初中数学的基础13种应用题型讲解

合集下载

初中数学综合应用题解析

初中数学综合应用题解析

初中数学综合应用题解析在初中数学学科中,数学综合应用题是一个比较重要的部分,涉及到多个知识点的综合运用。

通过解析一些典型的数学综合应用题,我们可以更好地理解和掌握这部分知识点的运用。

1. 问题描述假设有一个正方形花坛,边长为3米。

在花坛的四个角上各种一株花,然后每隔1米种植一株花。

问现在花坛上共有多少株花?2. 解题思路首先,我们可以通过计算边长来确定正方形花坛的面积。

正方形的面积可以通过边长的平方来计算,即3*3=9。

接下来,我们需要计算每隔1米种植花的数量。

花坛的边长是3米,所以每条边上可以种植3-1=2株花。

因为正方形有4条边,所以每条边上共有2*4=8株花。

最后,我们还需要考虑角上的花。

根据题目描述,角上各有一株花,所以共有4株花。

综上所述,花坛上共有8+4=12株花。

3. 解题过程步骤1:计算正方形花坛的面积。

面积 = 边长 * 边长 = 3 * 3 = 9 平方米。

步骤2:计算每隔1米种植花的数量。

每侧的花数 = 边长 - 1 = 3 - 1 = 2 株花。

每条边上共有2 * 4 = 8 株花。

步骤3:计算角上的花的数量。

角上共有4株花。

步骤4:计算花坛上总的花的数量。

花的总数 = 每条边上的花数 + 角上的花的数量 = 8 + 4 = 12 株花。

4. 结论根据计算,正方形花坛上共有12株花。

通过这个问题的解析,我们可以看到数学在实际问题中的应用。

同时,这也提醒了我们在解决数学综合应用题时,需要善于分析问题,按照步骤进行推理和计算。

总结一下,初中数学综合应用题的解题思路可以归纳为以下几点:- 善于分析问题,理清思路;- 运用已学的数学知识,进行推理和计算;- 结合实际问题,给出合理的解答。

通过积累和解析更多的数学综合应用题,我们可以不断提高自己的解题能力,为学好数学打下坚实的基础。

初中数学应用题解法大全

初中数学应用题解法大全

初中数学应用题解法大全初中数学应用题在学习中起到了非常重要的作用,它们能够帮助我们将数学知识应用到实际生活中,培养我们的数学思维和解决问题的能力。

在本文中,我将为大家整理一份初中数学应用题解法大全,帮助大家更好地掌握这类题目的解题方法。

1. 空间几何题解法空间几何题是初中数学中比较常见的一类应用题。

在解决空间几何题时,我们可以采用以下方法:首先,通过画图的方式来帮助理解题意。

其次,根据已知条件,使用几何图形的性质,如平行线、垂直线等来进行分析。

然后,运用相应的定理和定律,如平行线的性质、垂直线的性质等来得出结论。

最后,对得到的结论进行验证。

2. 线性方程组的解法线性方程组是初中数学中另一类常见的应用题。

解决线性方程组时,我们可以采用以下方法:首先,列出方程组。

其次,通过化简、消元等方法,将方程组化简为较简单的形式。

然后,根据方程组的特点,选择最适合的解方程法进行求解,如代入法、消元法、等式法等。

最后,对得到的解进行验证。

3. 百分数的应用解法百分数是数学中的重要概念,应用广泛。

在解决百分数的应用题时,我们可以采用以下方法:首先,明确题意,将题目中的百分数转化为小数或分数形式。

其次,根据题目要求,运用百分数的性质进行计算,如利用百分数的乘除法性质、比例关系等。

然后,根据题目的给定条件,运用所学的知识来解决问题。

最后,对结果进行合理性的判断和验证。

4. 几何变换题解法几何变换是初中数学中的一大考点。

在解决几何变换题时,我们可以采用以下方法:首先,通过观察题目中给出的图形,找出与变换前后相关的性质,如长度、角度、位置等。

其次,根据所学的几何变换知识,选择合适的变换方法,如平移、旋转、翻转等。

然后,根据题目要求进行变化、计算或判断。

最后,对得到的结果进行合理性的判断和验证。

5. 统计与概率题解法统计与概率是初中数学中的一大考点。

在解决统计与概率题时,我们可以采用以下方法:首先,明确题目中给出的问题和已知条件。

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

初中数学应用题知识点总结及练习

初中数学应用题知识点总结及练习

如,“小时”“分钟”的换算“分钟”的换算;s ;s ;s、、v 、t 单位的一致等。

单位的一致等。

内容内容类型类型题中涉及的数量及公式题中涉及的数量及公式 等量关系等量关系 注意事项注意事项和、差问题和、差问题由题可知由题可知弄清“倍数”及“多、少”等数量关系少”等数量关系 行程问题问题相遇问题相遇问题 路程路程==速度×时间速度×时间 时间时间==路程÷速度路程÷速度 速度速度==路程÷时间路程÷时间 快者快者++慢者慢者==原来的距离原来的距离 注意始发时间和地点追及问题追及问题快者快者--慢者慢者==原来的距离原来的距离 调配问题调配问题 调配后的数量关系调配后的数量关系流动的方向和数量流动的方向和数量 比例分配问题比例分配问题全部数量全部数量==各种成分的数量之和把一份设为X 工程问题工程问题工作量工作量==工作效率×工作时间工作效率×工作时间 工作时间工作时间==工作量÷工作效率工作量÷工作效率 工作效率工作效率==工作量÷工作时间工作量÷工作时间 每个工作量的和每个工作量的和==工作总量工作总量工作总量没有的情况下,可设为1利润问题利润问题 利润率利润率==利润÷进价×利润÷进价×100% 100% 利润利润==(售价(售价--进价)×量进价)×量 利用公式或利润率与利润的关系关系 打几折就是百分之几十出售几十出售 行船问题行船问题顺水速度顺水速度==静水速度静水速度++水速水速 逆水速度逆水速度==静水速度静水速度--水速水速A C A B C 甲→甲→ 乙→乙→ (相遇处)乙→乙→A B 甲)→ (相遇处)1、某酒店客房部有三人间,双人间客房,收费数据如下表:、某酒店客房部有三人间,双人间客房,收费数据如下表:普通(元普通(元//间/天)天) 豪华(元(元//间/天) 三人间三人间 150 300 双人间双人间140400为吸引游客,团体入住五折优惠措施,团体入住五折优惠措施,一个一个50人的旅游团优惠期间到该酒店入住,人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间住了一些三人普通间和双人普通间客房.若每间客房正好住满,客房.若每间客房正好住满,••且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(20042004、湟中,、湟中,、湟中,33分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,天;若甲、乙两队合作,1212天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为意,可列方程为_____________________________________________。

七年级数学中的应用题有哪些常见考点

七年级数学中的应用题有哪些常见考点

七年级数学中的应用题有哪些常见考点在七年级的数学学习中,应用题是非常重要的一部分。

通过解决应用题,同学们能够将所学的数学知识运用到实际生活中,提高解决问题的能力。

下面我们就来一起看看七年级数学中应用题的常见考点。

一、行程问题行程问题是七年级数学应用题中经常出现的类型。

它主要涉及速度、时间和路程之间的关系。

例如,甲、乙两人分别从 A、B 两地同时出发相向而行,已知甲的速度是每小时_____千米,乙的速度是每小时_____千米,经过_____小时两人相遇。

这类问题通常需要我们根据给定的条件,找出速度、时间和路程之间的等量关系,然后列出方程求解。

在解决行程问题时,有一个重要的公式:路程=速度×时间。

如果是相向而行,那么两人走过的路程之和等于两地之间的距离;如果是同向而行,那么快的人比慢的人多走的路程等于两地之间的距离。

二、工程问题工程问题也是常见的考点之一。

比如,一项工程,甲单独完成需要_____天,乙单独完成需要_____天,两人合作需要多少天完成?解决这类问题,关键是要理解工作效率的概念。

工作效率=工作总量÷工作时间。

通常我们把工作总量看作单位“1”,那么甲的工作效率就是 1÷甲单独完成所需时间,乙的工作效率同理。

两人合作的工作效率就是甲、乙工作效率之和,然后根据工作时间=工作总量÷工作效率,就可以求出两人合作完成工程所需的时间。

三、销售问题销售问题在生活中很常见,在数学应用题中也经常出现。

比如,某商品进价为_____元,标价为_____元,若按标价的_____折出售,仍可获利_____元,求折扣率。

这就需要我们掌握利润、成本、售价之间的关系。

利润=售价成本,售价=标价×折扣率。

通过这些关系式,我们可以列出方程,求出未知数。

四、利率问题利率问题与我们的储蓄和理财有关。

例如,将_____元存入银行,年利率为_____%,存了_____年,求到期后的利息或本息和。

初中数学常见题型归纳

初中数学常见题型归纳

初中数学常见题型归纳数学是一门重要的学科,也是学生们学习过程中必不可少的一部分。

在初中阶段,学生们需要掌握各种数学题型,以培养他们的逻辑思维能力和解决问题的能力。

本文将对初中数学常见的几种题型进行归纳和总结,以帮助学生们更好地掌握数学知识。

一、等式方程题型等式方程题型是数学中的基础题型之一,包括一元一次方程、一元二次方程等。

通过解方程,可以找到未知数的值,从而得到满足等式的解。

例题:已知方程3x-5=7,求解x的值。

解析:将已知方程转化成标准形式,得到3x=7+5=12。

接下来,我们可以通过移项、合并同类项等方法解方程,最终得到x=4。

答案为4。

二、图形题型图形题型是初中数学中比较常见的一种题型,包括平面图形、立体图形的面积和体积计算等。

通过掌握图形的性质和计算公式,可以解决与图形相关的问题。

例题:一个矩形的长是5cm,宽是3cm,求其面积和周长。

解析:矩形的面积可以通过长乘以宽的方法计算,即5cm × 3cm = 15cm²。

矩形的周长可以通过将长度和宽度的两倍相加的方法计算,即2 × (5cm + 3cm) =16cm。

答案为矩形的面积为15cm²,周长为16cm。

三、比例和百分数题型比例和百分数是数学中的重要概念,特别是在解决与数量关系相关的问题时经常会用到。

通过掌握比例和百分数的换算关系和应用,可以解决许多实际问题。

例题:某商场举行打折活动,原价100元的商品打8折后,售价是多少?解析:打8折意味着原价的80%,所以售价为100元 × 80% = 80元。

答案为售价为80元。

四、数据分析题型数据分析题型是数学中的一种常见题型,包括统计图表的分析与应用。

通过分析和解读图表中的数据,可以得到有关数量和比例的信息。

例题:下表是某班级男女生人数的统计数据,请问男女生比例是多少?| | 男生 | 女生 ||-------|-----|-----|| 人数 | 20 | 30 |解析:男女生比例可以通过男生人数除以女生人数的方法计算,即20 / 30 = 2 / 3。

初中数学常见应用题分类总结

初中数学常见应用题分类总结

初中数学常见应用题分类总结数学作为一门重要的学科,是我们日常生活中必不可少的一部分。

在初中阶段,学生们学习了许多数学知识,包括各种应用题。

应用题是将数学知识应用到实际问题中的题目,它们在学生的日常生活中起着重要的作用。

在本文中,我们将对初中数学常见应用题进行分类总结,并提供相应的解题思路和方法。

一、比例与比较1. 比例问题比例问题是初中数学中最常见的应用题之一。

它们涉及到两个或多个变量之间的比例关系。

在解决比例问题时,我们需要确定已知条件,建立比例关系并解方程,再根据所求条件求解。

常见的比例问题包括物品的价格比例,速度的比例等。

2. 比较问题比较问题要求我们根据已知条件对不同情况进行比较。

例如,如果给出两个商品的价格、重量等信息,我们需要确定哪一个商品更具性价比。

解决比较问题时,我们需要将已知条件转化为可比较的形式,并利用数学方法进行分析和比较。

这种类型的应用题在生活中非常常见。

二、百分比与利率1. 百分比问题百分比问题要求我们求解某个数值相对于另一个数值的百分比。

例如,求解一个商品的打折率,或者计算考试成绩的百分比。

当解决这类问题时,我们需要将百分数转化为小数,并根据已知条件进行计算。

2. 利率问题利率问题涉及到利息的计算和相关问题。

例如,计算存款利息、贷款利率等。

在解决利率问题时,我们需要了解利率的概念和计算方法,并应用相关的公式进行计算。

三、平均数与中位数1. 平均数问题平均数问题要求我们计算一组数据的平均值。

例如,求解一组考试成绩的平均分。

在解决这类问题时,我们需要将数据相加,并除以数据的个数,得到平均值。

平均数在生活中应用广泛,有助于我们对数据进行整体把握。

2. 中位数问题中位数问题要求我们找到一组数据的中间值。

例如,找到一组数中位于中间位置的值。

在解决中位数问题时,我们需要将数据按照大小进行排列,并找到中间位置的数。

中位数在统计和排序等领域有重要的应用。

四、图表与统计1. 图表问题图表问题要求我们根据给定的图表信息进行分析和计算。

初中数学应用题归纳总结完整版

初中数学应用题归纳总结完整版

初中数学应用题归纳列出方程(组)解应用题的一般步骤是:1审题:弄清题意和题目中的已知数、未知数;2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;7作答:包括单位名称在内进行完整的答语。

一,行程问题基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 二、利润问题现价=原价*折扣率折扣价=现价/原价*100%每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价三、计算利息的基本公式储蓄存款利息计算的基本公式为:利息=本金×存期×利率税率=应纳数额/总收入*100% 本息和=本金+利息税后利息=本金*存期*利率*(1- 税率)税后利息=利息*税率利率-利息/存期/本金/*100%利率的换算:年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。

使用利率要注意与存期相一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学的基础13种应用题型讲解一元一次方程应用考试题型大全1、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。

2、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得x=37则45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

3、顺逆流(风)问题【典例探究】例1 某轮船的静水速度为v千米/时,水流速度为m千米/时,则这艘轮船在两码头间往返一次顺流与逆流的时间比是()【方法突破】抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷24、调配问题【典例探究】例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间.例2 甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?解析:若设应分给甲仓库粮食X吨,则数量关系如下表5、连比条件巧设x【典例探究】例1. 一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.解析:设三边长分别为2x,3x,4x,根据周长为36cm,可得出方程,解出即可.设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4.故三边长为:8cm,12cm,16cm.例2 .三个数的比是5:12:13,这三个数的和为180,则最大数比最小数大()A.48 B.42C.36 D.30解析:此题可设每一份为x,则三个数分别表示为5x、12x、13x,根据三个数的和为180,列方程求解即可.设每一份为x,则三个数分别表示为5x、12x、13x,依题意得:5x+12x+13x=180,解得x=6则5x=30,13x=78,78-30=48故选A.【方法突破】比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

6、配套问题【典例探究】例1 包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形和长方形铁片能合理地将铁片配套?解法1:可设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,由题意得:120(42-x)=2×80x,去括号,得5040-120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42-18=24(人);答:安排24人生产圆形铁片,18人生产长方形铁片能合理地将铁片配套.解法2:若安排x人生产长方形铁片,y人生产圆形铁片,根据共有42名工人,可知x+y=42.再根据两张圆形铁片与一张长方形铁片可配套可知2×80x=120y,列出二元一次方程组求解。

设安排x人生产长方形铁片,y人生产圆形铁片,则有答:安排24人生产圆形铁片,18人生产长方形铁片能合理地将铁片配套.【方法突破】7、日历问题8、利润及打折问题【典例探究】例1:(2016•荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元分析:设该商品的进价为x元/件,根据“售价=进价+利润”即可列出关于x 的一元一次方程,解方程即可得出结论.解:设该商品的进价为x元/件,依题意得:(x+20)=200×0.5,解得:x=80.∴该商品的进价为80元/件.[来源:]故选C.例2 (2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元分析:由利润率算出成本,设标价为x元,则根据“按标价打八折销售该电器一件,则可获利润500元”可以得到x的值;然后计算打九折销售该电器一件所获得的利润.解答:解:设标价为x元,成本为y元,由利润率定义得500÷y=20%,y=2500(元).x×0.8﹣2500=500,解得:x=3750.则3750×0.9﹣2500=875(元).故选:B.【方法突破】商品销售额=商品销售价×商品销售量商品的销售总利润=(销售价-成本价)×销售量单件商品利润=商品售价-商品进价=商品标价×折扣率-商品进价商品打几折出售,就是按原标价的十分之几出售,即商品售价=商品标价×折扣率9、利率和增长率问题【典例探究】例1(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)分析:根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.例2 小明去银行存入本金1000元,作为一年期的定期储蓄,到期后小明税后共取了1018元,已知利息税的利率为20%,则一年期储蓄的利率为()A.2.25% B.4.5%C.22.5% D.45%解析:设一年期储蓄的利率为x,根据税后钱数列方程即可.设一年期储蓄的利率为x,根据题意列方程得:1000+1000x(1-20%)=1018,解得x=0.0225,∴一年期储蓄的利率为2.25%,故选A.10、方案选择问题(1)【典例探究】例1某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=180x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机各25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750故为了获利最多,选择第二种方案.【方法突破】这类问题根据题意分别列出不同的方案的代数式,再通过计算比较结果,即可得到满足题意的方案,需要注意的是要留意题目中的方案要求,常见的是要求利润最大,但是有时也有要求消库存最多或者最节约成本,要注意审题,不可犯惯性错误。

相关文档
最新文档