,也是仪器质量的综合反映。仪器的分辨率主要取决于仪器分光系统的性能。对于色散型仪器而言,其分辨率取决于分光后狭缝截取的波段精度,狭缝越小截取的波段越窄,分辨率越高。但随之而来的是能量急剧下降,灵敏度不断降低,为了兼顾检出灵敏度,就不能以无限制地缩小狭缝来提高分辨率,因此,要想让色散型仪器既能分辨率达到0.1cm -1,又能得到一张质量良好的谱图是一件很困难的事。而对于傅里叶变换型的近红外光谱仪,由于有多路通过的特点,无狭缝的限制,因此仪器的分辨率仅取决于干涉采样数据点的多少,即取决于动镜移动的距离,由于动镜的移动由激光控制,因此可以很轻松地得到一张高质量、高分辨率的谱图。212 波长准确性 光谱仪波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差(傅里叶变换型红外光谱仪习惯用波数cm -1来表示)。波长准确度一般用波长误差,即上述两值之差来表示。由于近红外分析是用已知样品所建立的模型来分析未知样品的,如果仪器的波长准确度不能保证,则不同测定光谱就会因仪器波长的移动(即x 轴发生了平

红外光谱技术及其应用进展

红外光谱技术及其应用进展 苏雄200910835319 集宁师范学院化学系09级化学3班内蒙古乌兰察布市 012000 摘要 波数13000~10cm-1或波长0.75~1000μm之间称为红外区,在此范围内的物质吸收红外辐射后,因分子振动、转动、或晶格等运动产生偶极矩变化,形成可观测的红外光谱。红外光谱技术的发展进程和红外光谱技术分析速度快,分析效率高,分析成本低,测试重现性好等特点。红外光谱技术在制浆造纸工业中木素的定性和结构分析、木素的定量分析、研究纤维素的结晶结构、测定纸浆Kappa 值等,以及在临床医学和药学方面,农业方面,以及食品方面在食品中农药残留检测、环境科学中水环境监测、固体环境监测、气体环境监测,石油工业中对于油品成分,含量等方面的分析有广泛应用。 关键词 红外光谱;特点;应用 引言 分子振动、转动、或晶格等运动产生偶极矩变化,形成可观测的红外光谱。红外光谱广泛应用于分子结构的基础研究和化学组成的分析领域, 对有机化合 物的定性分析具有鲜明的特征性。因此,红外光谱有化合物“指纹”之称,是鉴定有机化合物和结构分析的重要工具。由于其专属性强各种基因吸收带信息多,固可用于固体、液体和气体定性和定量分析[1]。由于用红外光谱作样品分析时基本不需要处理,且不破坏和消耗样品,自身又无环境污染,因而被广泛运用,目前红外光谱广泛已应用于制浆造纸工业、临床医学和药学方面、农业方面、食品方面、环境科学、石油工业等学科领域,并随着技术和研究的深入越来越受到重视。 1、红外光谱法的基本原理 红外吸收光谱是由分子振动能级的跃迁同时伴随转动能级跃迁而产生的,因此,红外光谱的吸收峰是有一定宽度的吸收带。物质吸收红外光应满足两个条件,即辐射应具有刚好能满足物质振动能级跃迁时所需的能量;辐射与物质之间有偶合作用。因此当一定频率的红外光照射分子时如果分子中某个基团的振动频率与其一致,同时分子在振动中伴随有偶极矩变化,这时物质的分子就产生红外吸收。

红外技术应用及发展前景

红外技术应用及发展前景

目录 一、摘要 (2) 二、红外技术的起源与发展 (3) 三、红外技术的应用 (4) 1、红外热像仪 (4) 2、红外光谱仪 (4) 3、红外传感器 (5) 四、红外技术的发展前景 (5) 1.红外技术的发展及主要应用领域 (5) 2.红外技术产业的主要领域方向 (6) 五、对红外技术课堂的意见及建议 (7)

摘要 红外技术的英文名称是:Infrared Technique。红外技术的内容包含四个主要部分,红外辐射的性质,红外元件、部件的研制、把各种红外元、部件构成系统的光学、电子学和精密机械、红外技术在军事上和国民经济中的应用。 红外技术发展的先导是红外探测器的发展。60年代激光的出现极大地影响了红外技术的发展,促使出现新的探测器件和新的辐射传输方式,推动红外技术向更先进的方向发展。 红外应用产品种类繁多,应用广泛。红外线自1800年被发现以来,人们对她的研究从来没有停止过,目前已经开发出了众多的应用产品,从医疗、检测、航空到军事等领域,几乎处处都能看到红外的身影。本文选择了红外热像、红外通讯、红外光谱仪、红外传感器等几个比较大的产品领域做介绍。红外技术的发展前景十分的广阔,在军用和民用领域都有着极其广阔的应用。按应用领域可分为:安防领域、消防领域、电力领域、企业制程控制领域、医疗领域、建筑领域、遥感领域等。 最后,提出对这门课程的意见及建议。我认为每节课都应有具体的任务,明确的目的和要求,每节课都给学生留有思考的空间。课堂教学的形式是多样的,教学形式是实现教学目的一种手段,是为课堂教学服务的。 关键字:红外辐射外探测器红外线

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC (American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

近红外光谱仪器的发展现状

电子知识 现代近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换和声光可调滤光器(AOTF)四种类型。光栅色散型仪器根据使用检测器的差异又分为扫描式和固定光路两种。在各种类型仪器中,光栅扫描式是最常用的仪器类型,采用全息光栅分光、PbS 或其他光敏元件作检测器,具有较高的信噪比。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太合适于在线分析。 傅立叶变换近红外光谱仪是目前近红外光谱仪器的主导产品,具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动部件,且需要较严格的工作环境。AOTF 是90年代初出现的一类新型分光器件,采用双折射晶体,通过改变频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快,具有较好的仪器稳定性,特别适合在线分析。但目前这类仪器的分辨率相对较低,AOTF 的价格也较高。随着多通道检测器件生产技术的日趋成熟,采用固定光路、光栅分光、多通道检测器构成的NIR 仪器,以其性能稳定、扫描速度快、分辨率高、性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的多通道检测器中,常用的有二极管阵列(Photodiode-array 简称PDA)和电荷耦合器件(Charge Coupled Devices 简称 CCD)两种类型。 国外NIR 光谱仪发展状况:国外便携式近红外光谱仪的研制工作开展的较早,技术也比较成熟。从厂家的网上材料看,NIR 仪器不断向小型化、固态化、模块化和快速实时方向发展。其中典型的有美国的ASD公司的可见/近红外便携式光谱分析仪

Labspec Pro 系列,可选择光谱测量范围1000-1800nm、1000-2500nm、350-2500nm,光纤探头,并配以用于化学计量学模型编程的Unscrambler 标准软件。澳大利亚Integrated Spectronics Pty Ltd 的PIMA (Portable Infrared Mineral Analyzer)是典型的便携式野外岩石矿物NIR 分析仪器。PIMA 系光栅扫描型,光谱范围1 300~2500 nm,仪器重2.5Kg,野外电池供电,外接笔记本电脑。 Ocean Optics Inc.研制生产的USB2000 微型光纤光谱仪(USB2000 Miniature Fiber Optic Spectrometer),有标准组件的光谱仪系统,配以不同的光栅、狭缝、不同的光纤设备等,可检测吸收、反射、发射光谱等,范围200-1100nm。USB2000 整体尺寸为89mm×64mm×34mm,重量在270克左右。 我国NIR仪器的研制起步较晚,90 年代中期,有的厂家在生产傅立叶变换红外光谱仪的基础上,开发生产了傅立叶变换近红外光谱仪器。北京北分瑞利分析仪器有限责任公司(原北京第二光学仪器厂)研制出傅立叶变换型NIR 光谱仪。在多通道近红外光谱仪器的研制方面,石油化工科学研究所研制、深圳英贤仪器公司生产的NIR-2000 型近红外光谱仪已于1998 年9 月通过中国石油化工集团公司鉴定,并进入批量生产。该仪器采用硅基2048 像素CCD 作检测器,波长范围700~1100nm,主要用于多种石油产品组成和性质的分析。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中

近红外光谱仪厂家

【导语】近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。那么今天我们一起走入下文了解一下关于近红外光谱仪。 【近红外光谱仪注意事项】 由于近红外光在常规光纤中有良好的传输特性,且其近红外光谱仪较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,近红外光谱仪成为在线分析仪表中的一枝奇葩。近红外光谱仪的一个重要特点就是技术本身的成套性,即必须同时具备三个条件: (1)各项性能长期稳定的近红外光谱仪,是保证数据具有良好再现性的基本要求; (2)功能齐全的化学计量学软件,是建立模型和分析的必要工具; (3)准确并适用范围足够宽的模型。 这三个条件的有机结合起来,才能为用户真正发挥作用。因此,在购买仪器时必须对仪器提供的模型使用性有足够的认识,特别避免个别商家为推销仪器所做的过度宣传的不良诱导,为此付出代价的厂家有之,因此,一定要对厂家提供模型与技术支持情况有详细了解。 【近红外光谱仪厂家】

山东润通科技有限公司是一家致力于环境在线监测系统、数据采集传输系统、大数据云智慧平台的研发、生产、销售及技术服务为一体的高新技术企业、双软认证企业。 公司拥有多项自主知识产权与完善的体系认证,主要产品有RAIN-VI系列VOCs在线监测系统、水质在线监测系统,R-I7000系列数据采集传输系统,润通云智慧平台。 润通人本着“更用心更专业”的服务理念,为客户提供满意的产品和服务,为员工创造良好的工作和生活环境,为社会做出贡献。为改善人类环境而努力奋斗。山东润通科技有限公司是一家致力于环境在线监测系统、数据采集传输系统、大数据云智慧平台的研发、生产、销售及技术服务为一体的高新技术企业、双软认证企业。 公司拥有多项自主知识产权与完善的体系认证,主要产品有RAIN-VI系列VOCs在线监测系统、水质在线监测系统,R-I7000系列数据采集传输系统,润通云智慧平台。 润通人本着“更用心更专业”的服务理念,为客户提供满意的产品和服务,为员工创造良好的工作和生活环境,为社会做出贡献。为改善人类环境而努力奋斗。

近红外光谱分析的应用及前景

摘要现代近红外光谱(NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术, 越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。近红外光谱是一种快速、无损、可实现多组分同时测定的分析技术。本文简要介绍了近红外光谱的发展、测量原理、技术特点,并对近年来近红外光谱技术在各个领域的应用及前景进行了总结。随着近红外光谱技术的不断成熟,除了应用范围将不断拓宽之外,相信对于目前较为空白的应用机理的研究也将越来越深人、细致及严谨。 关键词近红外光谱分析技术原理应用发展前景 1 前言 电磁波按波长递增的分为(图例)近红外光谱是指波长在780~2526nm范围内的电磁波,是人们最早发现的非可见光区域。近红外光谱技术(NIR)是近年来发展较为迅速的一种高新分析测试技术,是光谱测量技术、计算机技术、化学计量学技术与基础测量技术的有机结合。但是由于近红外光谱区吸收峰的特征性差,灵敏度低,受当时的技术水平限制,近红外光谱技术“沉睡” 了近一个半世纪。20世纪80年代,随着计算机技术、仪器硬件的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,近红外光谱技术飞速发展,成为近十年来发展最为迅速的高新分析技术之一,在众多领域都有广泛应用,其分析应用领域也不断拓宽。越来越引起国内外分析专家的注目,在分析化学领域被誉为分析的“巨人”[1]. 今天我们主要讲近红外光谱的原理,应用,优缺点和发展前景。 2 近红外光谱分析基本原理及应用近红外光谱仪的基本工作原理: 波长在700nm – 2,500nm (4,000–14,300cm-1) 的光谱为近红外光谱。它是一种既快速(十到二十秒钟) 又简便(不需作样品前处理) 的测试手段, 这种方法的特点是对样品作一步式 组份(需测的浓度大于0.01%) 分析而不需破坏样品。如果产品颜色是质量指标之一、您可选400nm-1,100nm 的图谱数据作鉴定。近红外光谱仪适用于对含有C-H, N-H, O-H 和 S-H 化学键的化合物作组份分析。在700 – 2,500 nm 的近红外波长范围内, 含有上述化合键的物质(药品、烟草、食品、农作物、聚合物、石油化工产品等) 会产生吸收。一些物质除在1,450 nm 到2,050 nm 之间产生第一谐波外,往往还会分别在1,050 nm - 1,700nm 和700 nm - 1,050 nm 谱带内产生第二及第三谐波。这些谐波的组合构成了被测物质在近红外光谱带内的特征吸收谱图-指纹图。相同的近红外谱图(样品的指纹图) 一定是从相同的物质得到。这也是应用近红外光谱仪作质量管理的主导基础原理。有机物在近红外光谱带内的吸收强度比在中红外(如FT-IR) 的吸收强度弱10 到1,000 倍。由于这特殊的弱吸收优点, 近红外射线能很容易地穿透未经研片与稀释等需作预处理的非透明样品,实现透射吸收;而另一部分反射光谱也可很容易地被检测。但是如何利用近红外图谱来对原材料或产品进行质量监控呢? 答案是利用统计学理论建立被测样品的数据库或校正曲线,而统计学

红外光谱仪

红外光谱仪 摘要 本文简要介绍了红外光谱仪的发展过程,并阐述了傅里叶红外光谱仪的基本原理。应实时实地测量及无损测量的要求,提出了便携式红外光谱仪的研究。文章中还给出了实现便携式红外光谱仪便携化的途径。最后,总结了红外光谱仪的在各领域中的应用。 关键词:红外光谱仪傅里叶便携式应用 1 红外光谱仪的发展过程 第一台近红外光谱仪的分光系统(50年代后期)是滤光片分光系统,测量样品必须预先干燥,使其水分含量小于15%,然后样品经磨碎,使其粒径小于1毫米,并装样品池。此类仪器只能在单一或少数几个波长下测定(非连续波长),灵活性差,而且波长稳定性、重现性差,如样品的基体发生变化,往往会引起较大的测量误差!“滤光片”被称为第一代分光技术。 70年代中期至80年代,光栅扫描分光系统开始应用,但存在以下不足:扫描速度慢、波长重现性差,内部移动部件多。此类仪器最大的弱点是光栅或反光镜的机械轴长时间连续使用容易磨损,影响波长的精度和重现性,不适合作为过程分析仪器使用。“光栅”被称为第二代分光技术。 80年代中后期至90年代中前期,应用“傅里叶变换”分光系统,但是由于干涉计中动镜的存在,仪器的在线可靠性受到限制,特别是对仪器的使用和放置环境有严格要求,比如室温、湿度、杂散光、震动等。“傅里叶变换”被称为第三代分光技术。 90年代中期,开始有了应用二极管阵列技术的近红外光谱仪,这种近红外光谱仪采用固定光栅扫描方式,仪器的波长范围和分辨率有限,波长通常不超过1750nm。由于该波段检测到的主要是样品的三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往较长。“二极管阵列”被称为第四代分光技术。 90年代末,来自航天技术的“声光可调滤光器”(缩写为AOTF)技术的问世,被认为是“90年代近红外光谱仪最突出的进展”, AOTF是利用超声波与特定的晶体作用而产生分光的光电器件,与通常的单色器相比,采用声光调制即通过超声射频的变化实现光谱扫描,光学系统无移动性部件,波长切换快、重现性好,程序化的波长控制使得这种仪器的应用具有更大的灵活性,尤其是外部防尘和内置的温、湿度集成控制装置,大大提高了仪器的环境适应性,加之全固态集

近红外光谱分析技术及发展前景

近红外光谱分析技术及发展前景 陈丽菊 刘 巍 近红外光(near infrared,N IR)是介于可见光(VL S)和中红外光(M IR)之间的电磁波,美国材料检测协会(ASTM)将波长780~2526nm的光谱区定义为近红外光谱区。近红外光谱主要应用两种技术获得:透射光谱技术和反射光谱技术。透射光谱波长一般在780~1l00nm范围内;反射光谱波长在1100~2526nm范围内。近红外光谱区(N IR)是由赫歇尔(Herschel)在1800年发现的。卡尔?诺里斯(Karl Norris)等人首先用近红外光谱区测定谷物中的水分、蛋白质。但是由于分子在该谱区倍频和合频吸收弱,且谱带重叠严重,难以分析和鉴定,以致N IR分析技术的研究曾一度陷入低谷,甚至处于停滞。20世纪80年代,随着计算机技术、仪器硬件的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,使得近红外分析技术不仅用于农产品、食品和生物科学,而且还应用到石油化工、烟草、纺织、环保等行业。 近红外光谱分析的原理 近红外光谱是由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的。近红外分析技术是依据被检测样品中某一化学成分对近红外光谱区的吸收特性而进行定量检测的一种方法。它记录的是分子中单个化学键的基频振动的倍频和合频信息,它的光谱是在700~2500nm范围内分子的吸收辐射。这个事实与常规的中红外光谱定义一样,吸收辐射导致原子之间的共价键发生膨胀、伸展和振动。中红外吸收光谱中包括有C-H键、C-C键以及分子官能团的吸收带。然而在N IR测量中显示的是综合波带与谐波带,它是R-H分子团(R是O、C、N和S)产生的吸收频率谐波,并常常受含氢基团X-H(C-H、N-H、O-H)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。使用N IR技术是因为它与样品相互作用时输出的能量效率比中红外光更为实用。N IR的辐射源(仪器上的灯)要比用在中红外的能量高得多,而且它的检测器也具有更高检测效率。这些因素意味着N IR仪器的信噪比值远高于中红外仪器。较高的信噪比意味着样品的观测时间可比中红外仪器短得多。近红外辐射对于样品的穿透性也较高,因此样品的前处理常较中红外简单。近红外光谱根据其检测对象的不同分成近红外透射光谱(N IT)和近红外反射光谱(N IR)两种。N IT是根据透射光与入射光强的比例关系来获得在近红外区的吸收光谱。N IR根据反射光与入射光强的比例获得在近红外光谱区的吸收光谱。近红外分析技术是综合多学科(光谱学、化学计量学和计算机等)知识的现代分析技术,使用包括N IR 分析仪、化学计量学光谱软件和被测物质的各种性质或浓度分析模型成套近红外分析技术等。经过对这种模型的校正,就可以根据被测样品的近红外光谱,快速计算出各种数据。建立被测样品成分的模型时,主要用到的校正方法有多元线性回归法(ML R)、主成分分析法(PCA)、偏最小二乘法(PL S)、人工神经网络法(ANN)。 近红外光谱分析方法的特点 近红外光谱分析方法有下列特点。 可采用光学方法进行。鉴于近红外具有较大的散射效应和较强的穿透性,近红外光谱的分析方法比较独特,可根据样品物态和透光能力的强弱采用透射、漫反射和散射等多种测谱技术进行物质检测。 近红外光子的能量比可见光低,不会对人体造成伤害,而且整个分析过程不会对环境造成任何污染,属于绿色分析技术。 近红外分析技术可在数分钟内完成多项参数的测定,分析速度可提高上百倍,分析成本可降低数十倍。用于传输近红外辐射光的光纤可长达200m, 新结构的固态电子和光电子器件。半导体低维结构已成为推动整个半导体科学技术迅猛发展的主要动力。低维材料不同于自然界中的物质,具有各种量子效应和独特的光、电、声、力、化学和生物性能,在未来的各种功能器件的应用中将发挥重要作用,并随理论和技术的发展得到更加广泛的应用。 (上海市东华大学理学院应用物理系 200051) ? 1 ?现代物理知识

红外光谱仪的发展

最佳答案 在过去的50多年里,近红外光谱仪经历了如下几个发展阶段: ★第一台近红外光谱仪的分光系统(50年代后期)是滤光片分光系统,测量样品必须预先干燥,使其水分含量小于15%,然后样品经磨碎,使其粒径小于1毫米,并装样品池。此类仪器只能在单一或少数几个波长下测定(非连续波长),灵活性差,而且波长稳定性、重现性差,如样品的基体发生变化,往往会引起较大的测量误差!“滤光片”被称为第一代分光技术。 ★70年代中期至80年代,光栅扫描分光系统开始应用,但存在以下不足:扫描速度慢、波长重现性差,内部移动部件多。此类仪器最大的弱点是光栅或反光镜的机械轴长时间连续使用容易磨损,影响波长的精度和重现性,不适合作为过程分析仪器使用。“光栅”被称为第二代分光技术。 ★80年代中后期至90年代中前期,应用“傅立叶变换”分光系统,但是由于干涉计中动镜的存在,仪器的在线可靠性受到限制,特别是对仪器的使用和放置环境有严格要求,比如室温、湿度、杂散光、震动等。“傅立叶变换”被称为第三代分光技术。 ★90年代中期,开始有了应用二极管阵列技术的近红外光谱仪,这种近红外光谱仪采用固定光栅扫描方式,仪器的波长范围和分辨率有限,波长通常不超过1750nm。由于该波段检测到的主要是样品的三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往较长。“二极管阵列”被称为第四代分光技术。 ★90年代末,来自航天技术的“声光可调滤光器”(缩写为AOTF)技术的问世,被认为是“90年代近红外光谱仪最突出的进展”,AOTF是利用超声波与特定的晶体作用而产生分光的光电器件,与通常的单色器相比,采用声光调制即通过超声射频的变化实现光谱扫描,光学系统无移动性部件,波长切换快、重现性好,程序化的波长控制使得这种仪器的应用具有更大的灵活性,尤其是外部防尘和内置的温、湿度集成控制装置,大大提高了仪器的环境适应性,加之全固态集成设计产生优异的避震性能,使其近年来在工业在线和现场(室外)分析中得到越来越广泛的应用。 非制冷红外技术发展现状(上) 尤海平(2005.11.17)

附红外吸收光谱(IR)的基本原理及应用

附红外吸收光谱(IR)的基本原理及应用 一、红外吸收光谱的历史 太阳光透过三棱镜时,能够分解成红、橙、黄、绿、蓝、紫的光谱带;1800年,发现在红光的外面,温度会升高。这样就发现了具有热效应的红外线。红外线和可见光一样,具有反射、色散、衍射、干涉、偏振等性质;它的传播速度和可见光一样,只是波长不同,是电磁波总谱中的一部分。(图一)、波长范围在0.7微米到大约1000微米左右。红外区又可以进一步划分为近红外区<0.7到2微米,基频红外区(也称指纹区,2至25微米)和远红外区(25微米至1000微米)三个部分。 1881年以后,人们发现了物质对不同波长的红外线具有不同程度的吸收,二十世纪初,测量了各种无机物和有机物对红外辐射的吸收情况,并提出了物质吸收的辐射波长与化学结构的关系,逐渐积累了大量的资料;与此同时,分子的振动――转动光谱的研究逐步深入,确立了物质分子对红外光吸收的基本理论,为红外光谱学奠定了基础。1940年以后,红外光谱成为化学和物理研究的重要工具。今年来,干涉仪、计算机和激光光源和红外光谱相结合,诞生了计算机-红外分光光度计、傅立叶红外光谱仪和激光红外光谱仪,开创了崭新的红外光谱领域,促进了红外理论的发展和红外光谱的应用。 二、红外吸收的本质 物质处于不停的运动状态之中,分子经光照射后,就吸收了光能,运动状态从基态跃迁到高能态的激发态。分子的运动能量是量子化的,它不能占有任意的能量,被分子吸收的光子,其能量等于分子动能的两种能量级之差,否则不能被吸收。 分子所吸收的能量可由下式表示: E=hυ=hc/λ 式中,E为光子的能量,h为普朗克常数,υ为光子的频率,c为光速,λ为波长。由此可见,光子的能量与频率成正比,与波长成反比。 分子吸收光子以后,依光子能量的大小,可以引起转动、振动和电子能阶的跃迁,红外光谱就是由于分子的振动和转动引起的,又称振-转光谱。

红外光谱测试法

红外光谱测试法 红外光谱 (Infrared Spectroscopy, IR) 的研究始于 20 世纪初,自1940 年红外光谱仪问世,红外光谱在有机化学研究中广泛应用。新技术(如发射光谱、光声光谱、色红联用等)出现,使红外光谱技术得到发展。 原理 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数 (σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。 当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。 红外吸收光谱产生的第二个条件是红外光与分子之间有偶尔作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。 应用 红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。 红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。 红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠

红外光谱分析77952

红外光谱分析 二十世纪初叶,Coblentz 发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1 列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。 表1 常用的有机光谱及对应的微观运动

红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。通常红外光谱系指2-25 μ之间的吸收光谱,常用的为中红外区4000-650cm-1(2.5-15.4 μ) 或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振 动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分 子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱 对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C 为光速(3 ×1010cm/s) 。设υ为波数,其含义是单位长度(1cm) 中所含的波的个数,并应具有以下关系:波数(cm-1) =104/ 波长( μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的 波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%) 表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动( υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的 吸收频率相对在高波数区。 (2)弯曲振动( δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm -1(高) 400cm -1(低) 3、红外光谱吸收峰主要的几种类型 (1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。 (2)倍频峰:出现在基频峰波数二倍处。如基频为900cm-1,倍频为

红外光谱的原理及应用综述

红外光谱分析基本原理及应用 摘要红外光谱分析技术具有很快速,非破坏性,低成本及同时测定多种成分等特点, 在很多领域得到了广泛应用。本文介绍了红外光谱技术的检测原理,红外光谱仪的构造,指出了其检测的优点与不足。综述了红外光谱法的发展、应用以及对红外光谱研究前景的展望。 关键词:红外光谱原理构造发展1.引言 红外光谱法(infrared spectrometry,IR)是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法。分子吸收红外辐射后发生振动和转动能级跃迁。所以,红外光谱法实质是根据分子内部振动原子间的相对振动和分子转动等信息来鉴别化合物和确定物质分子结构的分析方法。 2.红外光谱分析的基本原理 2.1 红外光谱产生的条件 物质分子吸收红外辐射发生振动和转动能级跃迁,必须满足以下两个条件:一是辐射光子的能量与发生转动和转动能级跃迁所需的能量相等;二是分子转动必须伴随有偶极距的变化,辐射与物质间必须有相互作用。 2.2 红外吸收光谱的表示方法 红外吸收光谱一般用T_σ曲线或T_λ曲线来表示,λ与σ的关系式为: σ(cm-1)=1/λ(cm)=10^4/λ(μm)

2.3 分子的振动与红外吸收 2.3.1 双原子分子的振动 若把双原子分子(A-B)的两个原子看成质量分别为M1,M2的两个小球,中间的化学键看做不计质量的弹簧,那么原子在平衡位置附近的伸缩振动可以近似地看成沿键轴方向的简谐振动。量子力学证明,分子振动的总能量为: E=(u+1/2)hv 当分子发生△v=1 的振动能级跃迁时(由基态跃迁到第一激发态)根据胡克(Hooke)定律它所吸收的红外光波数σ为: σ=(1/2пc)√(k/μ) 其中:c—光速,3×10^8cm/s;k—化学键力常数N/cm;μ—两个原子的折合质量,g,μ=(m1.m2)/(m1+m2) 显然,振动频率σ与化学键力常数k成正比,与两个原子的折合质量成反比。不同化合物k和μ不同,所以不同化合物有自己的特征红外光谱。 2.3.2 多原子分子的振动 可分为伸缩振动和弯曲振动两类。伸缩振动是指原子沿着键轴方向伸缩,使键长发生周期性变化的振动。弯曲振动是指基团键角发生周期性变化的振动或分子中原子团对其余部分所做的相对运动。弯曲振动键力常数比伸缩振动的小。因此,同一基团的弯曲振动在其伸缩振动的低频区出现,所以,一般不把他做基团频率。多原子的复杂振动数又叫分子的振动自由度。每一种振动形式都有他特定的振动频

相关文档
最新文档