自动控制原理重要公式

合集下载

自动控制原理公式

自动控制原理公式

自动控制原理公式自动控制系统最常用的数学描述是利用控制工程中的数学模型。

数学模型是通过分析和建立系统的动态行为方程、传输函数或状态空间方程来描述系统的数学形式。

以下是一些常用的控制原理公式:1.闭环系统传递函数公式闭环系统传递函数是表示控制器输出信号C(s)与参考输入信号R(s)之间的关系的函数。

通常表示为T(s)或G(s)。

2.开环传递函数公式开环传递函数是表示控制器输出信号和系统输入信号之间的关系的函数。

通常表示为G(s)。

3.比例控制器公式比例控制器是最简单的控制器之一,其输出信号与误差信号之间的关系为:C(t)=Kp*e(t),其中Kp为比例增益,e(t)为误差信号。

4.积分控制器公式积分控制器输出信号与误差信号的时间积分之间的关系为:C(t) = Ki * ∫e(t)dt,其中Ki为积分增益。

5.微分控制器公式微分控制器输出信号与误差信号的时间微分之间的关系为:C(t) = Kd * de(t)/dt,其中Kd为微分增益。

6.传递函数的极点和零点公式传递函数的极点和零点是指传递函数的分母和分子中令传递函数等于零的根。

传递函数的极点和零点对系统的稳定性、阻尼比、过渡特性等有重要影响。

7.控制系统稳定性判据公式控制系统稳定性判据是通过判断传递函数的极点位置来评估系统的稳定性。

例如,对于一阶系统,系统稳定的条件是极点实部小于零;对于二阶系统,系统稳定的条件是极点实部均小于零。

8.级联控制系统公式级联控制系统是由两个或多个控制回路组成的系统。

级联控制系统的传递函数可以通过将各个回路的传递函数相乘来获得。

9.PID控制器公式PID控制器是包含了比例控制器、积分控制器和微分控制器的三个组成部分的控制器。

PID控制器的输出信号与误差信号的线性组合关系为:C(t) = Kp*e(t) + Ki∫e(t)dt + Kd *de(t)/dt。

以上是一些常见的自动控制原理公式,用于描述和分析控制系统的特性和行为。

自动控制原理公式汇总松鼠学长

自动控制原理公式汇总松鼠学长

自动控制原理公式汇总松鼠学长
自动控制原理涉及到很多公式,下面是一些常见的公式汇总:1.开环传递函数:G(s) = Y(s)/U(s)
- G(s)表示系统的传递函数
- Y(s)表示输出信号的Laplace变换
- U(s)表示输入信号的Laplace变换
2.闭环传递函数:T(s) = Y(s)/R(s)
- T(s)表示闭环系统的传递函数
- Y(s)表示输出信号的Laplace变换
- R(s)表示参考输入信号的Laplace变换
3.系统的单位反馈闭环传递函数:T(s) = G(s)/(1 + G(s)H(s)) - T(s)表示闭环系统的传递函数
- G(s)表示开环系统的传递函数
- H(s)表示单位反馈的传递函数
4.闭环系统的稳定性判据:若开环传递函数G(s)的所有极点的实部都小于零,则闭环系统是稳定的。

5. PID控制器输出信号:u(t) = Kp*e(t) + Ki*∫[0,t] e(τ) dτ + Kd*de(t)/dt
- u(t)表示PID控制器的输出信号
- Kp是比例增益
- Ki是积分增益
- Kd是微分增益
- e(t)是误差信号,等于参考输入信号与实际输出信号之差
这些公式只是自动控制原理中的一小部分,实际上自动控制原理是一个庞大的学科,涉及到许多不同的理论和方法。

它还包括了传感器和执行器的动态特性、控制器的设计和调节、系统的鲁棒性等方面的内容。

在实际应用中,根据具体问题的要求,可能还需要考虑动态特性的影响、非线性系统的建模和控制、多变量系统的控制等更高级的内容。

因此,适当拓展自动控制原理的公式是必要的。

自动控制原理第二章梅森公式-信号流图课件

自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。

自动控制原理重要公式

自动控制原理重要公式
G.误差传递函数
扰动信号的误差传递函数
H.静态误差系数
单位
输入形式
稳态误差ess
0型
Ⅱ型
Ⅲ型
阶跃1(t)
1/1+Kp
0
0
斜坡t·1(t)

1/Kv
0
加速度·1﹙t﹚


1/Ka
I.二阶系统的时域响应:
其闭环传递函数为

系统的特征方程为
特征根为
上升时间tr
其中
峰值时间tp
最大超调量Mp
调整时间ts
a.误差带范围为±5%
相角裕量:定义:使系统达到临界稳定状态,尚可增加的滞后相角,称为系统的相开环传递函数G(s),系统的闭环传递函数
系统的闭环频率特性
N.闭环频域性能指标与时域性能指标
的关系
二阶系统的闭环传递函数为
系统的闭环频率特性为
系统的闭环幅频特性为
系统的闭环相频特性为
sna0a2a4a6……
sn-1a1a3a5a7……
sn-2b1b2b3b4……
sn-3c1c2c3c4……
… … …
s2f1f2
s1g1
s0h1
劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;
劳斯表中某一行的元素全为零。P(s)=2s4+6s2-8。
F.赫尔维茨判据
特征方程式的所有系数均大于零。
惯性环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
对数相频特性:
3.微分环节
纯微分环节的传递函数G(s)=s
频率特性:
幅频特性:

自动控制原理_第二章

自动控制原理_第二章

Gk ( s) G ( s) H ( s)
B( s) G1 ( s)G2 ( s) H ( s) E ( s)
注意:这里的开环传递函数是针对闭环系统而言的,而不是指开环系 统的传递函数。
解:首先对小车进行受力分析,在水平方向应 用牛顿第二定律可写出:
dy(t ) d 2 y (t ) F (t ) f Ky (t ) m dt dt 2

2
T
m f , 可得 K 2 mK
图2 弹簧-质量-阻尼器系统图
d 2 y( t ) dy(t ) F (t ) T 2 T y ( t ) dt 2 dt K
用解析法列写系统或元部件微分方程的一般步骤是:
(1)根据系统的具体工作情况,确定系统或元部件的输
入、输出变量;
(2)从输入端开始,按照信号的传递顺序,依据各变量 所遵循的物理(或化学)定律,列写出各元部件的动态方程, 一般为微分方程组; (3)消去中间变量,写出输入、输出变量的微分方程; (4)将微分方程标准化。即将与输入有关的各项放在等 号右侧,与输出有关的各项放在等号左侧,并按降幂排列。
以工作点处的切线代替曲线,得到变量在工作点的增量方程, 经上述处理后,输出与输入之间就成为线性关系。
二、复频域模型 – 传递函数
(1)利用时域卷积获得:
如果已知系统单位脉冲响应为g(t),则任意输入r(t)的响应输出c(t):
c( t )


r ( ) g(t )d
c(t ) r ( ) g(t )d
0 t
考虑到物理可实现性,上式改为: 对上式做拉氏变换得:
C ( s) R( s)G( s) G( s)
C ( s) R( s )

自动控制原理胡寿松笔记

自动控制原理胡寿松笔记

自动控制原理胡寿松笔记自动控制原理是电气工程领域的重要课程,胡寿松教授的笔记是该领域学习的重要参考资料。

本文将按照章节顺序,对胡寿松教授的笔记进行梳理和总结,帮助读者更好地理解和掌握自动控制原理。

第一章自动控制的基本概念1. 自动控制的基本组成:控制器、传感器、执行器、被控对象。

2. 自动控制的目的:实现对系统的稳态和动态性能的优化。

3. 自动控制的基本术语:控制量、受控量、干扰、传递、转换等。

4. 自动控制系统的分类:开环控制系统和闭环控制系统。

第二章自动控制系统的数学模型1. 微分方程:描述系统动态特性的基本数学工具。

2. 传递函数:描述控制系统动态特性的重要数学模型。

3. 动态结构图:描述控制系统动态特性的图形工具。

4. 信号流图:描述控制系统内部信息传递方式的图形工具。

5. 梅逊公式:用于将微分方程转化为传递函数的公式。

第三章线性定常系统的时域分析法1. 控制系统性能的评价指标:稳态误差、超调量、调节时间等。

2. 系统的稳定性分析:稳定性定义、代数稳定判据、李亚普诺夫直接法。

3. 系统性能的改善:放大缩小法、超前滞后补偿法、PID控制器等。

4. 一系列具体分析方法的介绍:单位阶跃响应、斜坡响应、李亚普诺夫直接法等。

第四章线性定常系统的根轨迹法1. 根轨迹的基本概念和性质:幅值-相位特性、零点-极点关系、渐近线等。

2. 绘制根轨迹的基本规则和步骤:参数方程、几何意义、注意事项等。

3. 根轨迹图的特征分析:闭环零点、极点与系统性能的关系等。

4. 基于根轨迹法的系统优化设计:稳定化控制器设计、增益调度等。

第五章线性系统的频域分析法1. 频率域的基本概念和性质:频率特性、频率响应、频域分析方法等。

2. 频率域分析方法的应用:稳定性分析、系统性能评估、频率特性设计等。

3. 对数频率特性曲线及其应用:增益边界和相位边界的意义、系统性能的评估等。

4. 基于频率域分析法的系统优化设计:频率相关控制器设计、频率调制等。

自动控制原理公式

自动控制原理公式

自动控制原理公式下面是一些重要的自动控制原理公式:1.连续时间系统的传递函数:传递函数是描述系统输入和输出之间关系的函数。

对于连续时间系统,传递函数表示为s的函数:G(s)=Y(s)/U(s)其中,G(s)是系统的传递函数,Y(s)是系统的输出,U(s)是系统的输入,s是复变量。

2.离散时间系统的传递函数:对于离散时间系统,传递函数表示为z的函数:G(z)=Y(z)/U(z)其中,G(z)是系统的传递函数,Y(z)是系统的输出,U(z)是系统的输入,z是复变量。

3.闭环传递函数:闭环传递函数描述了闭环控制系统的输入和输出之间的关系。

对于连续时间系统,闭环传递函数表示为s的函数:T(s)=Y(s)/R(s)其中,T(s)是闭环传递函数,Y(s)是系统的输出,R(s)是参考输入。

4.控制系统的传递函数表达式:控制系统的传递函数可以表示为系统组成部分的传递函数之间的乘积或相加。

例如,对于一个系统,其传递函数可以表示为:G(s)=G1(s)*G2(s)/(1+G1(s)*G2(s)*H(s))其中,G1(s)和G2(s)是系统的组成部分的传递函数,H(s)是反馈路径的传递函数。

5.极点和零点:极点是系统传递函数的根,决定了系统的稳定性和动态响应。

零点是传递函数等于零的点,对系统的频率响应和稳定性有影响。

6.PID控制器公式:PID控制器是一种常见的反馈控制器,它根据误差信号来调整系统输出。

PID控制器的输出由比例项、积分项和微分项组成,公式表示为:u(t) = Kp * e(t) + Ki * ∫ e(t)dt + Kd * de(t) / dt其中,u(t)是PID控制器的输出,Kp、Ki、Kd是控制器的参数,e(t)是当前时刻的误差信号,∫ e(t)dt和de(t) / dt分别是误差信号的积分和微分。

这些公式只是自动控制原理中的一小部分,涵盖了控制系统的建模和调节方法。

自动控制原理公式是自动控制工程师和研究人员分析和设计自动控制系统的重要工具。

自动控制原理超调量公式

自动控制原理超调量公式

自动控制原理超调量公式在自动控制系统中,超调量这个词听起来可能有点高深,但其实它跟我们的日常生活息息相关,简直就是控制系统中的“小调皮”。

别着急,我这就带你一起捋一捋这个概念,让你轻松搞懂它的来龙去脉。

1. 什么是超调量?1.1 定义首先,超调量就是指在系统响应过程中,输出值超出期望值的那部分。

想象一下,你等公交车,刚走到站台,公交车来了,你兴冲冲地挥手,结果一不小心,超出了站台边缘,哎呀,差点摔个四脚朝天!这个“超出”的感觉,就是超调量。

1.2 举个例子再说个生活中的例子,你家里的空调是不是会在你设定温度时,先把温度降得比你想要的低一点,然后再慢慢调回去?这就是超调量的一个体现!空调觉得“哎呀,我得快点让你凉快”,于是就先使劲儿降温,然后再“慢慢来”。

这样一来,虽然你最终是凉快了,但那一瞬间的“冷”可真是让人受不了,感觉像是走进了冰箱。

2. 超调量的公式2.1 公式介绍说到公式,这里得提一下控制理论中的一个重要公式:超调量一般用百分比来表示,计算公式是:。

M_p = frac{y_{max y_{ss{y_{ss times 100% 。

这里的 ( y_{max ) 是系统输出的最大值,而 ( y_{ss ) 是稳态值。

简单来说,就是你最高点和最终目标之间的差距,再用这个差距除以目标值,乘以100就得到了超调量。

2.2 公式应用当你把这个公式运用到实际中去时,就像是给你的超调量穿上了一件“外套”,让它看起来更加高大上。

想象一下,假设你设定的温度是25度,但空调调到的最高温度是30度,那么你的超调量就是:。

M_p = frac{30 25{25 times 100% = 20% 。

哇,20%的超调量!这意味着空调在调整过程中,真是“火力全开”,给你来了个“冰火两重天”!3. 超调量的重要性3.1 控制系统的影响那么,超调量到底有什么重要性呢?首先,它影响着系统的稳定性和响应速度。

就像你在追求一份目标时,假如你总是走得太快,结果反而可能会摔倒,反而慢下来会更稳妥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.惯性环节
惯性环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
对数相频特性:
3.微分环节
纯微分环节的传递函数G(s)=s
频率特性:
幅频特性:
相频特性:
对数幅频特性:
4.二阶振荡环节
二阶振荡环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
G.误差传递函数
扰动信号的误差传递函数
H.静态误差系数
单位
输入形式
稳态误差ess
0型
Ⅱ型
Ⅲ型
阶跃1(t)
1/1+Kp00来自斜坡t·1(t)∞
1/Kv
0
加速度0.5t2·1﹙t﹚


1/Ka
I.二阶系统的时域响应:
其闭环传递函数为

系统的特征方程为
特征根为
上升时间tr
其中
峰值时间tp
最大超调量Mp
调整时间ts
a.误差带范围为±5%
b.误差带范围为±2%
振荡次数N
J.频率特性:
还可表示为:G(jω)=p(ω)+jθ(ω)
p(ω)——为G(jω)的实部,称为实频特性;
θ(ω)——为G(jω)的虚部,称为虚频特性。
显然有:
K.典型环节频率特性:
1.积分环节
积分环节的传递函数:
频率特性:
幅频特性:
相频特性:
对数幅频特性:
5.比例环节
比例环节的传递函数:G(s)=K
频率特性:
幅频特性:
相频特性:
对数幅频特性:
6.滞后环节
滞后环节的传递函数:
式中——滞后时间
频率特性:
幅频特性:
相频特性:
对数幅频特性:
L.增益裕量:
式中ωg满足下式∠G(jωg)H(jωg)=-180°
增益裕量用分贝数来表示:
Kg=-20lg|G(jωg)H(jωg)|dB
相角裕量:定义:使系统达到临界稳定状态,尚可增加的滞后相角,称为系统的相角裕度或相角裕量,表示为
M.由开环频率特性求取闭环频率特性
开环传递函数G(s),系统的闭环传递函数
系统的闭环频率特性
N.闭环频域性能指标与时域性能指标
的关系
二阶系统的闭环传递函数为
系统的闭环频率特性为
系统的闭环幅频特性为
系统的闭环相频特性为
二阶系统的超调量Mp
谐振峰值Mr
由此可看出,谐振峰值Mr仅与阻尼比ζ有关,超调量Mp也仅取决于阻尼比ζ
谐振频率ωr与峰值时间tp的关系
由此可看出,当ζ为常数时,谐振频率ωr与峰值时间tp成反比,ωr值愈大,tp愈小,表示系统时间响应愈快.
低频段对数幅频特性
sna0a2a4a6……
sn-1a1a3a5a7……
sn-2b1b2b3b4……
sn-3c1c2c3c4……
………
s2f1f2
s1g1
s0h1
劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;
劳斯表中某一行的元素全为零。P(s)=2s4+6s2-8。
F.赫尔维茨判据
特征方程式的所有系数均大于零。
A.阶跃函数
斜坡函数
抛物线函数
脉冲函数
正弦函数
B.典型环节的传递函数
比例环节
惯性环节(非周期环节)
积分环节
微分环节
二阶振荡环节(二阶惯性环节)
延迟环节
C.环节间的连接
串联
并联
反馈开环传递函数=
前向通道传递函数=
负反馈闭环传递函数
正反馈闭环传递函数
D.梅逊增益公式
E.劳斯判据
劳斯表中第一列所有元素均大于零
相关文档
最新文档