开关电源研发范例
开关电源的设计毕业论文

开关电源的设计毕业论文开关电源是一种高效率、小体积、轻质化的电源,随着现代电子设备的发展,应用越来越广泛。
开关电源的设计是电子工程专业毕业设计中的一个热门方向,本文将介绍开关电源的基本工作原理及设计方法,并以一个实际开关电源的设计为例,进行详细说明。
一、开关电源的基本工作原理开关电源的基本工作原理是将交流电源转换为直流电源,其核心部分是开关管。
开关管工作时,会在电路中产生一个高频矩形波形。
再经过滤波电路、输出稳压电路等处理后,最终输出所需要的稳定直流电源。
在开关电源中,开关管的切换是关键,它的导通和截止决定程序的整个运行。
开关管的导通与截止又是由控制器控制的,所以控制器设计是非常重要的。
二、开关电源的设计方法1.功率计算开关电源的功率计算是设计的第一步。
功率 = 电流×电压,在设计前应要明确设备所需的电流和电压值并通过功率计算公式计算得出所需的功率。
2.电路设计电路设计是开关电源设计中较为复杂的一步。
主要包括直流输入电路、开关管、反馈电路、滤波电容、输出稳压电路等部分。
这些部分需要合理的组合和设计,并应通过电路仿真进行验证。
3.控制器设计在控制器设计中,主要有PWM控制器和开环控制器。
PWM控制器通常采用电流反馈控制方式,能够减少在输出处的纹波电压,提高稳定性。
开环控制器的设计要更为复杂,但是更容易实现。
4.保护电路设计保护电路是开关电源中非常重要的一部分,保护电路通常包括电流限制保护、过压保护、过载保护,以及温度保护等。
这些保护电路能够提高开关电源的使用寿命,避免因电路故障引起的安全事故。
三、开关电源设计实例以12V60W的开关电源设计为实例。
1.功率计算P = U × I = 12V × 5A = 60W。
2.电路设计直流输入电路:直流输入电路主要包括整流桥、电容滤波器和保险丝等。
整流桥需要选择合适的电流、电压值,电容滤波器应该选择合适的容量,保险丝则是起到安全保障作用。
用uc3845b 设计开关电源实例

用uc3845b 设计开关电源实例Switching power supplies are widely used in various applications due to their high efficiency and compact design. One of the most common and popular control ICs used for designing switching power supplies is the UC3845B. This IC is known for its versatility and ease of use in various topologies such as flyback, forward, and boost.开关电源由于高效率和紧凑的设计而被广泛应用于各种领域。
在设计开关电源时常用的一个控制IC是UC3845B。
这个IC以其在飞行、正转和升压等各种拓扑结构中的通用性和易用性而闻名。
The UC3845B is a current mode PWM controller that operates at a fixed frequency and has a voltage feedforward design for improved transient response. It also has built-in soft start and frequency jitter features for reduced EMI emissions. These advanced features make the UC3845B a popular choice for designing efficient and reliable switch mode power supplies.UC3845B是一个固定频率工作的电流模式PWM控制器,具有电压前馈设计以提高瞬态响应。
基于DSP控制的PWM型开关电源的研究与开发共3篇

基于DSP控制的PWM型开关电源的研究与开发共3篇基于DSP控制的PWM型开关电源的研究与开发1随着现代电子技术的不断发展,各种电子设备已经成为了人们生活中必不可少的一部分。
而这些电子设备的电力供应往往都离不开一种被称作开关电源的技术。
在目前的众多开关电源技术中,一种基于数码信号处理器(Digital Signal Processor,DSP)控制的脉宽调制(Pulse-Width Modulation,PWM)型开关电源备受关注。
本文将立足于DSP控制的PWM型开关电源的研究与开发,从理论分析、电路设计以及实验测试等方面进行探讨。
一、理论分析在开展研究之前,我们需要先了解PWM型开关电源的基本原理。
PWM型开关电源是一种电源调节技术,它将输入电压转换为短脉冲信号,并通过改变信号的占空比来实现电压的调节。
在PWM型开关电源中,DSP作为核心控制器,通过对电源电路的控制实现对电压、电流等信号的输出控制。
因此,DSP控制技术具有快速、高效、精准等特点,是PWM型开关电源的重要控制手段。
二、电路设计在PWM型开关电源的电路设计中,首先要考虑的是所选用的数字信号处理器(DSP)。
在选择DSP时,需要考虑其性能、成本、可扩展性等因素。
其次,需要在选用的DSP的控制下设计整个PWM型开关电源的电路图。
其中,包括输入电源、滤波电路、开关管、功率变换电路、负载电路等部分,旨在将输入电压转化为输出大于或等于期望值的恒定电压。
另外,在电路设计过程中,还需要注意各部分之间的电气特性和电路参数,以便实现电源稳定、高效、低噪音的输出要求。
三、实验测试完成电路设计之后,需要进行实验测试以验证PWM型开关电源的控制效果和电气性能。
在实验过程中,我们可以通过测定输出的电压、电流大小、占空比等参数来评估所设计的PWM型开关电源的实际性能。
在实验过程中,还需要考虑到温度、负载变化等因素对PWM型开关电源的影响,以保证得到准确的实验结果。
芯片公司反激开关电源设计案例

芯片公司反激开关电源设计案例反激开关电源是一种常用的电源设计方案,它采用了开关元件的控制来实现高效率的能量转换。
对于芯片公司来说,设计一个稳定可靠的反激开关电源是至关重要的。
下面以一个具体案例来介绍芯片公司如何设计反激开关电源。
案例背景:芯片公司计划设计一款用于智能手表的反激开关电源。
该电源需要满足以下要求:输出电压为3.3V,最大输出电流为200mA,输入电压范围为3V到5V。
同时,该电源需要具备稳定可靠、高效率等特点。
设计步骤:1.电源需求分析:首先,需要对电源的工作条件进行分析。
智能手表作为一种可佩戴设备,体积小巧、功耗低是重要的特点。
因此,反激开关电源是一种理想的选择。
在电源需求分析中,需要确定输出电压和电流的要求,并考虑输入电压的范围。
2.开关电源拓扑选择:根据电源需求分析,可以选择反激开关电源作为设计方案。
反激开关电源可以提供相对较高的转换效率,并且适用于较宽的输入电压范围。
3.电源拓扑设计:在选择了反激开关电源后,需要设计电源的拓扑结构。
该案例中可以选择基于反激变换器的设计方案,使用变压器实现能量的传输。
通过选择合适的变压器匹配,可以实现输入电压到输出电压的转换。
4.元件选择:根据设计要求,选择合适的元件来搭建反激开关电源。
包括开关管、二极管、电感、电容等。
在选择元件时,需要考虑其参数和性能,并保证其可靠性和稳定性。
5.控制电路设计:反激开关电源需要一个控制电路来实现对开关管的控制。
控制电路可以采用传统的PWM或者脉冲频率调制(PFM)的控制方法。
通过控制开关管的导通与断开,实现对输出电压和电流的调节。
6.稳压电路设计:为了保证输出电压的稳定性,需要设计稳压电路。
可以采用负反馈稳压电路,通过对输出电压进行采样和比较,控制开关管的工作状态,使得输出电压能够稳定在设定值。
7.效率优化:为了提高转换效率,需要优化设计。
可以采用切换频率较高的开关管、合理选择电感和电容等方法。
通过优化设计,使能量转换更为高效。
新型开关电源优化设计与实例详解

新型开关电源优化设计与实例详解以新型开关电源优化设计与实例详解为标题,本文将从新型开关电源的基本原理、设计优化的方法以及实例分析等方面进行详细阐述。
一、新型开关电源的基本原理开关电源是一种将交流电转换为直流电的电源装置,其基本原理是通过开关管的开关动作来实现电源的开关控制。
传统的开关电源在工作过程中存在一些问题,如功率损耗大、效率低、噪声大等。
为了克服这些问题,新型开关电源采用了一些优化设计方法。
二、新型开关电源的设计优化方法1. 降低功率损耗:通过采用功率开关管的低导通电阻材料和优化电路设计,降低功率开关管的导通电阻,从而减少功率损耗。
2. 提高效率:采用高效的开关控制器和高效的变压器设计,减少能量的损耗,提高开关电源的转换效率。
3. 降低噪声:通过优化电路布局和选择低噪声元件,减少开关电源的噪声产生,提高工作环境的舒适性。
4. 提高稳定性:采用先进的控制算法和稳压电路设计,提高开关电源的稳定性,减少输出波动。
5. 减小体积:通过优化元件布局和采用高集成度的芯片设计,减小开关电源的体积,提高电源的集成度和便携性。
三、新型开关电源的实例分析以一款新型开关电源为例进行分析,该开关电源采用了先进的控制算法和高效的变压器设计,具有以下特点:1. 高效率:通过优化的开关控制器和变压器设计,该开关电源的转换效率达到了90%以上,相比传统开关电源提高了20%以上。
2. 低噪声:采用低噪声元件和优化的电路布局,该开关电源的噪声水平明显低于传统开关电源,提高了工作环境的舒适性。
3. 稳定性强:通过先进的控制算法和稳压电路设计,该开关电源的输出稳定性非常好,输出波动小于1%。
4. 小巧便携:采用高集成度的芯片设计和优化的元件布局,该开关电源的体积明显减小,非常适合便携式设备的使用。
以上是对新型开关电源优化设计与实例的详细阐述。
通过采用优化设计方法,新型开关电源在功率损耗、效率、噪声、稳定性和体积等方面都得到了显著提升,满足了现代电子设备对电源的高要求。
开关电源研发范例

1 目的希望以簡短的篇幅,將公司目前設計的流程做介紹,若有介紹不當之處,請不吝指教.2 設計步驟:2.1 繪線路圖、PCB Layout.2.2 變壓器計算.2.3 零件選用.2.4 設計驗證.3 設計流程介紹(以DA-14B33為例):3.1 線路圖、PCB Layout 請參考資識庫中說明.3.2 變壓器計算:變壓器是整個電源供應器的重要核心,所以變壓器的計算及驗証是很重要的,以下即就DA-14B33變壓器做介紹.3.2.1 決定變壓器的材質及尺寸:依據變壓器計算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 鐵心飽合的磁通密度(Gauss)➢ Lp = 一次側電感值(uH)➢ Ip = 一次側峰值電流(A)➢ Np = 一次側(主線圈)圈數➢ Ae = 鐵心截面積(cm 2)➢ B(max) 依鐵心的材質及本身的溫度來決定,以TDK FerriteCore PC40為例,100℃時的B(max)為3900 Gauss ,設計時應考慮零件誤差,所以一般取3000~3500 Gauss 之間,若所設計的power 為Adapter(有外殼)則應取3000 Gauss 左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae 越高,所以可以做較大瓦數的Power 。
3.2.2 決定一次側濾波電容:濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win)越高,可以做較大瓦數的Power ,但相對價格亦較高。
3.2.3 決定變壓器線徑及線數:當變壓器決定後,變壓器的Bobbin 即可決定,依據Bobbin 的槽寬,可決定變壓器的線徑及線數,亦可計算出線徑的電流密度,電流密度一般以6A/mm 2為參考,電流密度對變壓器的設計而言,只能當做參考值,最終應以溫昇記錄為準。
3.2.4 決定Duty cycle (工作週期):由以下公式可決定Duty cycle ,Duty cycle 的設計一般以50%為基準,Duty cycle 若超過50%易導致振盪的發生。
一种高功率因素开关电源的研究与设计(优秀毕业设计)

摘要
第一章绪论
随着社会信息和工业技术的不断发展,作为电子电路、电器和电动设备的工作动力的电源装置的需求量日益增长,并对其体积、重量、效率、可靠性和性能等方面提出了更高的要求。
1.1线性电源和开关电源的对比
按功率管的工作方式划分,直流电源主要分为两类:线性电源和开关电源,线性电源中的功率管工作在线性放大区,开关电源则是在线性电源的基础上发展起来的,其功率管工作在开关状态,在很大程度上克服了线性电源的缺点,但其自身也有一定的不足。
1.1.1线性电源
线性电源的工作过程为:工频电压先经工频变压器降压后,进行整流滤波,然后经过功率管放大输出,再将取样电压和基准电压比较后经驱动电路驱动功率管进行输出电压调整,最后输出纹波电压和性能符合要求的直流电压。
70年代后期,随着各种功率晶体管、高频电容、开关二极管、高频变压器磁芯等器件被成功地研制出,使开关电源的发展走上了通过提高工作频率实现小型化的道路。
不难看出,开关电源的发展是与当今经济社会发展对科学技术的要求分不开的,开关电源的高效性适应了当今能源问题严峻的状况;它的高频化适应了现代化装置和设备对电源轻、薄、短、小的严格要求;它的控制器高度集成化,适应了任何电控设备对电源的高可靠性要求。
1.2.2
我国的晶体管直流变换器及开关稳压电源的研制工作始于60年代初期,到60年代中期进入实用阶段,70年代初开始研制无工频变压器开关稳压电源。近10多年来,许多研究机构、高校和工厂研制出多种类型的开关电源,并广泛用于电子计算机、通讯和彩色电视机等领域,效果较好。工作频率为100kHz~200kHz的高频开关稳压电源于90年代初试制成功,已走向应用阶段。90年代后,随着国外控制芯片的发展和引进,200kHz以上工作频率的开关电源研制也逐步走向成熟,并在许多领域替代了工作频率较低的开关电源。目前国内正在致力于研制高工作频率、多功能化、高效率的开关电源。
开关电源设计经典实例.pdf.pdf

摘要开关电源是应用于广泛领域的一种电力电子装置。
它具有电能转换效率高、体积小、重量轻、控制精度高和快速性好等优点,在小功率范围内基本取代了线性电源,并迅速想大功率范围推进,在很大程度上取代了晶闸管相控整流电源。
可以说,开关电源技术是目前中小功率直流电能变换装置的主流技术。
本文首先描述了开关电源的发展,对目前出现的几种典型的开关电源技术作了归纳总结和分析比较,在此基础上指出了开关电源技术的发展状况和开关电源产品的发展趋势。
并且对开关电源的发展史、应用范围、主电路的选择、控制方法作了简要的介绍。
在设计中主要采用了脉宽调制(PWM)、全桥整流、自锁保护等技术,应用了控制芯片UC3842做为PWM控制芯片,对变压器次级线圈采用堆叠式绕法,改进光耦反馈电路的选择,使电路能达到所需基本要求同时,力求稳定、高效。
关键字:开关电源,拓扑结构,变压器,正激式AbstractThe switch power supply is a kind of electric power electronics which applies in the extensive realm to be used.It has an electric power conversion's efficiency high, the physical volume is small, the weight is light, the control accuracy is high with fast etc. advantage, within the scope of small power replaced line power supply, and in high-power scope propulsion quickly, to a large extent,it replaced the thyristor phase - controlled rectifying power supply.We can say, the switch power supply technique is the essential technique which wins small electric power transformation of the power direct current to equip currently.This text described the development of switch power supply first, to a few kinds which appear currently typical model of the switch power supply technique made to induce summary and analysis comparison, pointing out the development trend of the technical development condition of the switch power supply and switch power supply product on this foundation.And introduce the switch power supply’s phylogeny,application, main electric circuit of power supply and controled a method. The design adopted PWM, the whole bridgeses commutated, lock protection etc. technique, applied control the chip UC3842 to be used as PWM control chip, the transformer adoprt adopt pile circle, improve the choice of the electric circuit, make the electric circuit be able to attain need basic request in the meantime, try hard for stability, efficiently.Key words:Switch power supply,topology,transform,Forward目录摘要 (I)Abstract ............................................................................................................................................ I I 目录 .. (III)1 绪论 (1)1.1 引言 (1)1.2 开关电源的发展历史 (1)1.2.1 国外发展历史 (1)1.2.2 国内发展状况 (2)1.3 目前需要克服的困难 (2)1.4 开关电源的发展趋势 (3)1.5 本文的设计要求 (4)2 开关电源的工作原理 (6)2.1 开关电源的基本构成 (6)2.2 开关电源常用的拓扑结构分析 (6)2.2.1 降压型 (6)2.2.2 升压型 (7)2.2.3 升降压型 (8)2.2.4 反激式 (9)2.2.5 正激式 (11)2.2.6 推挽式 (12)2.3 拓扑结构的确定 (13)3. 基于UC3842的开关电源的设计与实现 (14)3.1 开关电源电路的设计 (14)3.1.1 开关电源电路的总体简介 (14)3.1.2 基于UC3842的基本结构 (14)3.1.3 各部分功能简介 (14)3.2 UC3842芯片简介 (15)3.2.1 UC3842的特点 (15)3.2.2内部结构和引脚图 (16)3.2.3 引脚功能 (16)3.2.4 芯片工作原理 (17)3.3 各部分回路设计 (18)3.3.1 主回路的设计 (18)3.3.2 控制保护回路的设计 (21)3.3.3 反馈电路的设计 (23)3.4 外围主要器件的选取 (23)4. 开关电源变压器的设计 (28)4.1 与变压器相关的一些基本概念 (28)4.2 变压器用料介绍 (30)4.3 高频变压器的设计 (32)4.4 变压器的绕制方法 (35)结论 (38)致谢 (39)参考文献 (40)附录总原理图 (41)1 绪论1.1 引言电子技术的高速发展,电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入 90 年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电力检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip =一次侧峰值电流(A) ➢ Np =一次侧(主线圈)圈数 ➢ Ae = 铁心截面积(cm 2)➢ B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
xD Vin D x V Vo Np Ns D (min))1()(-+=➢ N S = 二次侧圈数➢ N P = 一次侧圈数➢ Vo = 输出电压➢ V D = 二极管顺向电压➢ Vin(min) = 滤波电容上的谷点电压➢ D = 工作周期(Duty cycle)3.2.5 决定Ip 值:I Iav Ip ∆+=21 ηxDx Vin Pout Iav (m in)= fP x Lp Vin I (min)=∆ ➢ Ip = 一次侧峰值电流➢ Iav = 一次侧平均电流➢ Pout = 输出瓦数➢ =η效率➢ =f PWM 震荡频率3.2.6 决定辅助电源的圈数:依据变压器的圈比关系,可决定辅助电源的圈数及电压。
3.2.7 决定MOSFET 及二次侧二极管的Stress(应力):依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准。
3.2.8 其它:若输出电压为5V 以下,且必须使用TL431而非TL432时,须考虑多一组绕组提供Photo coupler 及TL431使用。
3.2.9 将所得资料代入Gauss x NpxAeLpxIp B 100(max )=公式中,如此可得出B(max),若B(max)值太高或太低则参数必须重新调整。
3.2.10 DA-14B33变压器计算:✧ 输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm ,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm.✧ 假设f T = 45 KHz ,Vin(min)=90V ,η=0.7,P .F.=0.5(cos θ),Lp=1600 Uh✧ 计算式:● 变压器材质及尺寸:✧ 由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm 2,可绕面积(槽宽)=10mm ,因Margin Tape 使用2.8mm ,所以剩余可绕面积为4.4mm. ✧ 假设滤波电容使用47uF/400V ,Vin(min)暂定90V 。
● 决定变压器的线径及线数:A x x x x Vin Pout Iin 42.05.07.0902.13cos (m in)===θη ✧ 假设N P 使用0.32ψ的线电流密度=A x x 286.11024.014.342.0232.014.342.02==⎪⎭⎫ ⎝⎛ 可绕圈数=()圈線徑剩餘可繞面績57.1203.032.04.4=+= ✧ 假设Secondary 使用0.35ψ的线电流密度=A x x 07.440289.014.34235.014.342==⎪⎭⎫ ⎝⎛ ✧ 假设使用4P ,则电流密度=A 02.11407.44= 可绕圈数=()圈57.1103.035.04.4=+ ● 决定Duty cycle:✧ 假设Np=44T ,Ns=2T ,V D =0.5(使用schottky Diode)()()DVin D V Vo Np Ns D (min)1-+= ()()%2.489015.03.3442=⇒-+=D DD● 决定Ip 值:I Iav Ip ∆+=21 A x x xD x Vin Pout Iav 435.0482.07.0902.13(min)===η A Kx u f D x Lp Vin I 603.045482.0160090(min)===∆ A Ip 737.02603.0435.0=+=● 决定辅助电源的圈数:假设辅助电源=12V128.31=A N Ns 128.321=A N N A1=6.3圈假设使用0.23ψ的线可绕圈数=圈13.19)02.023.0(4.4=+ 若N A1=6Tx2P ,则辅助电源=11.4V● 决定MOSFET 及二次侧二极管的Stress(应力):MOSFET(Q1) =最高输入电压(380V)+()D V Vo Ns Np + =()5.03.3244380++ =463.6VDiode(D5)=输出电压(Vo)+Np Ns x 最高输入电压(380V) =3804423.3x + =20.57V Diode(D4)=)380()(2V x NpNs N A 最高輸入電壓輸出電壓+=3804446.6x +=41.4V ● 其它:因为输出为3.3V ,而TL431的Vref 值为2.5V ,若再加上photo coupler 上的压降约1.2V ,将使得输出电压无法推动Photo coupler 及TL431,所以必须另外增加一组线圈提供回授路径所需的电压。
假设N A2 = 4T 使用0.35ψ线,则可绕圈数=()T 58.1103.035.04.4=+,所以可将N A2定为4Tx2P 228.3A A V N Ns = V V V A A 6.78.34222=⇒= ● Gauss x x x Gauss x NpxAe LpxIp B 3.311610086.044737.01600)(100(max )=== ● 变压器的接线图:3.3 零件选用:零件位置(标注)请参考线路图: (DA-14B33 Schematic)3.3.1 FS1:由变压器计算得到Iin 值,以此Iin 值(0.42A)可知使用公司共享料2A/250V ,设计时亦须考虑Pin(max)时的Iin 是否会超过保险丝的额定值。
3.3.2 TR1(热敏电阻):0.32Φx1Px22T0.32Φx1Px22T0.35Φx2Px4T0.35Φx4Px2T0.23Φx2Px6T电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。
3.3.3VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
3.3.4CY1,CY2(Y-Cap):Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。
3.3.5CX1(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ1/4W)。
3.3.6LF1(Common Choke):EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
3.3.7BD1(整流二极管):将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。
3.3.8C1(滤波电容):由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。