常用插值方法比较简表
各种插值法的对比研究

各种插值法的对比研究插值法是指通过已知数据点来估计两个数据点之间的未知数值。
在实际生活和科学研究中,经常会遇到需要插值的情况,例如气象预测、金融分析、图像处理等。
本文将对比介绍几种常见的插值方法,包括线性插值、多项式插值、样条插值和逆距离加权插值。
1.线性插值:线性插值是最简单的插值方法,假设两个数据点之间的值变化是线性的。
根据已知数据点的坐标和对应的值,通过线性方程推断两个数据点之间的值。
优点是计算简单快速,但缺点是对数据变化较快的情况下估计效果较差。
2.多项式插值:多项式插值假设两个数据点之间的值变化是一个多项式函数。
通过已知数据点的坐标和对应的值,使用多项式拟合方法求解多项式函数的系数,再根据该多项式求解两个数据点之间的值。
多项式插值可以准确拟合已知数据点,但在插值点较多时容易出现振荡现象,且对数据点分布敏感。
3.样条插值:样条插值是一种平滑的插值方法,通过构建分段连续的多项式函数来逼近整个数据集。
根据已知数据点的坐标和对应的值,通过求解一组多项式函数的系数,使得在相邻区间之间函数值连续,导数连续。
样条插值可以减少振荡现象,对于插值点密集的情况能更好地逼近原始数据。
4.逆距离加权插值:逆距离加权插值是一种基于距离的加权插值方法,根据已知数据点与插值点之间的距离,对每个已知数据点进行加权平均得到插值点的值。
该方法认为距离较近的数据点对插值结果的影响更大。
逆距离加权插值简单易用,对数据点的分布不敏感,但对于距离较远的数据点容易受到较大的干扰。
在实际应用中,选择合适的插值方法需要根据数据的特点和要求来决定。
若数据变化较简单、平滑,可以选择线性插值或多项式插值;若数据变化复杂,存在振荡现象,可以选择样条插值;若数据点分布较稀疏,可以选择逆距离加权插值。
此外,还有一些其他的插值方法,如Kriging插值、径向基函数插值等,它们根据不同的假设和模型进行插值,具有一定的特点和适用范围。
综上所述,对于选择合适的插值方法,需要根据具体问题和数据特点来综合考虑,结合不同方法的优缺点进行比较研究,以得到更准确和可靠的插值结果。
几种常用的插值方法

几种常用的插值方法常用的插值方法包括线性插值、多项式插值、样条插值和径向基函数插值等,下面将依次介绍这些方法。
1.线性插值:线性插值是最简单的插值方法之一,它假设函数在两个已知点之间的变化是线性的。
对于给定的两个点(x0,y0)和(x1,y1),线性插值公式为:y=y0+(x-x0)*(y1-y0)/(x1-x0)其中,y是需要插值的点对应的函数值,x是插值点的横坐标。
2.多项式插值:多项式插值方法通过在给定的一组点上构建一个多项式函数来进行插值。
常用的多项式插值方法包括拉格朗日插值和牛顿插值。
- 拉格朗日插值通过构建一个n次多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值公式为:y = Σ(yk * lk(x))其中,lk(x)是拉格朗日基函数,计算公式为:lk(x) = Π((x - xj) / (xi - xj)),(j ≠ i)- 牛顿插值通过构建一个n次插值多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),牛顿插值公式为:y = Σ(Π(x - xj) / Π(xi - xj) * finDiff(yj))其中,finDiff(yj)是每个节点的差商,计算公式为:finDiff(yj) = (ΣΠ(xj - xi) * yj) / ΣΠ(xi - xj),(i ≠ j) 3.样条插值:样条插值方法通过使用分段函数来逼近给定的一组点。
常用的样条插值方法有线性样条插值和三次样条插值。
-线性样条插值在每两个相邻点之间使用线性函数进行插值,保证了插值函数的一阶导数是连续的。
-三次样条插值在每两个相邻点之间使用三次多项式进行插值,保证了插值函数的一阶和二阶导数都是连续的。
三次样条插值具有良好的平滑性和精度。
4.径向基函数插值:径向基函数插值是一种基于局部函数的插值方法,它假设函数值仅取决于与插值点的距离。
(完整版)几种插值法比较与应用

多种插值法比较与应用(一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式∏≠=--=nkj j j kjk x xx x x l 0)( n k ,,1,0 =称为Lagrange 插值基函数 2. Lagrange 插值多项式设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件)()(k k n x f x L =,n k ,,1,0 =的n 次多项式∏∏∏=≠==--==nk nkj j jk j k k nk k n x x x x x f x l x f x L 000))(()()()(为Lagrange 插值多项式,称∏=+-+=-=nj j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商)(][i i x f x f = )(x f 关于i x ,j x 的一阶差商ij i j j i x x x f x f x x f --=][][],[依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商ik i k i i k i i k i i i x x x x f x x f x x x f --=+-+++++],,[],,[],,,[1112. Newton 插值多项式设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件)()(k k n x f x N =,n k ,,1,0 =的n 次多项式)()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N为Newton 插值多项式,称],[,)(],,,[)()()(010b a x x x x x x f x N x f x E nj j n n ∈-=-=∏=为插值余项。
九种插值方法

九种插值方法“Inverse Distance to a Power(反距离加权插值法)”、“Kriging(克里金插值法)”、“Minimum Curvature(最小曲率)”、“Modified Shepard's Method(改进谢别德法)”、“Natural Neighbor (自然邻点插值法)”、“Nearest Neighbor(最近邻点插值法)”、“Polynomial Regression (多元回归法)”、“Radial Basis Function(径向基函数法)”、“Triangulation with Linear Interpolation(线性插值三角网法)”、“Moving Average(移动平均法)”、“Local Polynomial (局部多项式法)”1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
不同插值方法的数值比较

for (int i = 0; i < 2; i++)
{
Y[i] = 3 * X[i] * Math.Exp(X[i]) - Math.Exp(2);
M[i] = 3 * Math.Exp(X[i]) + 3 * X[i] * Math.Exp(X[i]);
}
}
}
}
四、算例、应用实例
牛顿插值法适用于多个节点,而三次埃尔米特插值只适用于两个节点,但是精度比较高,一般用于求解不容易求到的函数值,如以下这一例题:
设 ,利用三次埃尔米特插值多项式和牛顿插值多项式计算f(0.33)并和真值比较。
使用mathematica,我们得到
,下面我们分别使用牛顿插值和三次埃尔米特插值来求f(0.33)
}
AFa[0] = (1 + 2 * (Q - X[0]) / (X[1] - X[0])) * Math.Pow((Q - X[1]) / (X[0] - X[1]), 2);
AFa[1] = (1 + 2 * (Q - X[1]) / (X[0] - X[1])) * Math.Pow((Q - X[0]) / (X[1] - X[0]), 2);
{
case "a": jisuan.ChaZhi();
break;
}
}
}
public class ChaZhiJiSuan
{
public void ChaZhi()
{
double[] X = { 1, 1.05 }, Y = { 0, 0 }, M = { 0, 0 }, AFa = { 0, 0 }, BeiTa = { 0, 0 };
(完整word版)几种插值法的应用和比较

(完整word版)⼏种插值法的应⽤和⽐较插值法的应⽤与⽐较信科1302 万贤浩 132710381格朗⽇插值法在数值分析中,拉格朗⽇插值法是以法国⼗⼋世纪数学家约瑟夫·路易斯·拉格朗⽇命名的⼀种多项式插值⽅法.许多实际问题中都⽤函数来表⽰某种内在联系或规律,⽽不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进⾏观测,在若⼲个不同的地⽅得到相应的观测值,拉格朗⽇插值法可以找到⼀个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗⽇(插值)多项式.数学上来说,拉格朗⽇插值法可以给出⼀个恰好穿过⼆维平⾯上若⼲个已知点的多项式函数.拉格朗⽇插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗⽇在其著作《师范学校数学基础教程》中发表了这个插值⽅法,从此他的名字就和这个⽅法联系在⼀起.1.1拉格朗⽇插值多项式图1已知平⾯上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗⽇多项式:)(x L (⿊⾊)穿过所有点.⽽每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的⼀点,并在其它的三个点的x 值上取零.对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗⽇多项式L 只有⼀个.如果计⼊次数更⾼的多项式,则有⽆穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满⾜条件.对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x ,其中i x 对应着⾃变量的位置,⽽i y 对应着函数在这个位置的取值.假设任意两个不同的i x 都互不相同,那么应⽤拉格朗⽇插值公式所得到的拉格朗⽇插值多项式为:)()(0x l y x L j kj j ∑==,其中每个)(x l j 为拉格朗⽇基本多项式(或称插值基函数),其表达式为:)()()()()()()()()(111100,0k j k j j j j j j j kj i i ij i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏ΛΛ,拉格朗⽇基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0. 例:设有某个多项式函数f ,已知它在三个点上的取值为:10)4(=f , ? 25.5)5(=f , ?1)6(=f ,要求)18(f 的值.⾸先写出每个拉格朗⽇基本多项式:())64)(54()6)(5(0----=x x x l ;())65)(45()6)(4(1----=x x x l ;())56)(46()5)(4(2----=x x x l ;然后应⽤拉格朗⽇插值法,就可以得到p 的表达式(p 为函数f 的插值函数):)()6()()5()()4()(210x l f x l f x l f x p ++=)56)(46()5)(4(1)65)(45()6)(4(25.5)64)(54()6)(5(10----?+----?+----?=x x x x x x)13628(412+-=x x ,此时数值18就可以求出所需之值:11)18()18(-==p f .1.2插值多项式的存在性与唯⼀性存在性对于给定的1+k 个点:),(),,(00k k y x y x K 拉格朗⽇插值法的思路是找到⼀个在⼀点j x 取值为1,⽽在其他点取值都是0的多项式)(x l j .这样,多项式)(x l y j j 在点j x 取值为j y ,⽽在其他点取值都是0.⽽多项式()∑==kj jj x ly x L 0)(就可以满⾜∑==++++==ki j j j i y y x l y x L 0000)()(ΛΛ,在其它点取值为0的多项式容易找到,例如:)())(()(110k j j x x x x x x x x ----+-ΛΛ,它在点j x 取值为:)()()(10k j j j i x x x x x x ---+ΛΛ.由于已经假定i x 两两互不相同,因此上⾯的取值不等于0.于是,将多项式除以这个取值,就得到⼀个满⾜“在j x 取值为1,⽽在其他点取值都是0的多项式”:)()()()()()()()(111100k j k j j j j j j j i j j x x x x x x x x x x x x x x x x x x xx l --------=--=++--∏ΛΛ,这就是拉格朗⽇基本多项式. 唯⼀性次数不超过k 的拉格朗⽇多项式⾄多只有⼀个,因为对任意两个次数不超过k 的拉格朗⽇多项式:1p 和2p ,它们的差21p p -在所有1+k 个点上取值都是0,因此必然是多项式)())((10k x x x x x x ---Λ的倍数.因此,如果这个差21p p -不等于0,次数就⼀定不⼩于1+k .但是21p p -是两个次数不超过k 的多项式之差,它的次数也不超过k ,所以021=-p p 也就是说21p p =.这样就证明了唯⼀性.1.3性质拉格朗⽇插值法中⽤到的拉格朗⽇基本多项式n l l l ,,,10Λ(由某⼀组n x x x <<<Λ10 确定)可以看做是由次数不超过n 的多项式所组成的线性空间:[]X n K 的⼀组基底.⾸先,如果存在⼀组系数:n λλλ,,,10Λ使得,01100=+++=n n l l l P λλλΛ,那么,⼀⽅⾯多项式p 是满⾜n n x P x P x P λλλ===)(,,)(,)(1100Λ的拉格朗⽇插值多项式,另⼀⽅⾯p 是零多项式,所以取值永远是0.所以010====n λλλΛ,这证明了n l l l ,,,10Λ是线性⽆关的.同时它⼀共包含1+n 个多项式,恰好等于[]X n K 的维数.所以n l l l ,,,10Λ构成了[]X n K 的⼀组基底.拉格朗⽇基本多项式作为基底的好处是所有的多项式都是齐次的(都是n 次多项式).1.4优点与缺点拉格朗⽇插值法的公式结构整齐紧凑,在理论分析中⼗分⽅便,然⽽在计算中,当插值点增加或减少⼀个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,⾮常繁琐.这时可以⽤重⼼拉格朗⽇插值法或⽜顿插值法来代替.此外,当插值点⽐较多的时候,拉格朗⽇插值多项式的次数可能会很⾼,因此具有数值不稳定的特点,也就是说尽管在已知的⼏个点取到给定的数值,但在附近却会和“实际上”的值之间有很⼤的偏差.这类现象也被称为龙格现象,解决的办法是分段⽤较低次数的插值多项式.2 重⼼拉格朗⽇插值法重⼼拉格朗⽇插值法是拉格朗⽇插值法的⼀种改进.在拉格朗⽇插值法中,运⽤多项式)())(()(10k x x x x x x x l ---=Λ,图(2)拉格朗⽇插值法的数值稳定性:如图(2),⽤于模拟⼀个⼗分平稳的函数时,插值多项式的取值可能会突然出现⼀个⼤的偏差(图中的14⾄15中间)可以将拉格朗⽇基本多项式重新写为:∏≠=--=kji i i j jj x x x x x l x l ,0)(1)()(,定义重⼼权∏≠=-=k ji i i j j x x ,0)(1ω,上⾯的表达式可以简化为:jjj x x x l x l -=ω)()(,于是拉格朗⽇插值多项式变为:j kj jjy xx x l x L ∑=-=0)()(ω,(1)即所谓的重⼼拉格朗⽇插值公式(第⼀型)或改进拉格朗⽇插值公式.它的优点是当插值点的个数增加⼀个时,将每个j ω都除以)(1+-k j x x ,就可以得到新的重⼼权1+k ω,计算复杂度为)(n O ,⽐重新计算每个基本多项式所需要的复杂度)(2n O 降了⼀个量级.将以上的拉格朗⽇插值多项式⽤来对函数1)(≡x g 插值,可以得到:∑=-=?kj jjx x x l x g x 0)()(,ω,因为1)(≡x g 是⼀个多项式. 因此,将)(x L 除以)(x g 后可得到:∑∑==--=k j jjk j jjx x x x x L 00)(ωω,(2)这个公式被称为重⼼拉格朗⽇插值公式(第⼆型)或真正的重⼼拉格朗⽇插值公式.它继承了(1)式容易计算的特点,并且在代⼊x 值计算)(x L 的时候不必计算多项式)(x l 它的另⼀个优点是,结合切⽐雪夫节点进⾏插值的话,可以很好地模拟给定的函数,使得插值点个数趋于⽆穷时,最⼤偏差趋于零.同时,重⼼拉格朗⽇插值结合切⽐雪夫节点进⾏插值可以达到极佳的数值稳定性.第⼀型拉格朗⽇插值是向后稳定的,⽽第⼆型拉格朗⽇插值是向前稳定的,并且勒贝格常数很⼩.3.分段线性插值对于分段线性插值,我们看⼀下下⾯的情况.3.1问题的重诉已知211)(xx g +=,66≤≤-x ⽤分段线性插值法求插值,绘出插值结果图形,并观察插值误差.1.在[-6,6]中平均选取5个点作插值;2.在[-6,6]中平均选取11个点作插值;3.在[-6,6]中平均选取21个点作插值;4.在[-6,6]中平均选取41个点作插值.3.2问题的分析在数值计算中,已知数据通常是离散的,如果要得到这些离散点以外的其他点的函数值,就需要根据这些已知数据进⾏插值.⽽本题只提供了取样点和原函数)(x g .分析问题求解⽅法如下:(1)利⽤已知函数式211)(xx g +=计算取样点X 对应的函数值Y ;将Y X ,作为两个等长的已知向量,分别描述采样点和样本值.因此被插值函数是⼀个单变量函数,可利⽤⼀维插值处理该数据插值问题.⼀维插值采⽤的⽅法通常有拉格朗⽇多项式插值(本题采⽤3次多项式插值),3次样条插值法和分段线性插值.(2)分别利⽤以上插值⽅法求插值.以0.5个单位为步长划分区间[-6,6],并将每⼀点作为插值函数的取样点.再根据插值函数计算所选取样点的函数值.最后再利⽤所得函数值画出相应的函数图象,并与原函数)(x g 的图象进⾏对⽐.3.3问题的假设为了解决上述分析所提到的问题,本题可以作出如下假设:(1)假设原函数)(x g 仅作为求解取样点对应的样点值的函数关系式.⽽其他各点的函数值都是未知量,叙⽤插值函数计算.(2)为了得到理想的对⽐函数图象,假设)(x g 为已知的标准函数.可以选取0.5个单位为步长划分区间[-6,6],分别计算插值函数和标准函数)(x g 在该区间的取样点的函数值.画出函数图象进⾏对⽐.3.4分段线性插值原理给定区间[]b a ,, 将其分割成b x x x a n =<<<=Λ10,已知函数)(x f y =在这些插值结点的函数值为),1,0)((n k x f y k k Λ==;求⼀个分段函数)(x I k ,使其满⾜:(1) k k h y x I =)(,),1,0(n k Λ=;(2) 在每个区间[]1,+k k x x 上, )(x I h 是个⼀次函数.易知,)(x I h 是个折线函数, 在每个区间[]1,+k k x x 上,),1,0(n k Λ=1111)(++++--+--=k kk kk k k k k h y x x x x y x x x x x I ,于是, )(x I h 在[]b a ,上是连续的,但其⼀阶导数是不连续的. 于是即可得到如下分段线性插值函数:)()(0x l y x I ni i i n ∑==,其中=≤≤--=≤≤--=+++---.,0;,;0,111111其他时舍去时,且当时舍去时,且当n i x x x x x x x i x x x xx x x l i i i i i i i i ii i3.5问题的求解在MATLAB 中实现分段线性插值,最近点插值,3次多项式插值,3次样条插值的命令为interp 1,其调⽤格式为: Y 1=interp 1(X ,Y ,X 1,’method ’)函数根据X ,Y 的值,计算函数在X 1处的值.X ,Y 是两个等长的已知向量,分别描述采样点和样本值,X 1是⼀个向量或标量,描述欲插值点,Y 1是⼀个与X 1等长的插值结果.method 是插值⽅法,包括:linear :分段线性插值.它是把与插值点靠近的两个数据点⽤直线连接,然后在直线让选取对应插值点的数.nearest :近点插值法.根据已知两点间的插值点与这两点间的位置远近插值.当插值点距离前点远时,取前点的值,否则取后点的值.cubic :3次多项式插值.根据已知数据求出⼀个3次多项式,然后根据多项式进⾏插值. spline :3次样条插值.在每个分段(⼦区间)内构造⼀个3次多项式,使其插值函数除满⾜插值条件外,还要求个节点处具有光滑条件.再根据已知数据求出样条函数后,按照样条函数插值.运⽤Matlab ⼯具软件编写代码,并分别画出图形如下: (⼀)在[-6,6]中平均选取5个点作插值:-10-5051000.20.40.60.81分段线性插值g(x)y1-10-50510-0.500.513次样条插值g(x)y2-10-5051000.20.40.60.81最近点插值g(x)y3-10-5051000.20.40.60.813次多项式插值g(x)y4(⼆)在[-6,6]中平均选取11个点作插值:-10-5051000.20.40.60.81-10-5051000.20.40.60.81-10-5051000.20.40.60.81最近点插值-10-5051000.20.40.60.813次多项式插值g(x )y1g(x )y2g(x )y3g(x )y4(三)在[-6,6]中平均选取21个点作插值:-10-5051000.20.40.60.81分段线性插值-10-551000.20.40.60.813次样条插值-10-551000.20.40.60.81最近点插值-10-551000.20.40.60.813次多项式插值g(x )y1g(x )y2g(x )y3g(x )y4(四)在[-6,6]中平均选取41个点作插值-10-5051000.20.40.60.81g(x )y1-10-5051000.20.40.60.81g(x )y2-10-5051000.20.40.60.81最近点插值g(x )y3-10-5051000.20.40.60.813次多项式插值g(x )y43.6 分段插值⽅法的优劣性分析从以上对⽐函数图象可以看出,分段线性插值其总体光滑程度不够.在数学上,光滑程度的定量描述是函数(曲线) 的k 阶导数存在且连续,则称该曲线具有k 阶光滑性.⼀般情况下,阶数越⾼光滑程度越好.分段线性插值具有零阶光滑性,也就是不光滑.3次样条插值就是较低次数的多项式⽽达到较⾼阶光滑性的⽅法.总体上分段线性插值具有以下特点:优点: 1.分段线性插值在计算上具有简洁⽅便的特点.2.分段线性插值与3次多项式插值函数在每个⼩区间上相对于原函数都有很强的收敛性,(舍⼊误差影响不⼤),数值稳定性好且容易在计算机上编程实现等优点缺点: 分段线性插值在节点处具有不光滑性的缺点(不能保证节点处插值函数的导数连续),从⽽不能满⾜某些⼯程技术上的要求.⽽3次样条插值却具有在节点处光滑的特点.。
常见插值方法及其介绍

常见插值方法及其介绍常见的插值方法有最邻近插值、双线性插值、双三次插值和基于样条的插值方法。
下面将对这些方法进行介绍。
1.最邻近插值:最邻近插值是最简单也是最直观的插值方法之一、该方法的原理是将待插值点附近最近的一个已知像素的灰度值赋给待插值点。
这种插值方法的优点是计算简单且实时性好,但缺点是结果较为粗糙,会出现明显的锯齿状边缘。
2.双线性插值:双线性插值是一种基于线性插值的方法,它考虑了待插值点附近四个已知像素的灰度值来生成新的像素值。
具体而言,对于一个待插值点,首先在水平方向上计算它上下两个已知像素的插值,然后在竖直方向上计算其左右两个已知像素的插值,最后再在这两次插值的基础上进行一次线性插值。
这种插值方法的优点是计算相对简单,效果较好,但仍然会存在锯齿状边缘。
3.双三次插值:双三次插值是一种更为复杂的插值方法,它通过分析待插值点周围的16个已知像素的灰度值来生成新的像素值。
具体而言,双三次插值首先根据已知像素的位置与待插值点的距离计算出一个权重系数矩阵,然后将这个系数矩阵与对应的已知像素灰度值相乘并相加。
这种插值方法的优点是结果较为平滑,点缺失问题较少,但计算量较大。
4.基于样条的插值方法:基于样条的插值方法主要包括线性样条插值、三次样条插值和B样条插值。
这些方法是基于插值函数的一种改进,通过选取合适的插值函数形式来拟合已知像素点,从而实现待插值点的灰度值推测。
这些方法计算量较大,但插值效果相对较好,具有高度灵活性。
总结:常见的插值方法包括最邻近插值、双线性插值、双三次插值和基于样条的插值方法。
最邻近插值计算简单且实时性好,但结果较为粗糙;双线性插值效果较好,但仍然存在锯齿状边缘;双三次插值平滑度较高,但计算量较大;基于样条的插值方法具有高度灵活性,但计算量较大。
选择适合的插值方法需根据具体需求考虑。
几种插值法简介[整理版]
![几种插值法简介[整理版]](https://img.taocdn.com/s3/m/4e1c5f93ed3a87c24028915f804d2b160b4e8679.png)
举例来看:可以认为某水文要素T随时间t的变化是连续的,某一个测点的水文要素T可以看作时间的函数T=f(t),这样在实际水文观测中,对测得的(n+1)个有序值进行插值计算来获取任意时间上的要素值。
①平均值法:若求Ti 和Ti+1之间任一点T,则直接取T为Ti和Ti+1的平均值。
插值公式为:T=Ti+Ti+1 2②拉格朗日(Lagrange)插值法:若求Ti 和Ti+1之间任一点T,则可用T i-1、T1、T i+1三个点来求得,也可用T i、T i+1、T i+2这三个点来求得。
前三点内插公式为:T=(t-t i)(t-t i+1)(t i-1-t i)(t i-1-t i+1)T i-1+(t-t i-1)(t-t i+1)(t-t i-1)(t-t i+1)T i+(t-t i)(t-t i-1)(t i+1-t i)(t i+1-t i-1)T i+1后三点内插公式为:T=(t-t i+1)(t-t i+2)(t i-t i+1)(t i-t i+2)T i+(t-t i)(t-t i+2)(ti-t i)(t i-t i+2)T i+1+(t-t i)(t-t i+1)(t i+2-t i)(t i+2-t i+1)T i+2为提高插值结果可靠性,可将前后3点内插值再进一步平均。
③阿基玛(Akima)插值法:对函数T=f(t)的n+1个有序型值中任意两点T i和T i+1满足:f(t i)=T i dfdt|t-ti=k i f’(t i+1)=T’idfdt|t-ti+1=k i+1式中k i,k i+1为曲线f(t)在这两点的斜率,而每点的斜率和周围4个点有关,插值公式为:T=P0+P1(t-t i)+P2(t-t i)2+P3(t-t i)3,来对T i和T i+1之间的一点T进行内差。
④牛顿(Newton)插值法:若求Ti 和Ti+1之间任一点T,插值公式为:T=f(x0)+(x-x0)f(x0,x1)+ (x-x0)(x-x1)f(x0,x1,x2)+…+(x-x0)(x-x1)…(x-x n-2)f(x0,x1,…,x n-1)式中,f(x0,x1),f(x0,x1,x2),…f(x0,x1,…,x n-1)是函数f(x)的1到第n-1阶差商。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用插值方法比较简表
插值方法要求优缺点适用性
IDW 1.距离预测单元中心越近的
点,影响权重越大
2.权重取为距离某次幂的倒数
3.影响因素:幂、搜索半径、
搜索方式、中断线
1.简单方便
2.没有考虑数据变化
趋势
3.插值数值范围不会
超过样本点的范围
1.样本点较多
2.分布均匀
Spline 1.插值表面的整体曲率为最小
2.正则化样条插值中,权重越
高,表面越光滑
3.张力样条插值中,权重越高,
表面越粗糙1.光滑、渐变的拟合
面
2.插值结果可能超过
样本点的取值范围
1.适用于样本
点没有包含极
值时的情况
2.渐变曲面(高
程、水位、污染
浓度...)
Kriging 1.利用给已知的样本点赋权重
计算预测值
2.权重与距预测位置的距离,
样本点的空间分布特征有关
3.需要进行变异估计(结构性
分析)1.基于地统计学(自
相关)的一种方法
2.给出预测结果的精
度
1.变量在空间
分布上具备结
构性和随机性
特征
2.应用广泛。