八年级上华东师大版12.1平方根与立方根二课件

合集下载

平方根与立方根--华师大版

平方根与立方根--华师大版

(3) (42 )2 44 , 44 42 16, 44 16.
祝同学们学习进步, 天天开心,时时快乐!
; / 时时平台
wpd02xry
容凌娢身前。“是在找什么人吗?要不„„哥哥带你去一个好玩的地方吧?”此人若用一个字形容,那就是“撮”。看起来吊儿郎当, 身上脏兮兮的,整就是一个小混混。“啊„„不用了。”慕容凌娢赶忙往后躲闪。心中暗想,这种人在电视剧里绝对活不过十分钟。但 是他也太敬业了吧?自己还穿着校服,都已经开拍了。“大叔,你真是太敬业了,不过我只是想见一下你们的导演。我怀疑我是梦游到 这里的。”看着那个“龙套”逐步逼近,慕容凌娢不禁捂住了鼻子。那么难闻的气味,真不知道他是怎么忍受的。“哟,这小妞居然不 买账?还在那儿胡言乱语。”小混混发现没有骗住慕容凌娢,马上没了耐心。朝着集市的另一个胡同口挥了挥手,“你们几个愣着干什 么,把这小妞弄走。卖到黑市上去,估计还能赚一把呢„„”几个人闻声从黑暗的胡同里有了出来,个个衣着破烂,眼神呆滞。听到了 能赚钱,才都打起了精神。“你们„„”慕容凌娢现在才醒悟,自己是真的穿越了,而且运气极差,现在竟被几个小混混盯上了。“大 胆刁民!”慕容凌娢不知从哪里来的勇气,大喝了一声,“竟敢对本 不敬,活得不耐烦了吗?知道本 是谁吗„„”几个小混混似乎是 被慕容凌娢突如其来的话语给震慑到了,居然像挨了当头棒一样,瞬间蔫头耷脑了,并跪在地上磕了几个头,“小的们有眼不识泰山, 惊扰了大人,还望大人恕罪。”说完便飞快是消失在了人群中。“切,算你们跑的快。”没想到这群人这么好骗。慕容凌娢冲他们做了 个鬼脸,“真以为我和那些傻白甜一样好欺负啊。”转身刚要走,却差点撞入别人怀中。当慕容凌娢抬起头,目光刚好落在了那人的脸 上,顿时让她一惊。那人一袭白衣,手持一把白玉扇骨折扇。细致如美瓷一般的肌肤,黑亮垂直的长发,优美如樱花般的唇,墨色的眼 眸中仿佛闪烁着淡雅如雾的星辰的光芒。看起来只有十四五岁,却给人稳重成熟的感觉。这些都不是重点,重点是他很像一个人。“许 晨涵?你怎么也在这里?”慕容凌娢十分惊愕。“姑娘认错人了吧。”张开折扇,他的眼眸微眯了一下,薄薄的唇微微上扬,似笑非笑。 灵动而又富有磁性的声音传入耳畔,“在下是否长得像您的旧识?”认错了吗?他确实比许晨涵漂亮,似乎还要大一些。但有着说不出 的相似之处。慕容凌娢下意识的躲避了他的目光。这下可不好解释了,能实话告诉他自己一开始把他认作自己的闺蜜了吗?(古风一言) 只愿感君一回顾,使我思君朝与暮。第004章 智商的没落“我„„我认错人了。”慕容凌娢心虚的低下了头,“不过你干嘛突然出现在 我背后,吓了我一跳。”“哈?那就是在下的错了。”他嘴角上扬,笑出了声。“不过我已经在这儿很久了。”不得不说,他笑

平方根与立方根课件华东师大版数学八年级上册

平方根与立方根课件华东师大版数学八年级上册

边长
134 5 6
你能指出“面积→边长”这些数据变化的共同点吗?
都是已知一个正数的平方,求这个正数.
知识点一 平方根
概念:如果一个数的平方等于 a,那么这个数叫做 a 的 平方根. 举例:5 的平方等于 25,所以 5 叫做 25 的一个平方根. 25 的平方根只有一个吗?还有没有别的数的平方也等 于 25?
二 算术平方根
算术平方根的概念
概念:一般地,如果一个正数 x 的平方等于 a,即 x²= a,那么这个正数 x 叫做 a 的算术平方根.
记法
±a
根号 被开方数
(a 是非负数,a≥0)
问题1:算一算,下面两种运算有什么关系?
x
x2
+1
1
平 -1
方 +2
4
运 -2
算 +3
9
-3
x2
x

1
+1

2.判断 (1)5 是 25 的算术平方根; (2)-6 是 36 的算术平方根; (3)0 的算术平方根是 0; (4)0.01 是 0.1 的算术平方根; (5)-5 是 -25 的算术平方根.
3.你知道下列各式中字母 x 的取值范围吗?
x4
2x 6
x
x≥4
x≥ 3
x≤0
4.填空 (1)正数的算术平方根是__正__数,0 的算术平方根 是__0__,算术平方根等于它本身的数是__0_,__1_;
这个数
2.求下列各式的值
(1)3 64 ; 3 64 4 .
(2)3 0.001; 3 0.001 0.1.
3
(3)
64
.
125
3 64 4 . 125 5

平方根与立方根课件华东师大版数学八年级上册

平方根与立方根课件华东师大版数学八年级上册

平方根与立方根课件华东师大版数学八年级上册一、教学内容本节课我们学习《平方根与立方根》,该内容属于华东师大版数学八年级上册第二章第三节。

详细内容包括:1. 平方根的定义、性质和计算方法;2. 立方根的定义、性质和计算方法;3. 平方根与立方根的应用。

二、教学目标1. 理解平方根和立方根的概念,掌握它们的性质和计算方法;2. 能够运用平方根和立方根解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:平方根与立方根的性质和计算方法。

教学重点:理解并掌握平方根与立方根的概念及其应用。

四、教具与学具准备1. 教具:平方根与立方根课件、黑板、粉笔;2. 学具:练习本、计算器。

五、教学过程1. 实践情景引入:通过实际生活中的例子,引导学生了解平方根与立方根的概念,如面积、体积计算等;2. 例题讲解:(1)平方根的例题:求32的平方根;(2)立方根的例题:求8的立方根;3. 随堂练习:(1)求下列数的平方根:25,49,9;(2)求下列数的立方根:8,27,64;6. 巩固练习:布置一些具有代表性的题目,让学生独立完成。

六、板书设计1. 平方根:定义:如果一个数的平方等于a,那么这个数就叫做a的平方根;性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根;计算方法:求一个数的平方根,可以通过直接开平方或者使用计算器求解。

2. 立方根:定义:如果一个数的立方等于a,那么这个数就叫做a的立方根;性质:一个数的立方根与原数的符号相同;计算方法:求一个数的立方根,可以通过直接开立方或者使用计算器求解。

七、作业设计1. 作业题目:(1)求下列数的平方根:81,100,121;(2)求下列数的立方根:64,125,216;2. 答案:(1)9,10,11;(2)4,5,6。

八、课后反思及拓展延伸1. 反思:本节课学生对平方根与立方根的概念和性质掌握情况较好,但在计算方法方面还需要加强练习;2. 拓展延伸:让学生课后了解平方根与立方根在生活中的应用,如建筑、工程设计等领域,提高学生学以致用的能力。

华师大版初中数学八年级上册电子课本

华师大版初中数学八年级上册电子课本
试一试
(1) 144 的平方根是什么? (2) 0 的平方根是什么?
4
(3) 25 的平方根是什么? (4) -4有没有平方根?为什么? 请你自己也编三道求平方根的题目,并给出解答.
概括
一个正数如果有平方根数的范围从有理数扩充到实数以后(本章 第2节),每一个正实数必定有两个平方根.,那么必定有两个,它们 互为相反数.显然,如果我们知道了这两个平方根中的一个,那么立 即可以得到它的另一个平方根.
阅读材料 古建筑中的旋转对称——从敦煌洞窟到欧洲教堂 小结 复习题 课题学习 图案设计
第 16 章平行四边形的认识 §16.1 平行四边形的性质 §16.2 矩形、菱形与正方形的性质 1. 矩形 2. 菱形
III
3. 正方形 阅读材料 黄金矩形
§16.3 梯形的性质 阅读材料 四边形的变身术 小结 复习题
5 的算法 小结
复习题
第 13 章整式的乘除
§13.1 幂的运算 1. 同底数幂的乘法 2. 幂的乘方 3. 积的乘方 4. 同底数幂的除法
§13.2 整式的乘法 1. 单项式与单项式相乘 2. 单项式与多项式相乘
I
3. 多项式与多项式相乘 §13.3 乘法公式
1. 两数和乘以这两数的差 2. 两数和的平方 阅读材料 贾宪三角 §13.4 整式的除法 1. 单项式除以单项式 2. 多项式除以单项式 §13.5 因式分解 阅读材料 你会读吗 小结 复习题 课题学习 面积与代数恒等式
习题 12.1
1. 求下列各数的平方根: (1) 16 ;(2) 0.36;(3) 324.
81
2. 求下列各数的立方根: (1) 0.125;(2) - 27 ;(3) 1728.
64
3. 用计算器计算.(精确到 0.01)

八年级数学 平方根与立方根 华东师大版.doc

八年级数学 平方根与立方根 华东师大版.doc

初二数学平方根与立方根华东师大版【本讲教育信息】一. 教学内容:平方根与立方根[学习目标]1. 掌握平方根,算术平方根的概念及符号表示,能进行开平方的简单运算。

2. 理解立方根的概念及符号表示,能进行开立方运算。

[知识内容]一. 平方根如果已知正方形的面积为25cm2,求这个正方形的边长容易知道,正方形的边长是5cm。

这个问题实质上就是要找一个数,使这个数的平方等于25。

1. 平方根:如果一个数的平方等于a,那么这个数叫做a的平方根。

在上述问题中,因为,所以5是25的一个平方根,又因为,所以-5也是25的一个平方根。

这就是说,25的平方根有两个:5与-5。

试一试:(1)144的平方根是什么?(2)0的平方根是什么?(3)的平方根是什么?(4)-4有没有平方根?为什么?总结:一个正数如果有平方根,那么必定有两个,它们互为相反数,如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根。

2. 算术平方根正数a的正的平方根,叫做a的算术平方根,记,读做“根号a”;另一个平方根是它的相反数,即。

因此正数a的平方根可以记为,a称为被开方数。

因为0的平方等于0,而其它任何数的平方都不等于0,所以0的平方根只有一个,就是0,即=0。

3. 开平方求一个非负数的平方根的运算,叫做开平方。

将一个正数开平方,关键是找出它的一个算术平方根。

例如:100的算术平方根是,100的平方根是。

二、立方根现有一只体积为216cm3的正方体纸盒,它的每一条棱长是多少?要解答这个问题,实质上就是要找一个数,这个数的立方等于216。

容易验证,。

所以立方体的棱长应为6cm。

1. 立方根如果一个数的立方等于a,那么这个数就叫a的立方根。

试一试:(1)27的立方根是什么?(2)-27的立方根是什么?(3)0的立方根是什么?任何数(正数、负数或零)的立方根如果存在的话,必定只有一个。

数a的立方根,记作,读作“三次根号a”,a称为被开方数,3称为根指数。

华师版数学八年级上册11.1平方根与立方根(2)课件

华师版数学八年级上册11.1平方根与立方根(2)课件
当 x = -6, y = -2时, x + y = -6+(-2)= -8
试一试
1. 操作:
√31331 =11
√3-343 = -7
√39.263 ≈2.100
√317.576 =2.6
2. 填写:
⑴立方得27的数是_3___;
-8 125
开立方得_-__25 __.
⑵一个数的立方根为4, 这个数的算术平方根_±__8_.
是互为相反数的两个数.
已知5x+32的立方根是-2, 求x+17的平方根.课作业 完成本课时的习题

3
-2
10 27
⑸√26 + √3 (-3)3
⑵ √3-8 +√9
⑷37
8
-1
例练3
已知: 4x2=144, y3+8=0, 求 x+y 的值.
解: 由 4x2=144 , 得 x2=36
∴ x =±√36 = ±6
由 y3+8=0 , 得 y3= -8
∴ y =√3-8 = -2
当 x =6, y = -2时, x + y = 6+(-2)=4
⑷0
⑸3 3 8
⑴解:∵ 43=64
∴√364 = 4
⑶ 125 8
⑹ -0.008
口答:√3-64 = -4 √327 = 3 √38 = 2 √3-8 = -2
立方根的情况:
⑴正数的立方根是正数; ⑵ 0的立方根是0本身; ⑶负数的立方根是负数.
任何数都 有立方根
例练2
求下列各式的值:
⑴√327 - √83
⑶一个数的立方根是它本身, 这个数是_0_、__1_、__-_1_.

2024年平方根与立方根课件华东师大版数学八年级上册

2024年平方根与立方根课件华东师大版数学八年级上册

2024年平方根与立方根课件华东师大版数学八年级上册一、教学内容1. 平方根的定义及性质;2. 立方根的定义及性质;3. 平方根与立方根在实际问题中的应用。

二、教学目标1. 理解并掌握平方根与立方根的定义,能正确计算平方根与立方根;2. 了解平方根与立方根的性质,能运用性质简化计算;3. 能够将平方根与立方根应用于实际问题,提高解决问题的能力。

三、教学难点与重点重点:平方根与立方根的定义及性质,实际应用。

难点:正确理解和运用平方根与立方根的性质。

四、教具与学具准备1. 教具:多媒体教学设备、平方根与立方根教学课件;2. 学具:平方根与立方根练习题、计算器。

五、教学过程1. 实践情景引入(5分钟):利用多媒体展示一组实际生活中的问题,如“某正方形的边长是x,面积是多少?”引发学生对平方根的兴趣。

2. 新课导入(10分钟):讲解平方根的定义及性质,通过例题讲解,让学生理解并掌握平方根的计算方法。

3. 例题讲解(10分钟):以平方根为例,讲解如何利用性质简化计算。

4. 随堂练习(15分钟):布置平方根与立方根的计算题,让学生独立完成,并及时给予反馈。

5. 知识拓展(10分钟):介绍立方根的定义及性质,让学生类比平方根,自主探究立方根的计算方法。

6. 课堂小结(5分钟):7. 作业布置(5分钟):布置作业,要求学生完成相关练习题。

六、板书设计1. 平方根与立方根的定义及性质;2. 平方根与立方根的计算方法;3. 课堂例题及解答过程;4. 作业布置。

七、作业设计1. 作业题目:(2)某长方体的长、宽、高分别是2、3、4,求体积的平方根与立方根。

2. 答案:(1)平方根:√2、√3、2、√8、√27;立方根:∛2、∛3、∛4、2、3;(2)体积:2×3×4=24;平方根:√24;立方根:∛24。

八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等方式,让学生掌握了平方根与立方根的定义、性质及计算方法。

12.1.2-3算术平方根

12.1.2-3算术平方根
2 2
(2) 7.2 等于多少? (3)对于正数a,
2


2
a 等于多少?
18
试一试
1.求下列各式的值: ⑴
1

9 25

2
2

1 3
2
2.求出下列各式的算术平方根. (4) 0.0025 (5) 121 (6) 32 (7)
11 1 25
3.⑴3的算术平方根是___.
求2 x 3 y z的值
解:∵
( x 2)2 0 x 2
y 3 0 y 3
z4 0 z 4
2 x 3 y z 4 9 4 1
21
拓展:已知
x y 4 | x 2 y 5 | 0求x,y的值.
解:根据题意得 x y 4 和 | x 2 y 5 | 均为非负数,
2.哪些数有算术平方根?
有平方根的数必有算术平方根,即正数和0才有算术根。
3.如果
a 表示算术平方根,a必须满足什么条件?
因为非负数才有算术根,故a≥0。

7
正数a的算术平方根记作: a
它的另一个平方根是它的相反数,记作: a
因此一个正数a的平方根表示为: a 0的平方根还是0 0 0
那么求一个正数的平方根,只要求出它的 算术平方根后,就可以写出它的平方根了。
8
思考:
下列各式哪些一定有意义,哪些没 有意义? (1)- 4 (2) 4 (3) 3 (4) 32
2
x 1
x 1
a
9
a
2
想一想:
未知数取什么值才使下列各式有意义?
x
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=9±,9则x
7. 若 一 个 正 数 的 两 个 平 方 根 是 m 和 m-4, 则2 m 且=这__个_正_;数值是__4__.
再见
初二数学
x2=2
x=
(之二)
1、平方根的概念:
当x2=a(a≥0) 时, 就称x是a的平方根.
记作: x=±√a (例: x2=49, 得 x=±√49 =±7)
2、口答下列数的平方根:
0.36、256 121
、0、2
3、平方根的情况:
⑴一个正数的平方根有两个, 它们是互为相反数;
⑵ 0的平方根只有一个, 就是它本身0;
解: ∵1 <2 <4 ∴√1 <√2 <√4
即: 1 <√2 <2
注: 一般先找出被开方数前后的两个完全平方数, 再进行算术平方根的比较估算.
1、算术平方根与平方根:
算术平方根是平方根中正的一个值, 只有一个值; 平方根一般有互为相反数的两个值.
算术平方根只表示为:√a , 而平方根需表示为:±√a
2、计算器操作算术平方根时, 根据精度要求取小数,
没有要求的默认取四个有效数字.
3、进行算术平方根估值时, 先找出被开方数的前
后 两个完全平方数, 再根据非负数的算术平方根随 被开方数的增大而增大进行估算.
填一填
1. 平方根恰是本身的数是_0____; 算术平方根恰是 身的本数是_0_、__1__.
解: ⑴√2 ≈1.414
⑵√529 =23
⑶√1225 =35
⑷√44.81 ≈6.694
注: 对不是平方数的数和较大的数通常利用计算器 操作求它的算术平方根, 近似数常取四个有效数字.
试一试
操作: √50 ≈7.071 ,√43 ≈6.557 ,√81 = 9 ,√0 = 0 √123 ≈11.09 ,√1000 ≈31.62 ,√7 ≈2.646
⑴ 196
⑵ 0.09
⑶0

121 225

1
24
⑹(-5)2
⑴解:196的算术平方根为:√196 =14,
2. 口答下列各式的值:
⑴ √10000 = 100
⑵ √144 = -12
⑶±√0.04 = ±0.2
⑷√(-3)2 = 3
例练2
计算下列各数的算术平方根:
⑴2
⑵ 529 ⑶ 1225 ⑷ 44.81
比较:
√x √0 <√7 <√43 <√50 <√81 <√123 <√1000
x 0 < 7 < 43 < 50 < 81 < 123 < 1000
结论: √x 的值随着x的增大而增大。 叙述: 非负数的算术平方根随着被开方数
的增大而增大。
例练3
估算下列各值在哪两个整数之间:
√2
√5
√7_; 4的平方根是±__2___.
3. 9的算术平方根是_3___√_1; 6
的平方±根2 是
_4_.√_2_5_. 5 =__√__3_6; - -6 √49=___±__7; ±
=5._8_1_的_. 算术平方根是_9___; (-9)2的平方根是±__9__.
6. 若x2=9, 则x ±=_3___;√x若2 若=√_x___=;9, 则x =8_1___.
⑶负数没有平方根.
正数 a 的正的平方根叫做a的算术
平方根, 记作:√a , 读作:根号a
这样, a 的另一个平方根就是:√- a 其中, √“ ” 表示开平方的运算符号,
a 称为被开方数. 注:1. 被开方数应为非负数的条件.
2√. 0 =0 也称为0的算术平方根.
例练1
1. 求下列各数的算术平方根:
相关文档
最新文档