(完整版)浙教版七年级上册数学期末测试卷
浙江省七年级数学上学期期末试卷(含解析)浙教版

【解答】解:﹣ 2016 的倒数是
,
故选 D 【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.
2.9 的平方根为(
)
A.3 B.﹣ 3 C.± 3 D.
【考点】平方根.
【专题】计算题.
【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.
【解答】解: 9 的平方根有:
= ± 3.
6.若 x=2 是关于 x 的方程 2x+3m﹣ 1=0 的解,则 m的值为(
)
A.﹣ 1 B.0 C.1 D.
【考点】一元一次方程的解. 【专题】计算题. 【分析】根据方程的解的定义,把 x=2 代入方程 2x+3m﹣ 1=0 即可求出 m的值. 【解答】解:∵ x=2 是关于 x 的方程 2x+3m﹣ 1=0 的解, ∴ 2× 2+3m﹣1=0, 解得: m=﹣ 1. 故选: A. 【点评】 本题的关键是理解方程的解的定义, 方程的解就是能够使方程左右两边相等的未知数的值.
2016
律,猜测 3 +1 的个位数字是(
)
A.0 B.2 C.4 D. 8
1
浙江省七年级数学上学期期末试卷 (含解析 ) 浙教版
二、认真填一填(本题有 6 小题,每小题 4 分,共 24 分) 11.﹣ | ﹣ 4|= . 12.精确到万位,并用科学记数法表示 5 109 500 ≈ .
13.化简:
7.小悦买书需用 48 元钱,付款时恰好用了 1 元和 5 元的纸币共 12 张.设所用的 1 元纸币为 x 张,
根据题意,下面所列方程正确的是(
)
A.x+5( 12﹣x) =48 B. x+5(x﹣ 12) =48 C. x+12( x﹣5) =48 D. 5x+(12﹣ x) =48
浙教版七年级上册数学期末试卷(一共15份)-浙教版[整理]--期末试卷标准答案.doc
![浙教版七年级上册数学期末试卷(一共15份)-浙教版[整理]--期末试卷标准答案.doc](https://img.taocdn.com/s3/m/04fa990b524de518974b7d0f.png)
虹桥镇一中 李巧燕命题: 七年级数学期末试卷答案一、 选择题(每小题3分,共30分)I 、 C 2、A 3、C 4、D 5、D 6、C 7、C 8、A 9、A 10、B二、 填空题。
(每小题3分,共30分)II 、 略 12、12120 24 13、(1) > (2) < (3) < 14、-155 15、Z1 = Z3 (或相等) 16、1017、3a 2--b 2 18、(1) 200 (2) 40 19、99020、300a 三、 解答题。
21、 计算:(请任选1题,本题5分)(1) 12 (2) -16 (3) 0・ 4 1 022、 解方程:(请任选2题,每题5分,共1 0分)2 (1) x=4 (2) x=-28 (3) x=- 523、 先化简,再求值:(本题共6分)2-2ab (3 分)4 (3 分)24、 用火柴棒按下图方式搭三角形:(第1小题5分,第2小题2分,共7分)(1)7( 1 分) 9(1 分) (2n+l ) (3 分) (2)50(2 分) 25、以教学楼为屮心,画东北方向的射线,(2分)在以食堂为中心,画南偏西 6 0。
方向的射线,(2分)两条射线的交点即为所求的图书馆P (标出点P 得 1 分)。
四、应用题(任选一题,本题7分)26、(1)解:设售出成人票x 张,则售出学牛票(1 0 0 0 —x )张,(1分) 根据题意得:8x+5 (1000-x ) =6950 ( 3 分)解得:x=650 ( 1分)/. 1000-650=350 ( 1 分)答:成人票售出6 5 0张,学牛票售出3 5 0张。
(1分)(本题也可设学牛票售出x 张)(2)解:设他开始存入x 元,(1分) 根据题意得:x + 3x2.7%x=5405 ( 3 分)解得:x=5000 ( 2 分)答:他开始存入5 0 0 0元。
(1分)(注意:本题展于教育储蓄,不计利息税)试卷设计说明:评价的n的是使教师有效地了解学牛的学习情况,获得学牛的反馈信息,促进教与学,并且评价也是教师改进教学的有效手段。
【完整版】浙教版七年级上册数学期末测试卷

浙教版七年级上册数学期末测试卷一、单选题(共15题,共计45分)1、实数的平方根为()A.aB.±aC.±D.2、•对于6.3×103与6300这两个近似数,下列说法中,正确的是()A.它们的有效数字与精确位数都不相同B.它们的有效数字与精确位数都相同C.它们的精确位数不相同,有效数字相同D.它们的有效数字不相同,精确位数相同3、下列各数中,最小的是()A.0B.-C.2D.-34、如图,A、B、C在数轴上对应的数分别为a、b和2,AB=BC,若|a|>2,|b|<2,那么原点的位置应该在()A.点A在左边B.点B和点C之间且靠近点CC.点B和点C之间且靠近点BD.点C的右边5、若函数y=(m-2)x n-1+n是一次函数,则m,n应满足的条件是()A.m 2且n=0B.m=2且n=2C.m 2且n=2D.m=2且n=06、已知等式3a=2b+5,则下列等式中不成立的是( )A.3a-5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=b+7、下列各组运算中,结果为负数的是()A.-(-3)B.-|-3|C.(-3)×(-2)D.0-(-5)8、下列说法:①若a、b互为相反数,则ab<0;②任何数乘以﹣1,得它的相反数;③若a+b<0,且ab>0,则|a|=﹣a;④若|a|>2,则a>2.正确的有是()A.②③B.①④C.②③④D.①②③④9、如图,O是原点,A、B、C三点所表示的数分别为a、b、c。
根据图中各点的位置,下列各数的絶对值的比较何者正确?A.| b|<| c|B.| b|>| c|C.| a|<| b|D.| a|>| c|10、下列各数:3,-2,0,,-5%中,叙述正确的是()A.3,-2,0,-5%是整数B.只有0是偶数C.非负数有3,0D.只有是负分数11、数轴上,到原点距离是8的点表示的数是( )A.8和﹣8B.0和﹣8C.0和8D.﹣4和412、如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°13、如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A.|a|>|b|B.a>﹣bC.b<﹣aD.a+b>014、若等式x=y可以变形为,则有()A.a>0B.a<0C.a≠0D.a为任意有理数15、列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角 C.有一条公共边并且和为180°的两个角互为邻补角 D.若三条直线两两相交,则共有6对对顶角二、填空题(共10题,共计30分)16、若与是同类项,则k=________.17、如果mkg苹果的售价为a元.则代数式表示的实际意义是________18、已知有理数a,b,c在数轴上的对应位置如图所示,则|a﹣b|﹣2|b﹣c|﹣|a﹣1|化简后的结果是________.19、已知,则=________20、、、在数轴上的位置如图所示,则________.21、计算:1-(+2)+3-(+4)+5-(+6)…+2015-(+2016)+2017=________。
浙教版七年级上册数学期末测试卷及含答案

浙教版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知:,且,,则共有个不同的值,若在这些不同的值中,最小的值为,则()A. B.1 C.2 D.32、如果2a2m-5b n+2与mab2n-2的和为单项式,则m与n的值为 ( ).A.m = 2,n = 3B.m = 3,n =4C.m = -3,n = 2D.m = 3,n = -23、如果a=-,b=-2, c=-2 ,那么︱a︱+︱b︱-︱c︱等于()A.-B.C.D.4、下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB =40°,∠AOC= ∠BOC,则∠AOC的度数为20°;③若线段AB=3, BC=2,则线段AC的长为1或5;④若∠a+∠β=180°,且∠a<∠β,则∠a的余角为(∠β-∠a).其中符合题意结论的个数()A.1个B.2个C.3个D.4个5、某超市进了一批商品,每件进价为a元,若要获利25%,则每件商品的零售价应定为()A.25%a元B.(1-25%)a元C.(1+25%)a元D. 元6、,,的和比它们的绝对值的和小()A. B. C. D.7、下列语句正确的是有()个①一个数的绝对值一定是正数②一定是一个负数;③一个数的绝对值是非负数;④,则是一个正数;⑤数轴上,在原点左侧离原点越远的数就越小;A.1B.2C.3D.48、如图,在数轴上,与表示的点最接近的点是()A.点AB.点BC.点CD.点D9、2020的相反数是()A. B. C.2020 D.-202010、自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是( )A.1.49×10 6B.0.149×10 8C.14.9×10 7D.1.49×10 711、已知x的方程2x+k=5的解为正整数,则k所能取的正整数值为()A.1B.1或3C.3D.2或312、用科学记数法表示2350000正确的是()A.235×10 4B.2.35×10 6C.2.35×10 5D.2.35×10 413、的绝对值是()A.-2B.C.2D.14、下列算式中,运算结果为负数的是( )A.-(-3)B.︱-3︱C.2×(-3 2)D.(-3) 215、与函数y=x是同一函数的是()A.y=|x|B.y=C.y=D.y=二、填空题(共10题,共计30分)16、如果a4=81,那么a=________.17、m为负整数,则m与它的倒数之间的大小关系是m________ .18、月球距地球约为38万千米,用科学记数法表示为________千米,把210400精确到万位是________.19、________的算术平方根是.20、如图,点M是直线AB上一点,∠AMC=52°48′,∠BMD=74°30′,则∠CMD=________.21、已知a、b互为相反数,c、d互为倒数,且,则________.22、计算:-|- |+(- )=________.23、比较大小:8________(填“<”、“=”或“>”)24、点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:①数轴上表示1和3两点之间的距离是________②数轴上表示x和-1的两点之间的距离表示为________③若x表示一个有理数,且-4<x<2,则|x-2|+|x+4|=________④若x表示一个有理数,且|x-2|+|x+4|=8,则有理数x的值是________25、若的倒数是,则的值是________三、解答题(共5题,共计25分)26、若a,b互为相反数,c,d互为倒数,|m|=2,求a﹣(﹣b)﹣的值.27、把下列各数分别填入相应的集合里.﹣5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|,(﹣2)2正数集合:{ }负数集合:{ }有理数集合:{ }无理数集合:{ }.28、某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:购票张数1~30张31~60张60张以上每张票的价格15元12元10元原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?29、若a、b互为相反数,c、d互为倒数,m的绝对值等于2,计算m﹣(a+b)2﹣(cd)3的值.30、计算:﹣2cos30°+()﹣2﹣|1﹣|.参考答案一、单选题(共15题,共计45分)1、A2、B3、A4、A5、C6、D8、D9、D10、D11、B12、B13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)27、29、30、。
浙教版七年级(上)期末数学试卷(含解析)

浙教版七年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.比﹣4小2的数是()A.﹣2 B.﹣1 C.﹣6 D.02.下列各式中正确的是()A.|﹣3|=﹣|3| B.|﹣1|=﹣(﹣1)C.|﹣2|<|﹣1| D.﹣|+2|=+|﹣2|3.用代数式表示:“x的5倍与y的和的一半”可以表示为()A.5x+y B.(5x+y)C.(5x+y)D.5x+y4.用科学记数法表示数2350为()A.2.350×103B.0.2350×104C.0.2350×103D.2.350×1045.亚奥理事会于2015年9月16日在土库曼斯坦阿什哈巴德举行第34届代表大会,并在会上投票选出2022年第19届亚运会举办城市为杭州.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间2015年9月16日20时应是()A.伦敦时间2015年9月16日11时;B.巴黎时间2015年9月16日13时;C.智利时间2015年9月16日5时; D.曼谷时间2015年9月16日18时6.在,3.14,π,,1.,中无理数的个数是()A.5个B.4个C.3个D.2个7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.1 B.2 C.0 D.以上都不对8.已知a=12.3是由四舍五入得到的近似数,则a的可能取值范围是()A.12.25≤a≤12.35B.12.25≤a<12.35C.12.25<a≤12.35D.12.25<a<12.359.下列说法中,正确的是()①﹣;②|a|一定是正数; ③无理数一定是无限小数;④16.8万精确到十分位; ⑤(﹣8)2的算术平方根是8.A.①②③B.④⑤C.②④D.③⑤10.有理数a,b在数轴上对应的位置如图所示,那么代数式﹣+﹣的值是()A.﹣1 B.0 C.1 D.2二、填空题:(每空2分,共30分)11.水位升高3米时水位变化记作+3米,水位下降5米时水位变化记作米.12.的相反数是,绝对值是2的数是,﹣的倒数是.13.计算:=,=,=.14.在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是.15.单项式的系数是,次数是,多项式3x2﹣7x﹣5的次数是.16.已知实数x,y满足|x﹣4|+=0,则代数式x﹣y=.17.若x2=9,则x=,,则x=.18.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是36的钥匙所对应的原来房间应该是号.三、解答题:(共60分)19.在数轴上表示下列各数以及它们的相反数,并把这些数和它的相反数按从小到大的顺序用“<”号连接: 0,﹣2,2.5.20.计算.(1)﹣9+6÷(﹣2)(2)3×(﹣)÷(3)﹣32﹣50÷(﹣5)2﹣1 (4)用简便方法计算:99×9.21.一座圆形花坛的半径为r,中间喷水池是面积为4的正方形.(1)用关于r的代数式写出该花坛的实际种花面积,并求出当r=2时花坛的实际种花面积(π取3.14,结果精确到0.1).(2)现需要将喷水池缩小为面积为2的正方形,请在图中画出缩小后的正方形,使它的顶点在网格的格点上.22.2015年9月30日杭州西湖景区某公园人流量为7万,每张门票80元,“十一黄金周”景区迎来了旅游高峰期,游客从各个省市来到杭州,该公园统计:十一黄金周期间,游客人数与前一天相比,增加和减少的情况如下表:(记增加为正).日期1号2号3号4号5号6号7号人数(万人)+5 ﹣1.2 +5.7 ﹣0.6 +1.8 ﹣2.9 ﹣2.5(1)10月2号该公园的人流量是多少万人?(2)“十一黄金周”期间,人流量最多和最少分别出现在哪一天?(3)该公园的所有门票收入均要缴纳百分之五的税,求“十一黄金周”期间,该公园的实际收入.23.24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的运算得出24.每张牌都必须使用一次,但不能重复使用.(1)在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个);;(2)如果.表示正,.表示负,请你用(1)中的4张牌表示的数写出运算结果为24的算式(写出2个):;;(3)如果小明抽到以下4张牌:请你用这4张牌表示的数写出运算结果为24的一个算式:.24.(1)在数1.2.3.4.5.6.7.8前添加“+”,“﹣”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(2)在数 1.2.3…2015前添加“+”,“﹣”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(3)在数1.2.3…n前添加“+”,“﹣”并依次运算,所得结果可能的最小非负数是多少?(只写出答案即可)参考答案与试题解析一、选择题:(每小题3分,共30分)1.比﹣4小2的数是()A.﹣2 B.﹣1 C.﹣6 D.0【考点】有理数的减法.【分析】用﹣4减去2,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣4﹣2=﹣6.故选C.2.下列各式中正确的是()A.|﹣3|=﹣|3| B.|﹣1|=﹣(﹣1)C.|﹣2|<|﹣1| D.﹣|+2|=+|﹣2|【考点】绝对值.【分析】根据绝对值的性质进行逐一化简解答即可.【解答】解:A中|﹣3|=|3|,错误;B中|﹣1|=﹣(﹣1)=1,正确;C中|﹣2|>|﹣1|,错误;D中﹣|+2|≠+|﹣2|,错误.故选B.3.用代数式表示:“x的5倍与y的和的一半”可以表示为()A.5x+y B.(5x+y)C.(5x+y)D.5x+y【考点】列代数式.【分析】根据题意可以用代数式表示出题目中的语句,本题得以解决.【解答】解:“x的5倍与y的和的一半”可以表示为,故选B.4.用科学记数法表示数2350为()A.2.350×103B.0.2350×104C.0.2350×103D.2.350×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示数2350为2.350×103,故选:A.5.亚奥理事会于2015年9月16日在土库曼斯坦阿什哈巴德举行第34届代表大会,并在会上投票选出2022年第19届亚运会举办城市为杭州.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间2015年9月16日20时应是()A.伦敦时间2015年9月16日11时B.巴黎时间2015年9月16日13时C.智利时间2015年9月16日5时D.曼谷时间2015年9月16日18时【考点】有理数的加减混合运算;数轴.【分析】根据数轴可以求得每个地方与北京是时间差,据此求得每个地方的时间,从而进行判断.【解答】解:A、20﹣8=12,则伦敦时间是2015年9月16日12时,故选项错误;B、20﹣7=13,则巴黎时间2015年9月16日13时,故选项正确;C、8﹣(﹣4)=12,20﹣12=8,则智利时间2015年9月16日8时,故选项错误;D、曼谷时间2015年9月16日19时,选项错误.故选B.6.在,3.14,π,,1.,中无理数的个数是()A.5个B.4个C.3个D.2个【考点】无理数.【分析】根据无理数的定义得到无理数有π和,共两个.【解答】解:无理数有π,,共2个,故选D.7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.1 B.2 C.0 D.以上都不对【考点】代数式求值.【分析】先根据题意得出a、b、c的值,进而可得出结论.【解答】解:∵a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,∴a=0,b=﹣1,c=0,∴a﹣b+c=0+1+0=1.故选A.8.已知a=12.3是由四舍五入得到的近似数,则a的可能取值范围是()A.12.25≤a≤12.35 B.12.25≤a<12.35C.12.25<a≤12.35D.12.25<a<12.35【考点】近似数和有效数字.【分析】考查近似数的精确度.四舍五入得到12.3的最小的数是12.25,最大要小于12.35.【解答】解:12.35≈12.4,所以A,C错了,而12.25≈12.3,所以D错,B是对的.故选B.9.下列说法中,正确的是()①﹣②|a|一定是正数③无理数一定是无限小数④16.8万精确到十分位⑤(﹣8)2的算术平方根是8.A.①②③B.④⑤ C.②④ D.③⑤【考点】有理数大小比较;非负数的性质:绝对值;近似数和有效数字;算术平方根;无理数.【分析】根据有理数的大小比较法则,绝对值的非负性,精确度,算术平方根,无理数的定义逐个进行判断即可.【解答】解:∵﹣<﹣,∴①错误;∵|a|是非负数,∴②错误;∵无理数一定是无限小数,∴③正确;∵16.8万精确到千位,∴④错误;∵(﹣8)2的算术平方根是8,∴⑤正确;∴正确的有③⑤.故选D.10.有理数a,b在数轴上对应的位置如图所示,那么代数式﹣+﹣的值是()A.﹣1 B.0 C.1 D.2【考点】分式的化简求值;数轴.【分析】先根据数轴求出﹣1<a<0,0<b<1,|a|>|b|,再去掉绝对值,然后根据分式的性质计算即可.【解答】解:根据数轴可知,﹣1<a<0,0<b<1,|a|>|b|,∴原式=﹣(﹣1)+﹣=1+1+1﹣1=2.故选D.二、填空题:(每空2分,共30分)11.水位升高3米时水位变化记作+3米,水位下降5米时水位变化记作﹣5米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:因为“正”和“负”相对,所以水位升高3米时水位变化记作+3米,水位下降5米时水位变化记作:﹣5米.12.的相反数是,绝对值是2的数是±2,﹣的倒数是.【考点】倒数;相反数;绝对值.【分析】根据相反数、绝对值、倒数的定义解答即可.【解答】解:的相反数是,绝对值是2的数是±2,﹣的倒数是.故答案为:;±2;.13.计算:=﹣1,=4,=8.【考点】实数的运算.【分析】直接利用有理数加减运算法则以及结合二次根式以及平方根的性质化简求出即可.【解答】解:=﹣﹣=﹣1,=4,=4+4=8.故答案为:﹣1,4,8.14.在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是﹣4或2.【考点】数轴.【分析】此题可借助数轴用数形结合的方法求解.由于点与﹣1的距离为3,那么应有两个点,记为A1,A2,分别位于﹣1两侧,且到﹣1的距离为3,这两个点对应的数分别是﹣1﹣3和﹣1+3,在数轴上画出A1,A2点如图所示.【解答】解:因为点与﹣1的距离为3,所以这两个点对应的数分别是﹣1﹣3和﹣1+3,即为﹣4或2.故答案为﹣4或2.15.单项式的系数是﹣,次数是4,多项式3x2﹣7x﹣5的次数是2.【考点】单项式;多项式.【分析】根据单项式系数的定义和多项式的次数和单项式的系数、次数的定义来求解.单项式中数字因数叫做单项式的系数;多项式的次数是多项式中最高次项的次数.【解答】解:单项式的系数是﹣,次数是4,多项式3x2﹣7x﹣5的次数是2,故答案为:﹣,4,2.16.已知实数x,y满足|x﹣4|+=0,则代数式x﹣y=15.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据已知条件两个非负数相加为0,即每个式子都为0,求出两个未知数的值,再将其代入所求代数式即可.【解答】解:∵|x﹣4|+=0,∴x﹣4=0,y+11=0,∴x=4,y=﹣11,∴x﹣y=15,故答案为:15.17.若x2=9,则x=±3,,则x=±9.【考点】算术平方根;平方根.【分析】根据算术平方根、平方根,即可解答.【解答】解:∵x2=9,∴x=±3,∵,∴x2=81,∴x=±9,故答案为:±3,±9.18.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是36的钥匙所对应的原来房间应该是13号.【考点】规律型:数字的变化类.【分析】1﹣30中,除以5余3的数有8,13,18,23,28.其中除以7余6的数只有13.【解答】解:1到30中除以5余3,除以7余6的数只有13.三、解答题:(共60分)19.在数轴上表示下列各数以及它们的相反数,并把这些数和它的相反数按从小到大的顺序用“<”号连接.0,﹣2,2.5.【考点】有理数大小比较;数轴;相反数.【分析】先求出各数的相反数,再在数轴上表示出来,从左到右用<”号连接起来即可.【解答】解:0的相反数为0,﹣2的相反数是2,2.5的相反数是﹣2.5,在数轴上表示为:,故﹣2.5<﹣2<0<2<2.5.20.计算.(1)﹣9+6÷(﹣2)(2)3×(﹣)÷(3)﹣32﹣50÷(﹣5)2﹣1(4)用简便方法计算:99×9.【考点】有理数的混合运算.【分析】(1)原式先计算除法运算,再计算加减运算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;(4)原式变形后,利用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣9+(﹣3)=﹣12;(2)原式=﹣3××=﹣;(3)原式=﹣9﹣2﹣1=﹣12;(4)原式=×9=900﹣=899.5.21.一座圆形花坛的半径为r,中间喷水池是面积为4的正方形.(1)用关于r的代数式写出该花坛的实际种花面积,并求出当r=2时花坛的实际种花面积(π取3.14,结果精确到0.1).(2)现需要将喷水池缩小为面积为2的正方形,请在图中画出缩小后的正方形,使它的顶点在网格的格点上.【考点】作图—应用与设计作图;列代数式;代数式求值.【分析】(1)根据花坛的实际面积=圆的面积﹣正方形的面积,即可解答;将r=2代入求出实际种花面积即可;(2)根据正方形的面积公式,求出面积为2的正方形的边长即可.【解答】解:(1)实际种花面积为:πr2﹣4,当r=2时,原式=4π﹣4.(2)缩小为面积为2的正方形,则正方形的边长为,图案如图:22.2015年9月30日杭州西湖景区某公园人流量为7万,每张门票80元,“十一黄金周”景区迎来了旅游高峰期,游客从各个省市来到杭州,该公园统计:十一黄金周期间,游客人数与前一天相比,增加和减少的情况如下表:(记增加为正).日期1号2号3号4号5号6号7号人数(万人)+5 ﹣1.2 +5.7 ﹣0.6 +1.8 ﹣2.9 ﹣2.5(1)10月2号该公园的人流量是多少万人?(2)“十一黄金周”期间,人流量最多和最少分别出现在哪一天?(3)该公园的所有门票收入均要缴纳百分之五的税,求“十一黄金周”期间,该公园的实际收入.【考点】正数和负数.【分析】(1)根据9月30日的人数,由表格即可确定出10月2日的人数;(2)求出10月1﹣7号的人数,即可做出判断;(3)求出8天的人数之和,乘以80,减去所缴纳的税,即可得到结果.【解答】解:(1)7+5﹣1.2=10.8(万),答:10月2号该公园的人流量是10.8万人;(2)10月1号至7号的人流量为:12万,10.8万,16.5万,15.9万,17.7万,14.8万,12.3万,答:人流量最多的是10月5号和最少的是10月2号;(3)(12+10.8+16.5+15.9+17.7+14.8+12.3)×80×(1﹣5%)=7600(万元).答:该公园的实际收入是7600万元.23.24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的运算得出24.每张牌都必须使用一次,但不能重复使用.(1)在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个)3×6+2+4=24;2×4×(6﹣3)=24;(2)如果.表示正,.表示负,请你用(1)中的4张牌表示的数写出运算结果为24的算式(写出2个):﹣[2×(﹣6)+3×(﹣4)]=24;[2﹣3×(﹣6)]﹣(﹣4)=24;;(3)如果小明抽到以下4张牌:请你用这4张牌表示的数写出运算结果为24的一个算式:(3+3÷7)×7=24.【考点】有理数的混合运算.【分析】各项利用“24点”游戏规则列出算式即可.【解答】解:(1)根据题意得:3×6+2+4=24;2×4×(6﹣3)=24;(2)﹣[2×(﹣6)+3×(﹣4)]=24;[2﹣3×(﹣6)]﹣(﹣4)=24;(3)根据题意得:(3+3÷7)×7=24.故答案为:(1)3×6+2+4=24;2×4×(6﹣3)=24;(2)﹣[2×(﹣6)+3×(﹣4)]=24;[2﹣3×(﹣6)]﹣(﹣4)=24;(3)(3+3÷7)×7=24.24.(1)在数1.2.3.4.5.6.7.8前添加“+”,“﹣”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(2)在数 1.2.3…2015前添加“+”,“﹣”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(3)在数1.2.3…n前添加“+”,“﹣”并依次运算,所得结果可能的最小非负数是多少?(只写出答案即可)【考点】有理数的混合运算.【分析】(1)根据题意列出正确的算式即可;(2)根据题意列出正确的算式即可;(3)分n是4的倍数,余数为0,1,2,3四种情况求出最小的非负数即可.【解答】解:(1)根据题意得:(1﹣2﹣3+4)+(5﹣6﹣7+8)=0;(2)根据题意得:(1+2﹣3)+(4﹣5﹣6+7)+…+=0;(3)当n是4的倍数时,结果可能的最小非负数为0;当n除以4余1时,结果可能的最小非负数为1;当n除以4余2时,结果可能的最小非负数为1;当n除以4余3时,结果可能的最小非负数为0.。
浙教版七年级上册数学期末考试试题及答案

浙教版七年级上册数学期末考试试卷一、单选题1.2a a -=()A .3aB .aC .a-D .-22.数13151用科学记数法可以表示为()A .41.3151B .41.315110⨯C .50.1315110⨯D .81315110⨯3.下列运算,结果最小的是()A .1234-+-B .()1234⨯-+-C .()1234--⨯-D .()1234⨯-⨯-4.如图,直线AC 、DE 交于点B ,则下列结论中一定成立的是()A .180ABE DBC ∠+∠=︒B .ABE DBC ∠=∠C .ABD ABE ∠=∠D .2ABD DBC∠=∠5.4的平方根是()A .±2B .2C .﹣2D .166.已知等式143ax a =,则下列等式中不一定成立的是()A .1403ax a -=B .143ax b a b-=-C .12ax a=D .143x =7.已知,当2x =时,3ax bx c ++的值是2022;当2x =-时,3ax bx c +-的值是()A .-2022B .-2018C .2018D .20228.古语:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分一个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得()A .()31001003xx --=B .()31001003xx +-=C .10031003xx --=D .10031003xx -+=9.如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC=12∠AOB ,则下列结论成立的是()A .AOC BOC∠=∠B .AOC AOB∠<∠C .AOC BOC ∠=∠或2AOC BOC∠=∠D .AOC BOC ∠=∠或3AOC BOC∠=∠10.图中的长方形ABCD 由1号、2号、3号、4号四个正方形和5号长方形组成,若1号正方形的边长为a ,3号正方形的边长为b ,则长方形ABCD 的周长为()A .16aB .8bC .46a b +D .84a b+二、填空题11.单项式23xy -的次数是____.12.如果一个角的补角是120︒,那么这个角的度数是________.13.请用符号“<”将下面实数23-3-连接起来_______.14.已知6x =,=2y -,且x y x y -=-,则x y -=_______.15.定义一种新运算:222a b a ab b ⊕=-+,如2212121221⊕=-⨯⨯+=,若()13x x ⊕-=⊕,则x =____.16.如图,点A ,B 是直线l 上的两点,点C ,D 在直线l 上且点C 在点D 的左侧,点D 在点B 的右侧,:2:1AC CB =,:3:2BD AB =.若11CD =,则AB =____.三、解答题17.计算:(1)()()12182011--+--(2)15623⎛⎫-⨯-+ ⎪⎝⎭18.解方程:(1)738x x -=+(2)23211105x x -+=+19.已知()21482M ab a ab =--,124N a a b ⎛⎫=- ⎪⎝⎭,求M N +的值,其中1a =-,13b =.20.如图,直线CD ,AB 相交于点O ,BOD ∠和AON ∠互余,AON COM ∠=∠.(1)求MOB ∠的度数;(2)若15COM BOC ∠=∠,求BOD ∠的度数.21.甲、乙两人分别从A ,B 两地出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经4小时两人在C 地相遇,相遇后经1小时乙到达A 地.(1)乙的行驶速度是甲的几倍?(2)若已知相遇时乙比甲多行驶了120公里,求甲、乙行驶的速度分别是多少?22.在数学课上,老师给出了一道题目:“先化简再求值:()22113243x x x x ⎛⎫+---+ ⎪⎝⎭□,其中=1x -”,W 中的数据被污染,无法解答,只记得W 中是一个实数,于是老师即兴出题,请同学们回答.(1)化简后的代数式中常数项是多少?(2)若点点同学把“=1x -”看成了“1x =”,化简求值的结果仍不变,求此时W 中数的值;(3)若圆圆同学把“=1x -”看成了“1x =”,化简求值的结果为-3,求当=1x -时,正确的代数式的值.23.阅读材料:材料1:如果一个四位数为abcd (表示千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d 的四位数,其中a 为1~9的自然数,b 、c 、d 为0~9的自然数),我们可以将其表示为:100010010abcd a b c d =+++;材料2:把一个自然数(个位不为0)各位数字从个位到最高位倒序排列,得到一个新的数,我们称该数为原数的兄弟数,如数“123”的兄弟数为“321”.(1)四位数53x y =__________;(用含x ,y 的代数式表示)(2)设有一个两位数xy ,它的兄弟数与原数的差是45,请求出所有可能的数xy ;(3)设有一个四位数abcd 存在兄弟数,且a d b c +=+,记该四位数与它的兄弟数的和为S ,问S 能否被1111整除?试说明理由.24.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(1)画直线AB 、射线DC ;(2)延长线段DA 至点E ,使AE AB =(保留作图痕迹);(3)若AB=2cm ,AD=4cm ,求线段DE 的长,25.阅读下列材料:如图,长方形的周长为2()p q +,面积为pq ,等式2()p q pq +=在一般情形下不成立,但有些特殊数可以使它成立,例如:4p =,4q =时,2(44)44+=⨯成立,我们称(4,4)为2()p q pq +=成立的“和谐数对”.请完成下列问题:(1)若(3,)x 是2()p q pq +=成立的“和谐数对”,则x =________;(2)写出一对2()p q pq +=成立的“和谐数对”(,)p q ,其中3p ≠,4p ≠;(3)若(,)m n 是2()p q pq +=成立的“和谐数对”,求代数式39(412)22322m n m n mn ⎡⎤⎛⎫-+--++ ⎪⎢⎥⎝⎭⎣⎦的值.参考答案1.C【分析】根据合并同类项法则,即可求解.【详解】解:2a a a -=-.故选:C【点睛】本题主要考查了合并同类项,熟练掌握把同类项的系数相加,所得作为结果的系数,字母连同字母的指数不变是解题的关键.2.B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:数据13151用科学记数法表示为1.3151×104.故选:B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【分析】根据有理数混合运算法则计算各项比较即可.【详解】解:A 、12342-+-=-;B 、()12343⨯-+-=-;C 、()12343--⨯-=;D 、()123410⨯-⨯-=-,10323-<-<-<,故选:D .【点睛】本题考查有理数混合运算及有理数大小比较,解题关键是掌握运算法则.4.B【分析】根据对顶角和邻补角的性质,即可求解.【详解】解:∵直线AC 、DE 交于点B ,∴180ABE EBC ∠+∠=︒,ABE DBC ∠=∠,ABD EBC ∠=∠,故A 、C 错误,不符合题意;B 正确,符合题意;无法确定ABD ∠与DBC ∠的数量关系,故D 错误,不符合题意;故选:B【点睛】本题主要考查了对顶角和邻补角的性质,熟练掌握对顶角相等,互为补角的两个角的和等于180°是解题的关键.5.A【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的一个平方根.【详解】∵(±2)2=4,∴4的平方根是±2,故选A .【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.6.D【分析】根据等式的基本性质进行分析判断.【详解】解:A 、如果143ax a =,那么1403ax a -=,原变形成立,故此选项不符合题意;B 、如果143ax a =,那么143ax b a b -=-,原变形成立,故此选项不符合题意;C 、如果143ax a =,那么12ax a =,原变形成立,故此选项不符合题意;D 、如果143ax a =,则143x =,这里必须a≠0,原变形不一定成立,故此选项符合题意.故选:D .7.A【分析】首先将x =2代入求出822022a b c ++=,进而将x =−2代入原式求出答案.【详解】解:∵当x =2时,多项式3ax bx c ++的值是2022,∴822022a b c ++=,当x =−2时,多项式3ax bx c +-=()82822022a b c a b c ---=-++=-.故选:A .8.D【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】解:设大和尚有x 人,则小和尚有(100-x )人,根据题意得:10031003xx -+=;故选:D .9.D【分析】分OC 在∠AOB 内部和OC 在∠AOB 外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC 在∠AOB 内部时,∵∠BOC=12∠AOB ,即∠AOB=2∠BOC ,∴∠AOC=∠BOC ;当OC 在∠AOB 外部时,∵∠BOC=12∠AOB ,即∠AOB=2∠BOC ,∴∠AOC=3∠BOC ;综上,∠AOC=∠BOC 或∠AOC=3∠BOC ;故选:D .【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.10.B【分析】由1号正方形的边长为a ,3号正方形的边长为b ,依次表示出2号和4号正方形的边长,进而表示出长方形ABCD 的长和宽,然后根据周长公式求周长即可.【详解】解:∵1号正方形的边长为a ,3号正方形的边长为b ,∴2号正方形的边长=b-a ,4号正方形的边长=b+a ,∴AB=b+b-a=2b-a ,AD=b+b+a=2b+a ,∴长方形ABCD 的周长=(2b-a+2b+a)×2=8b ,故选B .【点睛】本题考查了整式的加减的应用,根据题意正确列出算式是解答本题的关键.11.3.【分析】将x 与y 的次数相加即可得到答案.【详解】单项式23x y -的次数是:2+1=3,故填:3.【点睛】此题考查单项式的次数,单项式中所有字母指数的和即是单项式的次数.12.60°##60度【分析】根据和为180度的两个角互为补角求解即可.【详解】解:根据定义一个角的补角是120°,则这个角是180°-120°=60°,故答案为:60°.【点睛】本题考查了补角的定义,掌握补角的定义是解题的关键.13.23-<3-【详解】解:∵1<∴12<<,∴23-<3-故答案为:23-<3-【点睛】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.也考查了无理数的估算.14.8【分析】根据绝对值的定义即可求出x 、y 的两个值,然后根据绝对值的非负性即可求出满足题意的x 、y 的值,代入求值即可.【详解】解:∵6x =,=2y -∴6x =±∵x y x y -=-∴0x y -≥解得:x y ≥∴6x =,=2y -∴()628x y -=--=;故答案为:8.15.1【分析】利用题中的新定义,得到222169x x x x ++=-+,解出即可求解.【详解】解:根据题意得:()2222121,323369x x x x x x x x ⊕-=++⊕=-⨯+=-+,∵()13x x ⊕-=⊕,∴222169x x x x ++=-+,解得:1x =.故答案为:116.6或22##22或6【分析】根据两点间的距离,分情况讨论C 点的位置即可求解.【详解】解:∵:2:1AC CB =,∴点C 不可能在A 的左侧,如图1,当C 点在A 、B 之间时,设BC=k ,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=3k,BD=92 k,∴CD=k+92k=112k,∵CD=11,∴112k=11,∴k=2,∴AB=6;如图2,当C点在点B的右侧时,设BC=k,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=k,BD=32 k,∴CD=32k-k=12k,∵CD=11,∴12k=11,∴k=22,∴AB=22;∴综上所述,AB=6或22.【点睛】本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.17.(1)1(2)5【分析】(1)利用有理数的加减运算法则计算得出答案;(2)利用乘法分配律结合立方根的性质分别化简,进而利用有理数的加减运算法则计算得出答案.(1)()()12182011--+--,12182011=+--,1=-;(2)15623⎛⎫-⨯- ⎪⎝⎭1566223⎛⎫=-⨯-⨯-- ⎪⎝⎭,3102=-+-,5=.【点睛】本题考查乘法分配律、立方根的性质、有理数的加减运算,正确化简各数是解题关键.18.(1)14x =-(2)152x =-【解析】(1)解:738x x -=+,移项,得,-x-3x=8-7,合并同类项,得,-4x=1,系数化为1,得14x =-;(2)解:23211105x x -+=+,去分母,得,2x-3=10+2(2x+1),去括号,得,2x-3=10+4x+2,移项,得,2x-4x=10+2+3,合并同类项,得,-2x=15,系数化为1,得152x =-.【点睛】本题主要考查了解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.19.83【分析】将已知整式代入,然后去括号,合并同类项进行化简,最后代入求值.【详解】解:∵()21482M ab a ab =--,124N a a b ⎛⎫=- ⎪⎝⎭,∴M N +=()2148+2ab a ab --124a a b ⎛⎫- ⎪⎝⎭=21282ab a ab --21+22a ab -=8ab-当1a =-,13b =时,原式=18(1)3-⨯-⨯=83.【点睛】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.20.(1)90°(2)67.5°【分析】(1)根据余角的定义可得∠BOD+∠COM=90°,再根据平角的定义可求解;(2)设∠OM=x ,则∠BOC=5x ,∠BOM=4x ,结合∠BOM=90°可求解x 值,进而可求解∠BOD 的度数.(1)解:∵∠BOD 和∠AON 互余,∴∠BOD+∠AON=90°,∵∠AON=∠COM ,∴∠BOD+∠COM=90°,∴∠MOB=180°-(∠BOD+∠COM )=90°;解:设∠COM=x,则∠BOC=5x,∴∠BOM=4x,∵∠BOM=90°,∴4x=90°,解得x=22.5°,∴∠BOD=90°-22.5°=67.5°.【点睛】本题考查了余角和补角,角的计算,关键是掌握余角定义,理清图形中角的关系.21.(1)4(2)甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时【分析】(1)设甲的行驶速度是x公里/小时,乙的行驶的速度是y公里/小时,根据甲4小时行驶的路程与乙1小时行驶的路程相同得y=4x,可知乙的行驶速度是甲的4倍;(2)设甲的行驶速度是n公里/小时,则乙的行驶的速度是4n公里/小时,根据相遇时乙比甲多行驶了120公里列方程求出n的值即得到甲的行驶速度,再求出乙的行驶速度即可.(1)设甲的行驶速度是x公里/小时,乙的行驶的速度是y公里/小时,因为甲从A地到C地用4小时,乙从C地到A地用1小时,所以y=4x,所以乙的行驶速度是甲的4倍.(2)设甲的行驶速度是n公里/小时,则乙的行驶的速度是4n公里/小时,根据题意得4(4n-n)=120,解得n=10,所以4n=4x10=40,答:甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时.【点睛】此题考查解一元一次方程、列一元一次方程解应用题等知识与方法,根据行程问题的基本数量关系正确地用代数式表示甲、乙的行驶路程是解题的关键.22.(1)-13(2)-6【分析】(1)设W 中的数据为a ,然后进行计算即可解答;(2)根据化简求值的结果仍不变,可得a+6=0,然后进行计算即可解答;(3)先把x=1代入进行计算求出a 的值,最后再把x=-1,a=4的值代入进行计算即可.(1)设W 中的数据为a ,()22113243x ax x x ⎛⎫+---+ ⎪⎝⎭,=x 2+ax-1-x 2+6x-12,=(a+6)x-13,化简后的代数式中常数项是:-13;(2)∵化简求值的结果不变,∴整式的值与x 的值无关,∴a+6=0,∴a=-6,∴此时W 中数的值为:-6;(3)由题意得:当x=1时,(a+6)x-13=-3,∴a+6-13=-3,∴a=4,∴当x=-1时,(a+6)x-13,=-4-6-13=-23,∴当x=-1时,正确的代数式的值为:-23.【点睛】本题考查了整式的加减一化简求值,准确熟练地进行计算是解题的关键.23.(1)1000x+10y+503(2)16或27或38或49(3)能,理由见解析【分析】(1)直接合并同类项即可得出答案;(2)利用两位数的兄弟数与原数的差为45得出y-x=5,即可写出结果;(3)先写成四位数的兄弟数,再表示出S,最后用a+d=b+c代换,整理,即可得出结论.(1)解:53x y 1000x+5×100+10y+3=1000x+10y+503,故答案为1000x+10y+503;(2)解:由题意得,xy的兄弟数为yx,∵两位数xy的兄弟数与原数的差为45,∴yx-xy=45,∴10y+x-(10x-y)=45,∴y-x=5,∵x,y均为1~9的自然数,∴xy可能的数为16或27或38或49.(3)解:S能被1111整除,理由如下:∵abcd=1000a+100b+10c+d,∴它的兄弟数为dcba=1000d+100c+10b+a,∵a+d=b+c,∴S=abcd+dcba=1000a+100b+10c+d+1000d+100c+10b+a=1001a+110b+110c+1001a=10001a+110(b+c)+1001d=10001a+110(a+d)+1001d=1111a+1111d=1111(a+d),∵a ,d 为1~9的自然数,∴1111(a+d )能被1111整除,即S 能被1111整除.【点睛】此题主要考查了新定义,二元一次方程的应用,以及因式分解得应用,理解新定义是解本题的关键.24.(1)作图见解析(2)作图见解析(3)6cm【分析】(1)如图,直线AB 、射线DC 即为所作;(2)如图,连接DA 并延长,以A 为圆心,AB 为半径画弧与DA 延长线的交点E 即为所作;(3)DE DA AE DA AB =+=+计算求解即可.(1)解:如图,直线AB 、射线DC 即为所作;(2)解:如图,连接DA 并延长,以A 为圆心,AB 为半径画弧与DA 延长线的交点E 即为所作;(3)解:∵246DE DA AE DA AB =+=+=+=cm∴线段DE 的长为6cm .【点睛】本题考查了直线、射线与线段.解题的关键在于正确的作图.25.(1)6;(2)105,3⎛⎫ ⎪⎝⎭;(3)9【分析】(1)根据定义即可求出答案.(2)令p=5,根据定义即可求出q 的值.(3)由题意可知2(m+n )=mn ,然后将原式化简即可求出答案.【详解】解:(1)由定义可知:2(3)3x x +=,解得:6x =,故答案为:6;(2)令5p =,2(5)5q q ∴+=,∴310q =,解得:103q =,∴105,3⎛⎫⎪⎝⎭是一对“和谐数对”;(3)由题意可知:2()m n mn +=,∴原式(412)(2639)m n m n mn -+----.4122639m n m n mn =---+++6639m n mn =--++6()39m n mn =-+++339mn mn =-++9=。
浙教版七年级数学上学期期末检测卷(含答案)

七年级数学上学期期末检测卷一.选择题(每题3分,满分30分)1.一个数的相反数是﹣2019,则这个数是()A.2019B.﹣2019C.D.﹣2.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由﹣3℃到2℃B.气温由﹣1℃到﹣6℃C.气温由﹣1℃到5℃D.气温由4℃到﹣1℃3.下列实数中,有理数是()A.B.C.D.3.4.下列各组单项式:①ab2与a2b;②2a与a2;③2x2y与﹣3yx2;④3mx与x,其中是同类项的有()组.A.0B.1C.2D.35.下列实数中,最大的数是()A.﹣|﹣4|B.0C.1D.﹣(﹣3)6.对实数a、b,定义“★”运算规则如下:a★b=,则★(★)=()A.1B.2C.﹣1D.﹣27.钟表上8时45分,时针与分针所夹的角度是()A.30°B.22.5°C.15°D.7.5°8.若,则实数a在数轴上对应的点是()A.点E B.点F C.点G D.点H9.某商品原价为a元,因销量下滑,经营者连续两次降价,每次降价10%,后因供不应求,又一次提高20%,问现在这种商品的价格是()A.1.08a元B.0.88a元C.0.972a元D.0.968 a元10.某商品打九折后价格为a元,则原价为()元.A.a B.10%a C.D.二.填空题(满分24分,每小题4分)11.计算:|﹣2019|=,(﹣1)2019=.12.将473000用科学记数法表示为.13.计算:48°39′+67°31′﹣21°17'=.14.已知a2+bc=6,b2﹣2bc=﹣7,则5a2+4b2﹣3bc的值为.15.以∠AOB的顶点O为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=27°,则∠AOC=.16.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是.三.解答题(共8小题,满分66分)17.(12分)计算(1)|﹣1|+﹣(2)(﹣30)×(﹣+)(3)﹣﹣|﹣2|(4)﹣22+(﹣2)2++(﹣1)201718.(6分)先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.19.(8分)解方程20.(8分)如图,已知∠AOB=180°,射线ON.(1)画出∠BON的平分线OC;①如果∠AON=50°,射线OA、OB分别表示从点O出发东、西两个方向,那么射线ON表示方向,射线OC表示方向;②当∠AON=60°时,在图中找出所有与∠AON互补的角,这些角是.(2)如果∠BON比∠AON的还多47°,那么∠AON=度.21.(8分)在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?22.(6分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE (1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.23.(8分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是:;(3)如果点P以每分钟2个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.24.(10分)学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多4只.现进行如下操作:第一次,从甲筐中取一只球放入乙筐;第二次,又从甲筐取出若干球放入乙筐,这次取出的球的个数是第一次移动后乙筐内球的个数的两倍.若设乙球筐内原来有a只球(1)请你填写下表(用含a的代数式表示)甲球筐内球的个数乙球筐内球的个数原来:a第一次后:第二次后:(2)根据以上表格,化简后可知甲球筐内最后还剩下个球.(3)若最后乙球筐内有球18只,请求a的值.参考答案一.选择题1.解:∵一个数的相反数是﹣2019,∴这个数是:2019.故选:A.2.解:A.气温由﹣3℃到2℃,上升了2﹣(﹣3)=5(℃),符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由﹣1℃到5℃,上升了5﹣(﹣1)=6(℃),不符合题意;D.气温由4℃到﹣1℃,上升了﹣1﹣4=﹣5(℃),不符合题意;故选:A.3.解:A、,是无理数,不合题意;B、,是无理数,不合题意;C、是无理数,不合题意;D、3.,是有理数,符合题意.故选:D.4.解:①ab2与a2b,相同字母的次数不同,不是同类项;②2a与a2,相同字母的次数不同,不是同类项;③2x2y与﹣3yx2,所含字母相同,相同字母的次数相同,是同类项;④3mx与x,所含字母不相同,不是同类项;故选:B.5.解:﹣|﹣4|=﹣4,﹣(﹣3)=3,3>1>0>﹣4,故选:D.6.解:∵<,∴★=,则原式=★====2,故选:B.7.解:8时45分,时针与分针的夹角是30°﹣45×0.5°=7.5°,故选:D.8.解:∵4<<5,∴可得其在点4与5之间,并且靠近4;分析数轴可得H符合.故选:D.9.解:根据题意,得a(1﹣10%)2(1+20%)=0.972a故选:C.10.解:a÷0.9=a,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:|﹣2019|=2019,(﹣1)2019=﹣1,故答案为:2019,﹣1.12.解:将473000用科学记数法表示为4.73×105.故答案为:4.73×105.13.解:48°39′+67°31′﹣21°17'=94°53',故答案为:94°53'14.解:∵a2+bc=6 ①,b2﹣2bc=﹣7 ②,∴①×5+②×4得:5a2+4b2﹣3bc=30﹣28=2.故答案为:2.15.解:分两种情况:①如图1,当射线OC在∠AOB的内部时,设∠AOC=5x,∠BOC =4x,∵∠AOB=∠AOC+∠BOC=27°,∴5x+4x=27,解得:x=3,∴∠AOC=15°;②如图2,当射线OC在∠AOB的外部时,设∠AOC=5x,∠BOC=4x,∵∠AOC=∠AOB+∠BOC,又∠AOB=27°,∴5x=27+4x,解得:x=27∴∠AOC=135°,故答案为:15°或135°.16.解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.三.解答题(共8小题,满分56分)17.解:(1)原式=1+﹣2=﹣1=;(2)原式=﹣15+20﹣24=20﹣39=﹣19;(3)原式=2﹣﹣(2﹣)=0;(4)原式=﹣4+4+﹣1=﹣.18.解:原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.19.解:去分母得:4(2x+4)﹣6(4x﹣3)=3,去括号得:8x+16﹣24x+18=3,移项合并得:﹣16x=﹣31,解得:x=.20.解:(1)如图所示,OC即为∠BON的平分线;①过点O作OE⊥AB,∵∠AON=50°,∴∠EON=90°﹣50°=40°,∴ON是北偏东40°,∵OC平分∠BON,∴∠CON=(180°﹣50°)=65°,∴∠COE=∠CON﹣∠EON=65°﹣40°=25°,∴OC是北偏西25°;②∵∠AON=60°,OC平分∠BON,∴∠CON=(180°﹣60°)=60°,∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又∠BON与∠AON是邻补角,∴与∠AON互补的角有∠AOC,∠BON;(2)由图可知,∠BON+∠AON=180°,所以,∠AON+47°+∠AON=180°,解得∠AON=76°.故答案为:(1)①北偏东40°,北偏西25°;②∠AOC,∠BON;(2)76.21.解:设小杨改在本超市一次性购买与上两次相同的商品,应付款x元.根据题意,得①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=325答:小杨改在本超市一次性购买与上两次相同的商品,应付款296元或325元.22.解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.23.解:(1)MN的长为3﹣(﹣1)=4.(2)x=(3﹣1)÷2=1;(3)①点P是点M和点N的中点.根据题意得:(3﹣2)t=3﹣1,解得:t=2.②点M和点N相遇.根据题意得:(3﹣2)t=3+1,解得:t=4.故t的值为2或4.故答案为:4;1.24.解:(1)由题意可得,甲筐原来有:(2a+4)个球,乙筐原来有a个球,第一次移动后,甲筐有:2a+4﹣1=(2a+3)个球,乙筐有:(a+1)个球,第二次移动后,甲筐有:2a+3﹣2(a+1)=1个球,乙筐有:(a+1)+2(a+1)=(3a+3)个球,故答案为:2a+4,2a+3,a+1,1,3a+3;(2)由表格可知,化简后甲筐内最后还剩下1个球,故答案为:1;(3)由题意可得,3a+3=18,解得,a=5,即a的值是5.1、三人行,必有我师。
浙教版七年级上册数学期末考试试卷含答案

浙教版七年级上册数学期末考试试题一、单选题1.在-5,0,-2,4这四个数中,最小的数是()A .-2B .0C .-5D .42.数据1412000000用科学记数法表示为()A .814.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯3.32的意义是()A .2×3B .2+3C .2+2+2D .2×2×24.已知2a =b +5,则下列等式中不一定...成立的是()A .2a -5=bB .2a +1=b +6C .a =522b +D .6a =3b +55.如图,射线OA 表示北偏东30°方向,射线OB 表示北偏西50°方向,则∠AOB 的度数是()A .60°B .80°C .90°D .100°6.实数x 满足371x =,则下列整数中与x 最接近的是()A .3B .4C .5D .67.若313mn x y -与3-x y 是同类项,则m -2n 的值为()A .1B .0C .-1D .-38.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍,设应调往甲处x 人,则可列方程为()A .()2231720x x +=+-B .()2321720x x +=+-C .()23217x x +=+D .()2320217x x +-=+9.长方形ABCD 可以分割成如图所示的七个正方形.若AB =10,则AD 的长为()A .13B .11C .403D .100910.如图,将一副三角板叠在一起使直角顶点重合于点O ,(两块三角板可以在同一平面内自由转动,且BOD ∠,AOC ∠均小于180°),下列结论一定成立的是()A .BOD AOC ∠>∠B .90BOD AOC ∠-∠= C .180BOD AOC ∠+∠= D .BOD AOC∠≠∠二、填空题11.2022的相反数为_________.12.请写出一个无理数____.13.定义运算法则:2a b a ab ⊕=+,例如23233215⊕=⨯=+.若2⊕x =10,则x的值为____.14.如图,P 是线段MN 上一点,Q 是线段PN 的中点.若MN=10,MP=6,则MQ 的长是____.15.请在运算式“6□3□5□9”中的□内,分别填入+,-,×,÷中的一个符号(不重复使用),使计算所得的结果最大,则这个最大的结果为____.16.某数学兴趣小组在观察等式3232()ax bx cx d x +++=-时发现:当x =1时,3(11)2a b c d +++=-=-;请你解决下列问题:(1)-a +b -c +d =____;(2)8a +4b +2c =____.三、解答题17.计算:(1)4+(-5)×2()2133⎛⎫-⨯- ⎪⎝⎭18.解下列方程(1)3x+1=-2(2)13132y y-+=-19.先化简,再求值:()()2224132mn m m mn----,其中m=1,n=-2.20.如图,已知点A、B、C,按下列要求画出图形.(1)作射线BA,直线AC;(2)过点B画直线AC的垂线段BH.21.一辆出租车从A站出发,在一条东西走向的道路上行驶,记向东行驶的路程为正,行驶的路程依次为(单位:km):+12,-8,+4,-13,-6,-7.(1)通过计算说明出租车是否回到A站;(2)若出租车行驶的平均速度为50km/h,则出租车共行驶了多少时间?22.如图,直线AE与CD相交于点B,BF⊥AE.(1)若∠DBE=60°,求∠FBD的度数;(2)猜想∠CBE与∠DBF的数量关系,并说明理由.23.数学活动课上,小聪同学利用列表法探索一次式2x+1、-2x+1的值随着x取值的变化情况.x…-3-2-10123…2x+1…-5-3-11…-2x+1…1-1-3-5…(1)通过计算,完成表格的填写;(2)结合表中的数据,当x的值增大时,一次式2x+1,-2x+1的值分别有什么变化?(3)请你用类似的方法列表探索二次式2+1x的值随着x取值不断增大的变化情况.24.如图,是由A、B、E、F四个正方形和C、D两个长方形拼成的大长方形.已知正方形F的边长为8,求拼成的大长方形周长.25.如图,已知数轴上点A表示的数为10,点B位于点A左侧,AB=15.动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)当点P在A、B两点之间运动时,①用含t的代数式表示PB的长度;②若PB=2PA,求点P所表示的数;(2)动点Q从点B出发,以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点A 后立即原速返回.若P,Q两点同时出发,其中一点运动到点B时,两点停止运动.求在这个运动过程中,P,Q两点相遇时t的值.参考答案1.C【分析】直接比较负数比较大小,绝对值大的反而小,即可得出答案.【详解】因为52->-,所以52-<-,所以5204-<-<<,所以最小的数为-5.故选:C【点睛】本题考查有理数的大小比较,属于基础题目,理解负数比较大小的方法是解题的关键.2.C【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,据此判断即可.【详解】解:91412000000=1.41210⨯.故选:C .【点睛】本题主要考查了科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 与n 的值是解题的关键.3.D【分析】根据幂的意义即可得出答案.【详解】解:,32222=⨯⨯故选:D .【点睛】本题考查了有理数的乘方,掌握n a 表示n 个a 相乘是解题的关键.4.D【分析】根据等式的基本性质,逐项分析判定即可求解.【详解】解:A .等式两边同时减去5即可得到,故A 正确,不符合题意;B .等式两边同时加上1即可得到,故B 正确,不符合题意;C .等式两边同时除以2即可得到,故C 正确,不符合题意;D .等式两边同时乘以3即得到6315a b =+,故D 错误,符合题意;故选:D .【点睛】本题考查等式的基本性质:等式两边同时加上或减去同一个数或式子,等号不变;等式两边同时乘以或除以(非0)的同一个数或式子,等号不变.5.B【分析】根据题意可得∠AOB=30°+50°,进而得出答案.【详解】解:如图所示:∵射线OA 表示北偏东30°方向,射线OB 表示北偏西50°方向,∴∠AOB=30°+50°=80°.故选:B【点睛】此题主要考查了方向角问题,根据题意借助互余两角的关系求出是解题关键.6.B【分析】先估算x 介于哪两个相邻的整数之间,再进一步地估算x 最接近哪一个整数即可.【详解】解:∵3464=,35125=,且6471125<<,∴45x <<,又∵34.591.125=,且647191.125<<,∴4 4.5x <<,∴与x 最接近的整数是4,故选:B .【点睛】本题考查了无理数的估算,关键是要准确找到与无理数相邻的两个整数中更接近的一个.7.D【分析】根据同类项的定义:含有相同字母,并且相同字母的指数也相同的项叫做同类项.可得得出m 、n 的值,代入m -2n 即可求解.【详解】解:因为313mn xy -与3-x y 是同类项,所以3311m n =-=,,所以12m n ==,.所以m -2n=1223-⨯=-.故选:D【点睛】本题考查同类项的定义,代数式的求值,理解同类项的定义,根据相同字母的指数相同求出m 、n 的值是解题的关键.8.B【分析】先求出调往乙处()20x -人,再根据甲处植树的人数是乙处植树人数的2倍列出方程即可.【详解】解:由题意得:调往乙处()20x -人,则可列方程为()2321720x x +=+-,故选:B .【点睛】本题考查了列一元一次方程,找准等量关系是解题关键.9.A【分析】根据题意,设最小正方形的边长为x ,则第二大的正方形的边长为3x ,解方程即可得到答案.【详解】解:设最小正方形的边长为x ,则第二大的正方形的边长为3x ,根据题意得,3×3x+x=10,解得:1x =,∴103113AD =+⨯=;故选:A .【点睛】本题考查了一元一次方程的应用,解题的关键是根据图形找出等量关系列一元一次方程求解.10.C【分析】根据角的和差关系以及余角和补角的定义、结合图形计算即可.【详解】解:因为是直角三角板,所以∠AOB=∠COD=90°,所以9090180BOD AOC COD BOC AOC COD AOB ∠+∠=∠+∠+∠=∠+∠=︒+︒= ,故选:C .【点睛】本题考查的是余角和补角的概念、角的计算,掌握余角和补角的概念、正确根据图形进行角的计算是解题的关键.11.-2022【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:2022的相反数是:-2022.故答案为:-2022.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.12(答案不唯一)13.3【分析】利用题中的新定义化简,列出一元一次方程,解方程求出x 的值即可求解.【详解】解:∵2a b a ab ⊕=+,∴2222x x ⊕=+,由2⊕x =10,得22210x +=,解得3x =,故答案为:3.【点睛】本题考查了新定义运算,解一元一次方程,根据新定义列出方程是解题的关键.14.8【分析】首先求得NP=4,根据点Q 为NP 中点得出PQ=2,据此即可得出MQ 的长.【详解】解:∵MN=10,MP=6,∴NP=MN-MP=4,∵点Q 为NP 中点,∴PQ=QN=12NP=2,∴MQ=MP+PQ=6+2=8,故答案为:8.【点睛】此题主要考查了两点之间的距离,根据中点的定义得出PQ=2是解题关键.15.48【分析】根据题意可得乘号填在5和9之间乘积最大,此时数字5前应填入加号,那么减号填在数字3前,即可求解.【详解】解:乘号填在5和9之间乘积最大,此时数字5前应填入加号,那么减号填在数字3前,则算式结果最大为6-3+5×9=6-3+45=48.故答案为:48【点睛】本题主要考查了有理数的混合运算,看清要求,分析题干,从最大、最小的数据入手,逐步确定运算符号的位置是解题的关键.16.-278【分析】(1)当1x =-时,代入3232()ax bx cx d x +++=-中,即可得出-a +b -c +d 的值;(2)当0x =时,可求出d 的值,当2x =时,代入3232()ax bx cx d x +++=-中,即可得出8a +4b +2c 的值.【详解】解:当1x =-时,32ax bx cx d a b c d=-+-++++()31227=--=-;当0x =时,3(02)8d =-=-;当2x =时,32842ax bx cx d a b c d=++++++3(2)20-==;∴8428a b c d =-=++.【点睛】本题考查代数式的求值,通过观察等式,找出符合题意的对应x 的值是解题的关键.17.(1)-6(2)0【分析】(1)原式先计算乘法,再计算誊即可;(2)原式先化简二次根式和乘方运算,再计算乘法,最后计算减法即可.(1)4+(-5)×2=4-10=-6(2)()2133⎛⎫+-⨯- ⎪⎝⎭=1393-⨯=3-3=0【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(1)x =-1(2)15y =-【分析】(1)移项,化系数为1,即可得出结果;(2)根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出结果.(1)3x +1=-23x =-2-1,3x =-3,x =-1;(2)13132y y -+=-2(y -1)=6-3(y+3),2y -2=6-3y -9,2y +3y=6-9+2,5y=-1,15y =-.【点睛】本题考查解一元一次方程,属于基础题,熟练运用解一元一次方程的步骤是解题的关键.19.原式=21142m mn -+-;-21【分析】先去括号、合并同类项化简原式,再将m 与n 的值代入计算可得.【详解】原式=2228232mn m m mn ---+=21142m mn -+-当m=1,n=-2时,原式=()21114122-⨯+⨯⨯--21=-20.(1)见解析(2)见解析【分析】(1)根据射线、直线的概念作图即可;(2)根据垂线段的概念作图即可.(1)解:如下图,射线BA 、直线AC 即为所求.(2)解:如下图,线段BH 即为所求.【点睛】本题主要考查了作图的知识,理解并掌握射线、直线和垂线段的概念是解题关键.21.(1)出租车不能回到A站.(2)1小时【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)将出租车6次行驶的路程(绝对值)相加,再根据时间=路程÷速度可得结论.(1)解∶+12+(-8)+4+(-13)+(-6)+(-7)=-18,∴出租车不能回到A站;(2)解:+12+-8++4+-13+-6+-7=12+8+4+13+6+7=50,÷(小时)5050=1答∶出租车共行驶了1小时.【点睛】本题主要考查正数和负数的意义,绝对值的意义,理解正数和负数表示的是相反意义的量是本题解题的关键.22.(1)30°.(2)∠CBE=90°+∠DBF,理由见解析【分析】(1)由垂线的定义可得∠DBF+∠DBE=90°,结合已知条件即可求解.(2)根据∠CBE=∠ABD,∠ABD=∠ABF+∠DBF,可得∠CBE=∠ABF+∠DBF.由BF⊥AE,得出∠ABF=90°,即∠CBE=90°+∠DBF.(1)解:∵BF⊥AE,∴∠DBF+∠DBE=90°,∵∠DBE=60°,∴∠DBF=90°-∠DBE=30°.(2)∠CBE=∠DBF+90°.理由如下:∵∠CBE=∠ABD,∠ABD=∠ABF+∠DBF,∴∠CBE=∠ABF+∠DBF.∵BF⊥AE,∴∠ABF=90°,∴∠CBE=90°+∠DBF.【点睛】本题考查了垂线的定义,几何图形中角度的计算,数形结合是解题的关键.23.(1)答案见解析(2)当x增大时,2x+1的值不断增大,-2x+1的值不断减少(3)x为非负数,当x增大时,2+1x的值不断增大;x为负数,当x增大时,2+1x的值不断减小.【分析】(1)分别将x=1,2,3代入2x+1中求值;将x=-3,-2,-1代入2x+1中求值即可填表;(2)由表即可直接得出结论;(3)由(1)同理列出表格,即可得出结论.(1)完成表格如下:x…-3-2-10123…2x+1…-5-3-11357…-2x+1…7531-1-3-5…(2)由表可知当x增大时,2x+1的值不断增大,-2x+1的值不断减少(3)列表如下:x…-3-2-10123…21x …105212510…x的值不断增大;x为非负数,当x增大时,2+1x的值不断减小.x为负数,当x增大时,2+1【点睛】本题考查代数式求值以及规律探索.正确计算并由表格总结规律是解题关键.24.64.【分析】直接表示出大长方形的周长进而计算得出答案.【详解】设A正方形边长为a,∵正方形F的边长为8,∴正方形E的边长为8-a,正方形B的边长为8+a,大长方形长为8+8+a=16+a,宽为8+8-a=16-a,则大长方形周长为2(16+a+16-a)=64.【点睛】本题考查了列代数式,整式的加减,正确合并同类项是解题关键.25.(1)①PB=15-2t;②5(2)15或5.7【分析】(1)根据两点间的距离公式进行计算即可;(2)利用相遇时两点所表示的数相同进行计算即可.(1)解:①PB=15-2t.②PB=15-2t,PA=2t,∵PB=2PA∴15-2t=4t,解得t=2.5,∴10-2t=5,∴点P表示的数为5.(2)(i)点Q由点B运动到点A的过程中,点Q表示的数为-5+5t,点P表示的数为10-2t,相遇即两点所表示的数相同,则-5+5t=10-2t,解得t=157.(ii)P到达点A返回B的过程中,点Q表示的数为:10-5(t-3),点P表示的数为10-2t,相遇即两点所表示的数相同,则10-5(t-3)=10-2t,解得t=5.综上所述,P、Q两点相遇时,t的值是157或5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017七年级上册数学期末测试
卷
姓名:_____________ 成绩:_____________
1. -5的绝对值是( )
A .5
B .-5
C .15
D .-1
5
2. 十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,
这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为( )
A .146×107
B .1.46×107
C .1.46×109
D .1.46×1010
3. 下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )
A B C D
4. 把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是( ) A .垂线段最短 B .两点确定一条直线 C .两点之间,直线最短 D .两点之间,线段最短
5. 已知代数式165m a b --和21
2
n ab 是同类项,则m n -的值是( )
A .1
B .-1
C .-2
D .-3
6. 如图所示,将一块直角三角板的直角顶点O 放在直尺的一边CD 上,如果∠AOC =28°, 那么∠BOD 等于( )
A .72°
B .62°
C .52°
D .28°
D
A
B
C
O
7. 某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x 元,根据题意列一元一次方程,正确的是( )
A .()150%80%8x x +⋅-=
B .50%80%8x x ⋅-=
C .()150%80%8x +⋅=
D .()150%8x x +-= 8. 按下面的程序计算:
当输入100x =时,输出结果是299;当输入50x =时,输出结果是466;如果输入x 的值是正整数,输出结果是257,那么满足条件的x 的值最多有( ) A .1个 B .2个 C .3个 D .4个 二、认真看,仔细填。
(共7个小题,每小题3分,共21分) 9. -2的倒数是_____________。
10. 比较大小:21-
3
1
-. 11. 如图,点C 是线段AB 的中点,AB=6cm ,如果点D 是线段AB 上一点,且BD =1cm , 那么CD = _____________cm 。
12. 已知2是关于x 的方程2x -a =1的解,则a = _____________ 。
13. 22013
+2+1=0+=a b a b -如果(),那么() .
14. 已知代数式2x y -的值是-2,则代数式32x y -+的值是_____________。
15. 如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个
交点,五条直线相交最多有10个交点,六条直线相交最多有_____________个交点,二十条直线相
交最多有_____________个交点。
… 1个交点 3个交点 6个交点 10个交点 三、解答题。
(共4个小题,每小题5分,共20分)
16. 计算:()()91121--+- 17. 计算:
1
512412246⎛⎫--⨯ ⎪⎝
⎭ A B
C D
18. 计算:()3
1
1233
-+-+-÷
19. 计算:2
2323223⎡⎤⎛⎫
-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
四、解答题。
(共3个小题,每小题6分,共18分)
20. 解方程:6+1=45x x - 21. 解方程:
()()23311x x ---=
22. 解方程:
+221
=132
x x -- 五、解答题。
(共4个小题,第23题7分,第24题10分,第25题7分,第26题13分,共37分)
23. 已知1
3
a
=-,求代数式()226213a a a a +-+-的值。
24. 已知OC 是∠AOB 内部的一条射线,∠AOC =30°,
OE 是∠COB 的平分线。
(1)如图1,当∠COE =40°时,求∠AOB 的度数;
(2)当OE ⊥OA 时,请在图2中画出射线OE ,OB ,并直接 写出∠AOB 的度数。
25. 列方程解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,如果11片银杏树叶一年的平均滞尘量与20片国槐树叶一年的平均滞尘量相同,那么一片国槐树叶一年的平均滞尘量是多少毫克?
26. 已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .
(1)如果点P 到点M ,点N 的距离相等,那么x 的值是______________;
(2)数轴上是否存在点P ,使点P 到点M ,点N 的距离之和是5?若存在,请直接写出x 的值;若不存在,请说明理由.
(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M ,点N 的距离相等?
评分标准及参考答案
三、解答题(共4小题,每小题4分,满分16分)
16.解:原式=91121+- ……2分
图1 O
A
B C
E
图2
=2021- ……3分 =1-. ……4分 17.解:原式=
151
24242412246
⨯-⨯-⨯ ……1分
=254-- ……3分
=7-. ……4分
18.解:原式=()1
1833
-+-+÷
……2分 =()189-+-+ ……3分 =99-+
=0. ……4分
19.解:原式=349229⎛⎫
-
⨯-⨯- ⎪⎝⎭
……2分 =()3
422-⨯-- ……3分
=()3
62
-⨯-
=9. ……4分
四、解答题(共3个小题,每小题5分,共15分) 20.解:64=51x x --- ……2分
2=6x - ……4分 =3x - .
∴=3x -是原方程的解. ……5分 21.解:26311x x --+= ……2分
23161x x -=+- ……3分
6x -= ……4分 6x =-.
∴=6x -是原方程的解. ……5分 22.解:()()2
+23216x x --= ……1分
24636x x +-+= ……2分 26643x x -=-- ……3分
41x -=- ……4分
14
x =
. ∴1
4
x =
是原方程的解. ……5分 五、解答题(共4个小题,第23题5分,第24题6分,第25题5分,第26题8分,共24分) 23.解:原式=2
2
6262a a a a +--+……2分 =2
32a -. ……3分
当1
3
a =-
时, 原式=2
1323⎛⎫
⨯-- ⎪⎝⎭ ……4分
=1329⨯
- =2
13
- .
24.解:(1)∵OE 是∠COB 的平分线(已知),
∴∠COB =2∠COE (角平分线定义).……1分
∵∠COE =40°,
∴∠COB =80°. ……2分 ∵∠AOC =30°,
∴∠AOB =∠AOC +∠COB =110°. ……3分 (2)如右图: ……5分
∠AOB =150°. ……6分
25.解:设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏树叶一年的平均滞尘量为
()24x -毫
克.根据题意列方程,得 ……1分 ()11
2420x x -=. ……3分
解这个方程,得
22x =. ……4分
答:一片国槐树叶一年的平均滞尘量为22毫克. ……5分
26.解:(1)-1. ……1分
(2)存在符合题意的点P ,此时 3.5x =-或1.5. ……4分
(3)设运动t 分钟时,点P 对应的数是3t -,点M 对应的数是3t --,点N 对应的数是14t -. ①当点M 和点N 在点P 同侧时,因为PM =PN ,所以点M 和点N 重合,
所以314t
t --=-,解得4
3
t =,符合题意. ……6分
②当点M 和点N 在点P 两侧时,有两种情况. 情况1:如果点M 在点N 左侧,()3332PM
t t t =----=-.
()()1431PN t t t =---=-.
因为PM =PN ,所以321t t -=-,解得2t =.
此时点M 对应的数是5-,点N 对应的数是7-,点M 在点N 右侧,不符合题意,舍
去.
情况2:如果点M 在点N 右侧,()()31423PM
t t t =---=-.
()3141PN t t t =--+=-.
因为PM =PN ,所以231t t -=-,解得2t
=.
此时点M 对应的数是5-,点N 对应的数是7-,点M 在点N 右侧,符合题意.
综上所述,三点同时出发,4
3
分钟或2分钟时点P 到点M ,点N 的距离相等. (8)
分。