pikakt信号通路图谱
PI3KAKT、RTK相关、TGF

RTK在细胞增殖、分化、迁移、凋亡等生理过程中发挥重要作用。
A
B
C
D
RTK通过激活下游信号通路,促进细胞周期进展和DNA合成,从而推动细胞增殖。
细胞增殖
细胞分化
细胞迁移
细胞凋亡
RTK信号通路参与调控细胞分化相关基因的表达,决定细胞向不同方向分化。
PI3KAKT与RTK信号通路的交叉对话
RTK通过磷酸化作用激活PI3K,进而激活AKT信号通路,参与细胞生长、增殖和存活等过程的调控。
PI3KAKT信号通路可以被RTK激活
PI3KAKT信号通路的激活可以促进RTK的表达和活性,形成正反馈调节机制,进一步放大信号效应。
PI3KAKT信号通路对RTK的反馈调节
单克隆抗体
针对RTK的特异性抗体,可以阻断RTK与其配体的结合,进而抑制RTK信号通路的激活。
多靶点抑制剂
同时抑制多个RTK的活性,具有更广泛的抗肿瘤谱和更低的耐药性。
03
02
01
THANKS
感谢您的观看。
调节细胞代谢
PI3KAKT信号通路可以调节细胞的糖酵解、脂肪酸合成和蛋白质合成等代谢过程,以满足细胞生长和增殖的需求。
02
CHAPTER
RTK相关信号通路
1Leabharlann 23RTK(Receptor Tyrosine Kinase)是一类受体酪氨酸激酶,其结构包括细胞外配体结合域、跨膜域和细胞内酪氨酸激酶域。
RTK通过调控细胞骨架重排和黏附分子的表达,影响细胞的迁移能力。
RTK信号通路在细胞凋亡过程中发挥双向调控作用,既可以促进也可以抑制细胞凋亡。
PIKAKT信号通路图谱

P I K A K T信号通路图谱公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]PI3K/AKT信号通路磷脂酰肌醇3-激酶(PI3Ks)信号参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节. 近年来发现, IA型PI3K和其下游分子蛋白激酶B(PKB或Akt)所组成的信号通路与人类肿瘤的发生发展密切相关. 该通路调节肿瘤细胞的增殖和存活, 其活性异常不仅能导致细胞恶性转化, 而且与肿瘤细胞的迁移、黏附、肿瘤血管生成以及细胞外基质的降解等相关, 目前以PI3K-Akt信号通路关键分子为靶点的肿瘤治疗策略正在发展中.在PI3K家族中, 研究最广泛的是能被细胞表面受体所激活的I型PI3K. 哺乳动物细胞中Ι型PI3K又分为IA和IB两个亚型, 他们分别从酪氨酸激酶连接受体和G蛋白连接受体传递信号.IA 型PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白, 具有类脂激酶和蛋白激酶的双重活性.PI3K通过两种方式激活, 一种是与具有磷酸化酪氨酸残基的生长因子受体或连接蛋白相互作用, 引起二聚体构象改变而被激活; 另一种是通过Ras和p110直接结合导致PI3K的活化. PI3K激活的结果是在质膜上产生第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白Akt和PDK1(phosphoinositidedependentkinase-1)结合, 促使PDK1磷酸化Akt蛋白的Ser308导致Akt的活化. Akt还能通过PDK2(如整合素连接激酶ILK)对其Thr473的磷酸化而被激活.活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad 、Caspase9、NF-κB、GSK-3、FKHR、p21Cip1和p27 Kip1等, 进而调节细胞的增殖、分化、凋亡以及迁移等. PI3K-Akt信号通路的活性被类脂磷酸酶PTEN(phosphatase and tensin homolog deleted on chromosome ten)和SHIP(SH2-containing inositol 5-phosphatase)负调节, 他们分别从PIP3的3′和5′去除磷酸而将其转变成PI(4,5)P2和PI(3,4)P2而降解. 迄今为止, 尚未发现下调Akt活性的特异磷酸酶, 但用磷酸酶抑制剂处理细胞后, 发现Akt 的磷酸化和活性均有所增加. 最近发现Akt能被一种C末端调节蛋白(CTMP)所失活, CTMP能结合Akt并通过抑制Akt的磷酸化而阻断下游信号的传递, CTMP的过表达能够逆转v-Akt转化细胞的表型. 热休克蛋白90(HSP90)亦能结合Akt, 阻止Akt被PP2A磷酸酶的去磷酸化而失活, 因此具有保护Akt的作用.本信号转导涉及的信号分子主要包括Integrin,FAK,Paxillin,ILK,PIP3,S6,p70S6K,RTK,Gab1,Gab2,IRS-1,PI3K,PTEN,AKT,PDK1,Cytokine Receptor,Jak1,CD19,BCR,Ag,BCAP,Syk,Lyn,GPCR,TSC1,TSC2,Gβγ,GαGTP,PP2A,PHLPP,CTMP,PDCD4,4E-BP1,ATG13,mTORC1,TSC1,TSC2,PRAS40,XIAP,FoxO1,Bim,Bcl-2,Bax,MDM2,p53,Bax,Bad,14-3-3,Wee1,Myt1,p27Kip1,p21Waf1/Cip1,CyclinD1,GSK-3,GS,Bcl-2,mTORC2,LaminA,Tpl2,IKKα,eNOS,GABAAR,Huntingtin,Ataxin-1,PFKFB2,PIP5K,AS160等。
第六节 PI3K-Akt PPT课件

胰岛素受体
Shc P-Y
Y-P
Y-P
IRS
Y-P
Ras
Raf-1 MEK
PI-3K PDKs PKB
磷脂酰肌醇依赖性PK
MAPK
葡萄糖转运 基因表达 细胞生长 增殖及分化 糖酵解 糖原合成 蛋白质合成
抑制细胞凋亡
IRS家族:IRS-1,IRS-2,IRS-3,IRS-4分子量不同 (1)结构 亲水性蛋白,高度保守,N末端具有PH结构,能特异结合 磷脂及胞内其它蛋白Sos, PKB, β-ark 含有与胞内P-Tyr结合的结构域(SH2); 20个可磷酸化Tyr;>30个Ser/Thr供磷酸化 (2)功能:胰岛素信号传递与放大调节信号 Shc蛋白: 与IRS类似的受体底物
α
受体
P-S967 P-S968
Y927-P
近膜结构域
β
P-S1305
P-S1306 P-T1348
Y1158-P Y1162-p Y1163-P
激酶结构域
C端结构域与 细胞增殖有 关;
SerThr残基 可被PKC磷 酸化(调节 有关)
1328Y-P 1334y-P
C端结构域
(二)胞内胰岛素受体底物 intracellular substrates of insulin receptor(IRS)
2.磷脂酰肌醇3-激酶(PI3K)途径
insulin-R IRS-1(-P) PI3-K
PDK Akt/PKB
胰岛素与其受体结合,PI3-K与磷酸化IRS-1结合,刺激催化亚基活性, 当P85亚基2个SH2结构域被磷酸化模体YMXM占领,PI3-K活性达到最 大。
PKB靶蛋白:
磷酸果糖激酶-2、糖原合成激酶3、Bad(细胞凋亡有关)、核糖体S6激酶, 与葡萄糖转运、细胞增殖分化、细胞周期调节有关
小分子抑制剂、激动剂、拮抗剂--PI3KAktmTOR信号通路

PI3K/AKT/mTORPI3K/AKT/mTOR是调节细胞周期的重要细胞内信号通路。
PI3K/AKT/mTOR信号通路与细胞的生长、存活、增殖、凋亡、血管生成、自吞噬过程中发挥着重要的生物学功能。
该通路是由磷脂酰肌醇3- 激酶(PI3Ks)、丝氨酸/苏氨酸蛋白激酶(Akt)和哺乳动物雷帕霉素靶蛋白(mTOR)组成。
PI3K/Akt/mTOR通路过程PI3K激活后产生PIP3, PIP3促使PDK1(phosphoinositide dependent kinase-1)磷酸化含有PH结构域的信号AKT蛋白(Ser308),从而活化AKT。
AKT有很多下游效应,可通过磷酸化多种酶、激酶和转录因子等下游因子,进而调节细胞的功能。
mTOR,是PI3K/Akt 下游的一种重要的丝氨酸-苏氨酸蛋白激酶,调节肿瘤细胞的自噬的经典通路。
PI3K/Akt/mTOR信号通路图按靶点分类:*PI3KPI3K,是一种胞内磷脂酰肌醇激酶,也具有丝氨酸/苏氨酸(Ser/Thr)激酶的活性。
能够通过PI3K诱发PIP3生成的激活因子,则能够激活Akt 信号途径,包括受体酪氨酸激酶、整合素、B 细胞和T 细胞受体、细胞因子受体、G 蛋白偶联受体等等。
*Akt又称PKB或Rac,是一种丝氨酸/苏氨酸特异性蛋白激酶B,在细胞存活和凋亡中起重要作用,如葡萄糖代谢、凋亡、细胞增殖、转录和细胞迁移。
Akt的Thr308可以被PDK1磷酸化,而被部分激活。
或者473位点上的丝氨酸被mTORC2磷酸化,激发Akt的完全酶活性。
*mTORmTOR是细胞生长和增殖的重要调节因子。
mTOR与其它蛋白质结合,形成两种不同蛋白质复合物,mTORC1和mTORC2,参与调节不同的细胞过程。
*GSK-3。
Akt信号转导通路课件

实验结果。
选择合适的细胞模型
02
根据研究目的选择合适的细胞系或原代细胞进行实验。
设计实验方案
03
根据研究目的和细胞模型,设计合理的实验方案,包括实验分
组、处理条件、观察指标等。
Akt信号转导通路的常用实验技术与方法
01
02
03
04
05
Western blot
RT-PCR或实时荧 免疫荧光染色 光…
Akt信号通路在肿瘤细胞侵袭和转移中的作用
Akt能够调节细胞骨架重排、细胞黏附和迁移等过程,促进肿瘤细胞的侵袭和转移能力 。
Akt信号通路在肿瘤血管生成中的作用
Akt通过促进血管内皮生长因子(VEGF)的表达和血管生成相关因子的活化,参与肿 瘤血管生成过程。
Akt信号转导通路与神经退行性疾病的关系
Akt信号转导通路对细胞增殖的调控作用
促进细胞周期进程
Akt通过磷酸化作用激活下游靶蛋白,如mTOR和Cyclin D等,进而促进细胞从G1期进入S期,加速细胞周期进程 。
01
抑制细胞凋亡
Akt可磷酸化并抑制凋亡相关蛋白,如 Bad和Caspase-9等,从而抑制细胞凋 亡,促进细胞存活和增殖。
02
Akt的磷酸化
Akt在Thr308和Ser473两个关键位点被磷酸化后完全激活 ,这两个位点的磷酸化分别由PDK1和mTORC2等激酶催化
。
Akt的核转位
激活的Akt从细胞质转位到细胞核,通过与转录因子等作用 ,调控基因表达。
Akt信号转导通路的调控因子
PTEN
PTEN是一种磷酸酶,可将PIP3去磷酸化生 成PIP2,从而负调控PI3K/Akt信号通路。
激酶活性测定
PI3K-AKT信号通路

PI3K/AKT信号通路PKB是通过磷酸化之后,才使其发挥的作用的活性状态,但是在细胞内的总表的水平不变,只有磷酸化水平发生变化,所以检测其磷酸化水平的变化是检测这一通路的方法。
western-blot这条信号通路中,AKT是核心,其上游除了PI3K还有其他,但最重要的是PI3K。
一般认为AKT信号通路就是PI3K/AKt信号通路。
AKT下游非常多,Nf-kB、VEGF、FOXO等等,多是促增殖抑凋亡的因子(也有像FOXO这样的抑生长促凋亡的因子,但AKT活化后是使FOXO失活的,所以最终结果还是促生长抑凋亡)。
其中,BAD TSC DAF YAP的作用见下:BAD: The protein encoded by this gene is a member of the BCL-2 family. BCL-2 family members are known to be regulators of programmed cell death. This protein positively regulates cell apoptosis by forming heterodimers with BCL-xL and BCL-2, and reversing their death repressor activity. Proapoptotic activity of this protein is regulated through its phosphorylation. Protein kinases AKT and MAP kinase, as well as protein phosphatase calcineurin were found to be involved in the regulation of this protein. Alternative splicing of this gene results in two transcript variants which encode the same isoform. [provided by RefSeq, Jul 2008]TSC: This gene encodes a growth inhibitory protein thought to play a role in the stabilization of tuberin. Mutations in this gene have been associated with tuberous sclerosis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2009]DAF(CD55): his gene encodes a protein involved in the regulation of the complement cascade. The encoded glycoprotein is also known as the decay-accelerating factor (DAF); binding of DAF to complement proteins accelerates their decay, disrupting the cascade and preventing damage to host cells. Antigens present on the DAF glycoprotein constitute the Cromer blood group system (CROM). Two alternatively spliced transcripts encoding different proteins have been identified. The predominant transcript encodes a membrane-bound protein expressed on cells exposed to plasma component proteins but an alternatively spliced transcript produces a soluble protein present at much lower levels. Additional, alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]YAP: This gene encodes a downstream nuclear effector of the Hippo signaling pathway which is involved in development, growth, repair, and homeostasis. This gene is known to play a role in the development and progression of multiple cancers as a transcriptional regulator of this signaling pathway and may function as a potential target for cancer treatment. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Aug 2013]。
细胞信号通路图解介绍之PI3KAkt信号通路

细胞信号通路图解介绍之PI3KAkt信号通路丝/苏氨酸激酶Akt/PKB最初发现是作为一种原癌基因,现在已受到广泛的关注,因为其在很多的细胞活动中都起到关键性的作用,包括癌症的发展和胰岛素代谢。
Akt级联反应可以被许多机制激活,诸如受体酪氨酸激酶,整合素,B细胞和T细胞受体,细胞因子受体,G 蛋白偶联受体以及其他各种刺激,这些途径可以促使肌醇磷脂-3-激酶(PI3K )产生磷脂酰肌醇3,4,5 -三磷酸。
这些脂类物质为含有PH结构域(pleckstrin-homologydomain)的蛋白提供锚定位点,这些分子包括Akt和它的上游活化因子PDK1。
肿瘤抑制基因PTEN是一种公认的Akt的主要抑制剂,通常在人类肿瘤中会消失。
最近,越来越多的关注集中在磷酸酶(包括PHLIP)上,它能使Akt失活。
三种Akt的异构体(Akt1, Akt2,Akt3 )介导了许多PI3K 调控的下游通路。
Akt是胰岛素信号传递和葡萄糖代谢中主要的调节分子,小鼠的遗传学研究发现Akt2 在这些过程中起关键作用。
另外,现在已经发现癌症和胰岛素代谢在病理情况下会出现Akt的种系突变。
Akt作用于TSC1/TSC2复合物和mTOR信号通路来调控细胞生长;作用于CDK 的抑制分子P21和P27,并间接影响cyclinD1和p53的表达水平来调控细胞周期和细胞增殖。
Akt可以通过直接抑制促凋亡信号如促凋亡调节者Bad和Forkhead家族转录因子来促进细胞的存活。
T淋巴细胞转运到淋巴组织这个过程是由Akt下游的粘附因子的表达来控制的。
Akt还能调控神经元功能相关蛋白如GABA受体,ataxin-1 和huntingtin 分子。
最近,Akt又被发现能和Smad 分子结合调节TGF β信号传导。
最后,Akt对核纤层蛋白A抗原的磷酸化在核蛋白的结构组织中发挥作用。
这些发现使Akt/PKB成为在治疗癌症,糖尿病,中风和神经退行性疾病中的重要靶点。
PI3K/AKT信号通路与心力衰竭

PI3K/AKT信号通路与心力衰竭摘要:丝氨酸/苏氨酸激酶(serine/threoninekinase,AKT)是真核细胞中参与细胞信号转导的关键分子目前已经证实PI3K(phosphatidylinositol-3-kinase,PI3K)/AKT信号通路在人类肿瘤、代谢紊乱、肾脏疾病以及精神障碍等疾病中发挥着重要的作用。
近年来的研究还发现P13K/AKT信号通路的激活会对心肌细胞的生长、代谢以及凋亡等活动产生影响,且该通路及其中的很多受体、激酶被证实与心力衰竭关系密切,这使该信号通路在心力衰竭的发病机制、诊断及治疗等方面的研究日益受到重视。
总结PI3K/AKT的结构特点、相关信号转导机制及其与心力衰竭的关系将有利于更好地理解心力衰竭的发病机制。
关键词:心力衰竭;磷脂酰肌醇3-激酶(PI3K);丝氨酸/苏氨酸激酶(AKT);信号通路ThePI3K/AKTSignalingPathwayandHeartFailureFANLiang-liang1,MALi-ning2,PENGYuan-liang1,XIANGRong1*(1.DepartmentofCellBiology,SchoolofLifeSciences,CentralSouthUniversity,Changsha410013,Hunan,China;2.HainanGeneralHospital,Haikou570311,Hainan,China)Abstract:Serine/threoninekinase(AKT)isakeymoleculewhichparticipatesinthecellularsignaltrans?ductionofeukaryoticcells.No withasbeenconfirmedthatthePI3K(phosphatidylinositol-3-kinase,PI3K)/AKTsignalingpathwayplaysanimportantroleinhumandiseases,suchasswelling,metabolicdisorders,kidneydiseasesandmentaldisorders.Researchinrecentyearshasalsodiscoveredthattheacti vationofPI3K/AKTsignalpathwaywouldhaveeffectonthegrowth,metabolismandapoptosisofmyocardialcell.Be?sides,thissignalingpathway,togetherwithmanyofitsreceptorsandkinaseshasbeenprovedtohavecloserelationwithhear tfailure.Becauseofallthesemechanisms,peoplearepayingmoreattentiontotheroleofthispathwayinresearchaboutthepathogenesis,diagnosisandtreatmentofheartfailure.Tosummarizethestructurecharacteristicsandtherel atedsignaltransductionpathwayofPI3K/AKTwillhelpusunderstandthemechanismandrel ationshipofPI3K/AKTpathwayandheartfailure.Keywords:heartfailure;PI3K(phosphatidylinositol-3-kinase);AKT (serine/threoninekinase);signalingpathway(LifeScienceResearch,2015,19(1):085?090)心力衰竭(heartfailure,HF)是指各种原因造成的心肌受损,使心脏收缩和(或)舒张功能出现障碍,心脏泵血功能下降,在足够的充盈压下不能射出相应血量来满足机体需要而引发的一组临床综合征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P I3K/A K T信号通路
磷脂酰肌醇3-激酶(PI3Ks)信号参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节. 近年来发现, IA型PI3K和其下游分子蛋白激酶B(PKB或Akt)所组成的信号通路与人类肿瘤的发生发展密切相关. 该通路调节肿瘤细胞的增殖和存活, 其活性异常不
仅能导致细胞恶性转化, 而且与肿瘤细胞的迁移、黏附、肿瘤血管生成以及细胞外基质的降解等相关, 目前以PI3K-Akt信号通路关键分子为靶点的肿瘤治疗策略正在发展中.
在PI3K家族中, 研究最广泛的是能被细胞表面受体所激活的I型PI3K. 哺乳动物细胞中Ι型PI3K又分为IA和IB两个亚型, 他们分别从酪氨酸激酶连接受体和G蛋白连接受体传递信号.IA 型PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白, 具有类脂激酶和蛋白激酶的双重活性.PI3K通过两种方式激活, 一种是与具有磷酸化
酪氨酸残基的生长因子受体或连接蛋白相互作用, 引起二聚体构象改变而被激活; 另
一种是通过Ras和p110直接结合导致PI3K的活化. PI3K激活的结果是在质膜上产生
第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白Akt和
PDK1(phosphoinositidedependentkinase-1)结合, 促使PDK1磷酸化Akt蛋白的
Ser308导致Akt的活化. Akt还能通过PDK2(如整合素连接激酶ILK)对其Thr473的磷酸化而被激活.活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad 、Caspase9、NF-κB、GSK-3、FKHR、 p21Cip1和p27 Kip1等, 进而调节细胞的增殖、分化、凋亡
以及迁移等.
PI3K-Akt信号通路的活性被类脂磷酸酶PTEN(phosphatase and tensin homolog deleted on chromosome ten)和SHIP(SH2-containing inositol 5-phosphatase)负调节, 他们分别从PIP3的3′和5′去除磷酸而将其转变成PI(4,5)P2和PI(3,4)P2而降解. 迄今为止, 尚未发现下调Akt活性的特异磷酸酶, 但用磷酸酶抑制剂处理细胞后, 发
现Akt的磷酸化和活性均有所增加. 最近发现Akt能被一种C末端调节蛋白(CTMP)所失活, CTMP能结合Akt并通过抑制Akt的磷酸化而阻断下游信号的传递, CTMP的过表达能够逆转v-Akt转化细胞的表型. 热休克蛋白90(HSP90)亦能结合Akt, 阻止Akt被
PP2A磷酸酶的去磷酸化而失活, 因此具有保护Akt的作用.
本信号转导涉及的信号分子主要包括
Integrin,FAK,Paxillin,ILK,PIP3,S6,p70S6K,RTK,Gab1,Gab2,IRS-1,PI3K,PTEN,AKT,PDK1,Cytokine Receptor,Jak1,CD19,BCR,Ag,BCAP,Syk,Lyn,GPCR,TSC1,TSC2,Gβγ,GαGTP,PP2A,PHLPP,CTMP,PDCD4,4E-BP1,ATG13,mTORC1,TSC1,TSC2,PRAS40,XIAP,FoxO1,Bim,Bcl-2,Bax,MDM2,p53,Bax,Bad,14-3-3,Wee1,Myt1,p27Kip1,p21Waf1/Cip1,CyclinD1,GSK-3,GS,Bcl-2,mTORC2,LaminA,Tpl2,IKKα,eNOS,GABAAR,Huntingtin,Ataxin-1,PFKFB2,PIP5K,AS160等。