第二章整式的加减2.4课题活动课件(找规律)
整式的加减和找规律

整式的加减、找规律本次课继续学习字母表示数,通过在现实情境中进一步理解字母表示数的意义,发展符号感.在具体情境中了解合并同类项的法则、进行同类项的合并,在具体情境中体会去括号的必要性,运用运算律去括号,总结去括号法则,利用去括号法则解决简单的问题;经历探索数量关系,运用符号表示规律,通过运算验证规律的过程,用代数式表示简单问题中的数量关系,用合并同类项、去括号等法则验证所探索的规律.重、难点知识归纳及讲解1、同类项的概念所含字母相同,并且相同字母的指数也相同的项,叫做同类项.判断几个项是否是同类项有两个条件:一是所含字母相同,二是相同字母的指数分别相同,同时具备这两个条件的项是同类项,缺一则不可。
同类项与系数无关,与字母的排列顺序无关,特别地,几个常数项也是同类项.2、合并同类项的意义、法则及方法(1)合并同类项的意义把代数式中的同类项合并成一项,叫做合并同类项.合并同类项时,只能把同类项合并成一项,不是同类项的不能合并.(2)合并同类项的法则在合并同类项时,把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.如果两个同类项的系数互为相反数,合并同类项后,结果为 0.(3)合并同类项的方法步骤:第一步:准确地找出同类项;第二步:利用法则,把同类项的系数相加,字母和字母的指数不变;第三步:写出合并后的结果.3、去括号的意义在有理数运算中,有括号时,通常先算括号内的,然后省掉括号,而在代数式的运算中,遇有括号时,却往往无法先进行括号内的运算,或先算括号内的相对复杂。
因而先去掉括号,才能使运算得以顺利进行,遇到多重括号时,可以由内向外去括号,可以由外向内去括号,也可以内外同时去括号.4、去括号法则括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.5、探索规律的一般方法(1)从具体的、实际的问题出发,观察各个数量的特点及相互之间的变化规律;(2)由此及彼,合理联想、大胆猜想;(3)善于类比,从不同事物中发现其相似或相同点;(4)总结规律,作出结论,并验证结论正确与否;(5)在探究规律的过程中,善于变换思维方式,收到事半功倍的效果.三、典型例题剖析例 1、判断下列各组中的两项是否是同类项,并说明理由.例 2、合并下列各式中的同类项:例 3、已知是同类项,求3m+5n的值.例 4、先化简,再求值:,其中x=-2,y=3. 例 5、已知a+b=21,3m-2n=9,求代数式(2a+9m)+[-(6n-2b)]的值. 例6、已知有理数a、b的和a+b及差a-b在数轴上的表示如图所示.试求: |2a+b|-2|a|-|b-7|的值.1、下列各组中的两项为同类项的是()A.2m2n3与3m3n2 B.5πR2与7π2R2C.-4ab与9abc D.-3x2与-2x32、已知34x2与5n x|n|是同类项,则n等于()A.5 B.3 C.2或-2 D.2或43、下列各题结果正确的是()A.3x+3y=6xy B.7m-5m=2mC.16y2+9y2=25y4 D.19a2b-6ab2=13a2b4、若b=4a,c=3b,则a+b+c等于()A.11a B.13a C.15a D.17a5、已知代数式ax+bx合并后的结果是零,则下列说法正确的是()A.a=b=0 B.a=b=x=0 C.a+b=0或x=0 D.a-b=06、下列去括号错误的共有()① a+(b+c)=ab+c ② a-(b+c-d)=a-b-c+d③ a+2(b-c)=a+2b-c ④ a2-[-(-a+b)]=a2-a+bA.1个 B.2个 C.3个 D.4个7、a+b-c的相反数是()A.c-a-b B.-a+b-cC.a+b+c D.a-b+c8、-{-[+3-5(x-2y)-2x]}化简的结果是()A.3-7x+10y B.-3-3x-2yC.-2+x-2y D.-3-5x+10y-2x9、若a>0,b<0时,化简|5-2b|-|2a-3b|+|b-2a|的结果是()A.5 B.5-4b C.5+2b D.5-4a+2b10、已知a>0,b>0,c<0,d<0,则下列各式中值最大的是()A.a-(b+c-d) B.a-(b-c+d)C.a-(-b+c+d) D.a+(b-c+d)11、如果-3m5n a-2与-3m|a+b-2|n3是同类项,则a=__________,b=__________;这时两项相加结果是__________.12、已知-4<x<2,则5-|x-2|+|x+4|=__________.13、托运行李p千克(p为整数)的费用为c(元).已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需加费用5角,则用含p的代数式表示托运行李费用c的表达式是__________.【巩固练习】1、下列每个图是若干盆花组成的形如三角形的图案,每条边(包括三个顶点)有n(n>1)盆花,每个图案花盆的总数是S.(1)当n=9时,S=__________;(2)按此规律推断,S与n的关系是__________.2、已知A=4ab3-5b3,B=-3ab3+2b3,求:(1)2A-B;(2)A-B;(3)B+A;(4)2B-A.3、化简求值:3a2-{-2a2-[a2-ab-2(b2-2ab)+b2]+ab},其中a=-,b=-2.4、已知(x+2)2+|y+1|=0,求5xy2-{2x2y-[3xy2-(4xy2-2x2y)]}的值.5、若a>0>b>c,且|a|<|b|<|c|.化简:|a+c|+|a+b+c|-|a-b|+|b+c|.6、三个队植树,第一队植树x棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42棵,三个队共植树多少棵?当x=100时,三个队共植树多少棵?7、在由自然数排成的数阵中,在1000的正下方的自然数是多少?1 2 5 …4 3 6 …9 8 7 ……………。
整式的加减的ppt课件

由多个单项式组成的整式,如:x + 2y、3x^2 - 4x + 5等。
整式的加减运算规则
01
02
03
合并同类项
将相同变数的项合并,如 :3x + 5x = 8x。
系数相加减
将同类项的系数进行相加 或相减,如:3x + (-2x) = x。
变数和常数相加减
在整式的加减中,变数和 常数可以相加减,如:x + 5 = x + 5。
电磁学问题
在电磁学中,电流、电压、电阻等物 理量的计算也需要使用到整式的加减 。通过整式的加减,我们可以得到更 加准确的物理量值。
整式的加减在化学问题中的应用
化学反应方程式
在化学反应方程式中,整式的加减可 以帮助我们理解反应物和生成物之间 的关系。例如,通过比较反应前后的 质量变化,我们可以计算出反应的能 量变化。
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
代数方程的求解
整式的加减在代数方程求解中有 着广泛的应用,例如线性方程、 二次方程等。通过合并同类项、 移项等整式加减运算,可以简化
方程,找到解。
函数图像的处理
在函数的学习中,整式的加减可 以帮助我们处理函数图像,例如 通过平移、伸缩等变换,使图像
利用分配律简化计算
分配律是整式加减运算的基础,灵活运用分 配律可以简化计算。
灵活运用交换律和结合律
交换律和结合律可以用来调整项的顺序,便 于计算。
合并同类项时注意符号
在合并同类项时,要注意各项的符号,正负 号要正确处理。
化简时注意化到最简形式
在化简整式时,应尽可能化到最简形式,避 免复杂计算。
整式的加减运算实例
2.4.4 整式的加减课件(共18张PPT)华东师大版(2024)数学七年级上册

典例精析 例3 先化简,再求值:2x2y - 3xy2 + 4x2y - 5xy2,其中 x = 1,y = -1.
解:2x2y - 3xy2 + 4x2y - 5xy2
= (2x2y + 4x2y) + (-3xy2 - 5xy2) = 6x2y - 8xy2. 当 x = 1,y = -1 时, 原式 = 6×12×(-1) - 8×1×(-1)2 = -14.
链接真题 2. (文山·期末) 先化简,再求值: -(4xy2 - xy + 2y) - 2(xy - y - 2xy2),且 x = -2,y = .
解:原式 = -4xy2 + xy - 2y - 2xy +xy2) + (xy - 2xy) + (-2y + 2y)
练一练 1. 求多项式 4 5x2 3x 与 2x 7x2 3的和. 解:(4 5x2 3x) (2x 7x2 3)
4 5x2 3x 2x 7x2 3 (5x2 7x2 ) (3x 2x) (4 3) 2x2 x 1.
典例精析 例2 计算:-2y3 + (3xy2 - x2y) - 2(xy2 - y3). 解:-2y3 + (3xy2 - x2y) - 2(xy2 - y3)
解:(1) 因为 A = 4x2 - 2xy + y2,B = x2 - xy + 5y2, 所以 A - 3B = (4x2 - 2xy + y2) - 3(x2 - xy + 5y2) = 4x2 - 2xy + y2 - 3x2 + 3xy - 15y2 = x2 - 14y2 + xy.
《整式的加减》PPT(第3课时)

语文课件:/keji an/yuwen/
英语课件:/keji an/ying yu/
科学课件:/keji an/kexue/
化学课件:/keji an/huaxue/
(2) x2-x4+2-5x
2.把多项式
2
4
3 2
2 3
2 x y x y 3x y x 2
降幂排列
3
例1
做大小两个长方体纸盒,尺寸如
下(单位:cm):
长
宽
高
小纸盒
a
b
c
大纸盒
1.5a
2b
2c
(1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比做小纸盒多用料多少平方厘米?
一般步骤:
历史课件:www.1ppt.c om/keji an/lishi /
1
1 2
3
1 2
x
2
(
x
y
)
(
x
y ) 的值,其中
例2 求
2
3
2
3
2
2
x
2(
x
y
)
(
x
y)
解: 2
整式的化简
3
2
3
求值问题步
1
2 2 3
1 2
x 2x y x y
(2)当a=3cm或a=7cm时,还能得到
四边形吗?这时的图形是什么形状?
(1)一个多项式加上2x2-x3-5-3x4得
3x4-5x3-3,求这个多项式。
2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册

第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
《整式的加减》课件

整式的分类
01
02
03
单项式
只包含一个项的整式,例 如:$x^2$、$5a$。
多项式
包含多个项的整式,例如 :$x^2 - 3x + 2$。
整式的次数
一个整式中,所有字母的 指数之和称为该整式的次 数,例如:$x^2$的次数 为2。
整式的加减运算规则
同类项合并
同类项是指具有相同字母和相同 指数的项,同类项可以合并,例 如:$2x^2 + 3x^2 = 5x^2$。
去括号法则
总结词
去括号法则是整式加减运算中的一项重要法则,用于消除括号并简化整式的形式。
详细描述
去括号法则包括两个步骤,一是消除括号前的正号或负号,二是将括号内的各项分别与括号前的符号相乘或相除 。例如,在整式2(x + 3y) - (2x - y)中,根据去括号法则,首先消除括号前的正号,得到2x + 6y - 2x + y,然后 分别将括号内的各项与括号前的符号相乘或相除,得到最终结果-5y。
移项法则
总结词
移项法则是整式加减运算中的另一项重要法则,用于将整式中的项从一边移动到另一边 。
详细描述
移项法则包括两个步骤,一是将整式中的项从一边移动到另一边,二是根据移动的方向 改变该项的符号。例如,在整式6x - 5 = 2x + 1中,要将-5移到等号的另一边,根据 移项法则,首先将-5从等号的左边移动到右边,并改变其符号得到+5,得到新的等式
05
练习与巩固
基础练习题
总结词
帮助学生掌握整式加减的基本概 念和运算规则。
详细描述
设计一些简单的整式加减题目, 如合并同类项、去括号等,让学 生通过练习加深对整式加减基本 概念和运算规则的理解。
整式的加减ppt课件

解:(4 5x2 3x) (2x 7x2 3)
有括号要先去括号
4 5x2 3x 2x 7x2 3
(5x2 7x2 ) (3x 2x) (4 3)
有同类项再合并同类项
2x2 x 1.
结果中不能再有同类项
练一练:求上述两多项式的差. 答案:− 12x2 + 5x + 7. 提示:对于运算结果,常将多项式按某个字母(如 x )的_降__幂__(___升__幂__)___排__列___.
本,买圆珠笔 2 支;小明买这种笔记本 4 本,买圆珠笔 3 支. 买这些笔
记本和圆珠笔,小红和小明一共花费多少钱?
思考3:小红买笔记本和圆珠笔共花费___________,小明买笔记本和圆珠笔共 花费 __________元.
思考4:小红和小明买笔记本共花费 _________元,买圆珠笔共花费 _________元.
A. 2
B.7a + 3b
C.10a + 10b
与多项式
D.12a + 8b 的和不含二次项,则
B. -2
C. 4
D.-4
4. 已知 A = 3a2 -2a + 1,B = 5a2 - 3a + 2,则2A-3B=_-_9_a_2_+__5_a_-_4__.
5. 若 mn = m + 3,则 2mn + 3m - 5mn + 10 =__1___.
2. 去括号、合并同类项; 3. 得出最后结果.
学习探究 ➢【自学】 完成《学习任务单》例4(3分钟).
例4
求
1 2
x
2
x
1 3
y2
3 2
x
1 3
整式的加减(公开课)课件

ppt课件
36
补充例题:
3.求当x= 时,多项式
解:原式=
= = 把x= 带入
∴原式=5
中,得
ppt课件
的值。
37
4.已知数a,b在数轴上的位置如图所示
a
0b
化简下列式子:
解:由题意知:a<0,b>0且|a|>|b|
∴原式=-a-2[-(a+b)]-3(b-a) =-a+2[a+b]-3b+3a =-a+2a+2b-3b+3a = (-a+2a+3a) + (2b-3b) =4a-b
点拨:对于(1)、 (3),考察的是同类项的定义,所含字母相同, 相同字母的指数也相同的称为同类项;所以(1)、 (3)不是同类项;
对于(2),虽然好像它们的次数不一样,但其实它们 都是常数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同, 但它依然满足同类项的定义,是同类项;
ppt课件
12
•-
7 括号前面出现系数怎么办?
( a + b )
•原 式
=
-
(
ppt课件
13
• -3(xy+yz+7) 试试
• = -3xy-3yz-21
-3(xy-yz-7) =-3xy+3yz+21
3 (2x2 -3x + 1)
=6x2 -9x+3 -3 (2x2 -3x + 1) =6x2 + 9x-3
答:(2) 、(4)是同类项 ppt课(件1)(3)不是同类项; ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第n个数 ( 2n ) ( 2n-1 )
(3)3,5,7,9,( 11 ),( 13 )… ( 2n+1 ) 想一想、我们在找规律时要注意什么? 1、注意找相邻两项或三项之间的规律。 2、通过具体前几项探索一般规律
解决问题
巩固提高
(3)观察下列顺序排列的等式: • 1. 9×0+1=1, • 2. 9×1+2=11, • 3. 9×2+3=21, • 4. 9×3+4=31, • 5. 9×4+5=41,... • 猜想第n个等式,(n为正整数)应为: n. 9(n-1)+n=10n-9
活动1:
如右图所示,用火柴棍拼成一排由三角
形组成的图形,如果图形中含有1,2,3或4 个三角形,分别需要多少根火柴棒? 如果图形中含有n个三角形,需要多少 根火柴棍?
n=1
n=2
n=3
n=4
2
规律:每增加一个三角形,火柴棒数增加
你是如何计算的?把你的想法与同伴进行交流 分别排出由1个、2个、3个、4个…… 三角形排成的图形。
第二章:整式的加减
数 学 活 动
—探究规律
一、2,4,8,16,( 32 ),( 64 ) 二、1,2,4,7,11,16, ( 22 ),( 29 ) 三、1,1,2,3,5,8,(13 ),( 21 ) 四、3,9,27,( 81 ),( 243 )
按 规 律 填 空:
(1)2,4,6,8,( 10 ),( 12 )… (2)1,3,5,7,( 9 ),( 11 )…
小组进行讨论 说出你的.3n元, 当n >100时, n本笔记本需要2.2n元. 观察这两个整式: 当n=100时, 需花钱230元, 而当n=101时, 只需花钱2.2×101=222.2元 出现多买比少买反而付钱少的情况, 所以如果需要100本笔记本, 应该购买101本能省钱 。
规律拼成一副图案, 第n个图案有白纸片共(3n+1) 张.
n=1
n=2
n=3
如图所示,用大小相等的小正方形拼 大正方形,拼第1个正方形需要4个小正方 形,拼第2个正方形需要9个小正方形…, 按照这样的方法拼下去,第n个大正方形比 第(n-1)个大正方形( )几个小正 方形?
小正方形的变化规律
名
称
正方形的数量 4 9 16
写成平方的形式
第1个正方形 第2个正方形 第3个正方形
第(n-1)个正方形
第n个正方形
…… ……
2 2 3 2 4 2 n 2 (n 1)
2
活动2:一种笔记本售价为2.3元/本, 如果买100本以上(不含100本), 售价为2.2元/本,列式表示: 买 n本笔记本所需钱数, 请同学们讨论下面的问题: (1)按照这种售价规定,会不会出现 多买比少买反而付钱少的情况? (2)如果需要100本笔记本,怎样购买 能省钱?
1 2
3 4 5 6
那么其余的8个数应如何
用a表示? 经 过 观 察:
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
a-8 a-1 a+6
a-7 a a+7
a-6 a+1 a+8
(4) 这个结论对于任何一个月的 月历都成立吗?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
a-8+a-7+a-6+a-1+a+a+1+a+6+a+7+a+8=9a
.如下图(1)是一个三角形,分别连接这个三角形 三边中点得到图(2);再分别连接图(2)中间小 三角形三边的中点,得到图(3). (1)图(1)、图(2)、图(3)中分别有多 少个三角形? (2)按上面的方法继续下去,第n个图形中有多 少个三角形?
活动3 做一做
7 14 21 28
1 8 15 22
29
2 9 16 23
30
3 10 17 24
31
4 11 18 25
5 12 19 26
6 13 20 27
(1)浅色方框中的9个数之和与方框正中心的数 有什么关系? 带阴影的方框中9个数之和是99,99=11×9 是正中心数11的9倍.
做一做
三角形个数 火柴棍根数
三角形个数: 火柴棍根数:
1
3
1 3
2 5
2 3+2
3 7
3 3+2+2
4 9
5 11
4 3+2+2+2
… …
…… ……
n
3+2(n-1) =2n+1
n
3+ 2 +2 + 2+…+ 2
n 1
解决问题 巩固提高
用黑白两种颜色的正方形纸片,按黑色纸片逐渐加1的
7 14 21 28
1 8 15 22 29
2 9 16 23 30
3 10 17 24 31
4 11 18 25
5 12 19 26
6 13 20 27
(2)如果将浅色方框移至图的位置,又如何? 浅色方框中9个数字之和为144,144=9×16
是正中心数16的9倍.
想一想:
如果用a表示中间的数,7