摩擦学
摩擦学原理知识点总结

摩擦学原理知识点总结摩擦学是研究物体之间相对运动时所产生的摩擦现象和规律的科学。
摩擦学原理包括摩擦的定义、摩擦力的产生原因,摩擦力的类型、摩擦力的计算方法等内容。
通过了解摩擦学原理,可以更好地理解摩擦力的作用和影响,从而在工程、物理学和机械设计等领域得到应用。
一、摩擦的定义摩擦,是指两个物体相对运动时,在它们接触表面上由于微观不平整而发生的阻力,这种阻力叫做摩擦力。
摩擦力是一种非常微小的力,通常在我们的日常生活中会忽略它的存在。
摩擦力的大小取决于物体表面的光滑程度、压力大小以及接触面积等因素。
二、摩擦力的产生原因摩擦力的产生是由于物体表面的不规则微观结构,当两个物体表面接触时,这些微不足道的不规则结构会相互干涩地牵引、压迫、撞击对方而产生的一种相对运动阻力。
三、摩擦力的类型1、静摩擦力当两个物体相对运动时,接触面会产生一个阻碍相对滑动的摩擦力,这就是静摩擦力。
静摩擦力的大小与物体之间的正压力成正比,即F_s = μ_sN,其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。
静摩擦力通常比动摩擦力大,当施加在物体上的力小于静摩擦力时,物体不会发生相对滑动。
一旦施加的力达到或超过了静摩擦力,物体就会开始发生相对滑动。
2、动摩擦力当物体产生相对滑动时,接触面会产生一个与相对滑动方向相反的摩擦力,即动摩擦力。
动摩擦力的大小与静摩擦力相关,通常小于静摩擦力,通常F_k = μ_kN。
其中F_k为动摩擦力大小,μ_k为动摩擦系数,N为正压力的大小。
动摩擦力通常比静摩擦力小,所以一旦物体开始运动,需要施加的力就变小了。
四、摩擦力的计算方法1、静摩擦力的计算静摩擦力的大小与物体间的正压力成正比,即F_s = μ_sN。
其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。
静摩擦系数是一个无量纲的常数,它取决于物体表面的光滑程度。
静摩擦系数的大小可以通过实验测定或者查找资料获得。
2、动摩擦力的计算动摩擦力的大小与正压力成正比,即F_k = μ_kN。
摩擦学基础知识

28
摩擦学基础知识
3.晶粒度 晶粒越细,摩擦系数越低,这可能与晶粒度对材料硬度的影响有关。随硬度提高, 摩擦系数下降。
26
摩擦学基础知识
三、摩擦系数及其影响因素 (一)摩擦系数与这些材料参数有关????
晶粒度
晶体结构
各向异性
硬度
层错能
弹性模量
27
摩擦学基础知识 三、摩擦系数及其影响因素 (一)摩擦系数与材料参数有关
1.晶体结构 具有密排六方结构的钴,表现出较低的摩擦系数,当在高温转变成立方结构时,摩擦 系数迅速上升。
4.层错能 层错能决定了材料位错交滑移的难易程度。层错能越高,交滑移和攀移越容易进行, 摩擦系数越低。 5.弹性模量 它是拉伸金属内部结构所需应力的度量。原子之间结合力越强,弹性模量越大,摩 擦系数也就越低。
29
摩擦学基础知识 6.材料强度与硬度 强度与硬度越高,塑性变形抗力越大,越不容易在接触点形成焊合,摩擦系数也 越低。 除去材料参数外,大量试验证明,摩擦系数还受到很多其它因素的影响,如化学 环境,载荷,速度,润滑条件,温度等等。所有这些表明,摩擦现象是一个非常复杂 的系统问题,摩擦系数并非材料的属性,认为摩擦系数是个常数,只有当材料及其它 条件完全固定情况下才成立。
(二)焊合、剪切及犁削理论 比较新的摩擦理论是Bowden和Tabor于1950年提出,即焊合剪切及犁削理论:当接
触表面相互压紧时.它们只在微凸体的顶端接触,由于接触面积很小,微凸体上的压力 很高,足以引起塑性变形和“冷焊”现象。这样形成的焊合点因表面的相对滑动而被剪 断。这一部分力量构成摩擦力的粘着分量
摩擦学的理论研究及其应用

摩擦学的理论研究及其应用摩擦学作为一门交叉学科,研究了摩擦、磨损以及表面物理化学等基本问题。
目前,摩擦学已被广泛应用于飞机、汽车、列车、医疗器械、机械化农业、工厂等领域,成为现代工业生产的重要组成部分。
一、摩擦学的基本概念摩擦学是研究摩擦、磨损和润滑等现象的力学学科,在力学、材料学、化学、表面物理学等学科的交叉领域中深入探讨了摩擦学原理、机理和应用。
摩擦是指两个接触表面相对运动时的阻力,它是产生于两个表面之间的接触力。
磨损是物体表面由于与物质相互作用而发生的形态变化和质量损失。
磨损现象的产生是由于两个相对运动的表面之间的微观接触,导致这些表面在一些局部的地方发生结合和断裂。
润滑是在两个表面相对运动的情况下,通过在表面之间引入润滑剂,使两个表面之间的摩擦系数降低的现象。
摩擦学的分支学科有干摩擦学、润滑摩擦学以及磨损学等。
二、摩擦学的研究意义摩擦学的研究意义主要体现在以下几个方面:1. 提高工程设计水平。
摩擦学的研究成果可以为工程设计人员提供思路和设计指导方案,达到规避机械性能下降、磨损加剧、寿命缩短等弊端的结果。
2. 进行润滑设计。
润滑剂、润滑油脂等润滑剂厂家可以进行润滑设计,为机械设备的正常运转提供保障。
3. 开拓新材料需求领域。
目前,涂层、纳米材料等新型材料的研究及应用已经成为摩擦学研究的热点领域。
这些新型材料可以增加润滑能力、降低磨损程度,从而提高机械设备寿命。
三、摩擦学的应用现状摩擦学理论已被广泛应用于汽车、航空、机械制造、医疗器械、化妆品等多个领域。
1. 汽车工业。
摩擦学理论的应用在汽车行业中表现尤为突出。
现代汽车工业是材料和摩擦学领域不断发展、不断创新的产物。
摩擦学技术在汽车上的应用范围非常广泛,从发动机、变速器和轮胎到制动系统、转向系统,都需要基于摩擦学原理的设计和研究。
2. 航空制造业。
航空材料的研究和使用一直是大家关注的热门话题。
摩擦学技术也在航空工业中应用。
涂层材料、传感器、及精密丝锥这些领域都获得了摩擦学的应用,从而提高了飞机的性能,增加了安全和舒适性。
摩擦学基础知识综述

剪切强度)和屈服极限。
(2)粘着理论基本要点:
摩擦表面处于塑性接触状态:实际接触面只 占名义面积很小部分,接触点处应力达到受 压屈服极限产生塑性变形后,接触点的应力 不再改变,只能靠扩大接触面积承受继续增 加的载荷。 滑动摩擦是粘着与滑动交替发生的跃动过程: 接触点处于塑性流动状态,在摩擦中产生瞬 时高温,使金属产生粘着,粘着结点有很强 的粘着力,随后在摩擦力作用下,粘结点被 剪切产生滑动。
属摩擦副摩擦系数较大;二者之间容易发生 粘着,而互溶性差的金属不易发生粘着。
2.摩擦副表面特性:
(1)表面粗糙度:非常粗糙的表面,表面须
越过另一表面的微凸体,摩擦系数高。非常 光滑的表面摩擦系数甚至更高:实际接触面 积大,分子作用增强。在塑性接触下,实际 接触面积总是与载荷成正比,表面粗糙度的 实际影响并不大。
(4)无法解释脆性材料具有的和金属材料相
似的摩擦性能。
(5)粘着理论很好解释了“相溶性较大的金
属之间容易发生黏着,摩擦系数较大”现象.
对于大多数金属, τb =0.2σs ,计算的摩擦系数 为 0.2左右.正常大气中测的摩擦系数都高达 0.5 ,在真空中更高.
5.机械—粘着—犁沟综合作用理论 粘着理论的基础上提出“机械—粘着—犁沟”
摩擦学基础知识
概述
1. 摩擦的定义:
两个接触物体表面在外力 作用下相互接触并作相对 运动或有运动趋势时,在 接触面之间产生的切向运 动阻力称为摩擦力,这种 现象就是摩擦。
2 . 摩擦的分类 1. 摩擦按摩擦副运动状态可分为: 静摩擦:两物体表面产生接触,有相对运动趋势但 尚未产生相对运动时的摩擦。 动摩擦:两相对运动表面之间的摩擦。 2. 按相对运动的位移特征分类: 滑动摩擦:两接触物体接触点具有不同速度和(或) 方向时的摩擦。 滚动摩擦:两接触物体接触点的速度之大小和方向 相同时的摩擦。 自旋摩擦:两接触物体环绕其接触点处的公法线相 对旋转时的摩擦。
摩擦学的三个公理

摩擦学的三个公理在摩擦学中,存在着三个重要的公理,它们在研究物体之间的摩擦力时起到基础性的作用。
这三个公理分别是:1. 马丁摩擦定律:马丁摩擦定律是摩擦学的基础,它表明物体之间的摩擦力与它们之间的压力成正比。
即,摩擦力与物体之间的压力大小有直接关系。
这是一个经验规律,适用于大多数情况下。
2. 库仑摩擦定律:库仑摩擦定律是描述干摩擦力与物体之间相对速度的关系的规律。
它指出,干摩擦力的大小与两个物体间相对速度的乘积成正比。
换句话说,当物体之间的相对速度增加时,摩擦力也会增大。
3. 静摩擦力与滑动摩擦力的切换条件:当一个物体相对于另一个物体处于静止状态时,两者之间的摩擦力称为静摩擦力。
而当一个物体开始相对滑动时,两者之间的摩擦力则变为滑动摩擦力。
这一转换发生的条件是,物体之间的相对运动达到一个临界值,这个临界值称为静摩擦力的极限,也被称为摩擦系数。
通过这三个公理,我们能更准确地描述物体之间的摩擦力现象,进而研究和解决与摩擦相关的问题。
除了上述的三个公理外,摩擦学还涉及到一些其他的概念和原理,以下是与摩擦相关的一些补充内容:1. 摩擦系数:摩擦系数是一个量化摩擦力大小的物理量,用符号μ表示。
它描述了两个物体间的摩擦力与压力的比值。
通过测量和实验,可以确定不同材料之间的摩擦系数,从而在工程和科学应用中方便地计算摩擦力。
2. 滑动摩擦力和滚动摩擦力:摩擦力可以分为滑动摩擦力和滚动摩擦力两种形式。
滑动摩擦力发生在两个物体表面之间相互滑动的情况下,而滚动摩擦力则是当一个物体在另一个物体上滚动时产生的摩擦力。
两者之间存在一定的差异,例如滚动摩擦力通常比滑动摩擦力小。
3. 摩擦力的应用:摩擦力是生活中和工程实践中非常常见和重要的现象。
正是通过摩擦力,人类可以正常步行、操控车辆以及使用工具等等。
摩擦力也广泛应用于机械工程、运输工程、建筑和材料科学等领域,例如在设计车辆刹车系统时需要考虑摩擦力的大小,以确保安全性和可靠性。
摩擦学的基本原理及其应用

摩擦学的基本原理及其应用摩擦是我们日常生活中经常遇到的现象。
车辆行驶时的轮胎与路面摩擦,人行走时的脚与地面摩擦,任何实体在相互接触时都会产生摩擦。
而摩擦学正是研究物体在相互接触时产生的力的学科,其基本原理和应用非常重要。
一、摩擦的基本原理1. 摩擦力的定义摩擦力是指阻碍物体相对运动的力。
在物体相互接触时,由于表面间的不规则性,阻碍物体相对运动的力就会产生。
摩擦力可以分为静摩擦力和动摩擦力两种,它们通常都是与物体间接触的表面粗糙程度和材料特性等因素有关。
2. 摩擦力与接触面积的关系摩擦力与物体间接触面积成正比例关系。
接触面积越大,摩擦力越大;反之,接触面积越小,摩擦力越小。
这是因为物体直接接触的表面积越大,表面之间的微小凹凸就越大,摩擦力就越大。
3. 摩擦力与物体间压力的关系摩擦力与物体间压力成正比例关系。
即当物体间的压力增大时,摩擦力也随之增大,反之亦然。
这是因为物体间的压力越大,表面间的不规则性就越小,微小凹凸就进一步压缩,摩擦力就会增大。
二、摩擦学的应用1. 制动系统摩擦制动是利用静摩擦力使车轮停止转动的一种制动方式。
汽车、自行车等的制动系统都是靠摩擦制动来实现的。
在制动过程中,制动器上的刹车片与转动的车轮表面接触,产生静摩擦力使转轮停止转动。
而刹车片与车轮的表面摩擦系数大与小的不同,就会影响到制动效能和制动距离的长度。
2. 螺纹连接螺纹连接是常用的一种紧固连接方式,它通常用于连接杆件、面板、封板等部件。
在螺纹连接时,利用螺纹外螺距不等的原理,使螺栓和螺母之间相互旋转,从而将拼接的两个构件紧密地连接在一起。
在设计时,需要根据要求计算螺栓和螺母的摩擦力,以保证连接牢固。
3. 轴承轴承是一种广泛应用于机器设备中的组件,主要用于支撑机器转动部件,并在其旋转过程中承受轴向和径向的载荷。
它的基本原理就是利用滚动体或滑动体之间的摩擦来实现支承转动。
因此,轴承性能的好坏与其摩擦力有着密不可分的关系。
4. 润滑油润滑油作为目前普遍使用的润滑材料,被广泛应用于各种机械设备中,其作用是减小机械件表面的摩擦,以达到降低能耗、延长机器使用寿命的效果。
摩擦学原理
摩擦学原理
摩擦学是物理学的一个分支,它研究的是摩擦的原理,及其在物理现象中的运用。
摩擦学的发展始于古希腊,当时科学家把它归结为三个基本原理:动摩擦、静摩擦和摩擦力的作用。
在这三个原理的基础上,科学家们进一步发展出了关于摩擦的更多理论。
动摩擦是指当两个物体相互滑动时,会产生摩擦力,这种摩擦力会对物体的运动产生阻力。
这种力可以用来减慢物体的运动,也可以用来增加物体的运动。
从物理学的角度来看,动摩擦的大小与物体的重量、滑动速度和摩擦力有关。
静摩擦是指两个物体之间的静止接触,也就是说,它们不会发生相互滑动。
在这种情况下,会产生一种叫做摩擦力的力,这种力会影响物体的运动,使其变得更加困难。
静摩擦的大小取决于两个物体之间的摩擦系数,以及它们之间的重量。
最后,摩擦力是指当两个物体接触时,会产生的一种力,这种力可以阻挡物体的运动,也可以促使物体的运动。
摩擦力的大小与两个物体的重量、摩擦系数和滑动速度有关。
总之,摩擦学原理主要包括动摩擦、静摩擦和摩擦力三个基本原理。
摩擦力可以影响物体的运动,因此它有着重要的应用,如机器的运行、车辆的制动等。
因此,摩擦学原理有助于我们理解物理现象,
为物理实验和研究提供了重要参考。
摩擦学(第一讲)
Low friction coating Surface texture control
Durability
Wear resistant coating for aluminum bores
Environment
Need better material and /or finish for reduced oil consumption
关于可生物降解的润滑剂的研究主要涉及生
物降解性、毒性、职业安全与卫生以及排放 等方面。此外,还研究了以植物油改性后生 产出的可生物降解的润滑油(脂)。
国外已有多种环境友好润滑剂的商品,其 需求量逐年上升,它将逐步取代矿物基润滑 油。
摩擦噪声的防治
主要研究了对环境产生噪声污染严重的高
频尖啸摩擦噪声(1-15KHz)产生的机理。 提出了各种可定性分析的理论模型,还研究 了摩擦副表面形貌对摩擦噪声的影响。
摩擦学
课程安排如下: 第一讲:绪论——摩擦学发展与展望 第二讲:磨损表面形态与固体摩擦 第三讲:磨损机理与分类 第四讲:流体润滑与Reynolds方程 第五讲:弹性流体润滑 第六章:磨损检测与失效分析(一) 第七章:磨损检测与失效分析(二) 第八讲:油液分析在线检测技术专题 第九讲:汽车脂润滑专题 第十讲:纳米摩擦学专题
主要结论
重视润滑技术,每年在工业上可节约 5亿英镑,并可大大提高技术的发展速 度,为实现国家经济目标做出非常重大 的贡献; 为了消除Lubrication一词的局限性以 至忽视这门边缘学科,建议采用 Tribology(摩擦学)一词来表达这门学 科的内涵。
此外国内外的一个普遍共识
1、全世界有30——50%的能源是以各种形式 消耗在摩擦上 2、摩擦导致的磨损是机器设备失效的主要原因 3、大约80%的损坏零件是由于各种形式的磨损 引起的 4、摩擦学是一个涉及多和学科的系统科学。
第三章_摩擦学设计
周天茹
1 摩擦学 2 摩擦 3 磨损 4 润滑 5 摩擦学设计
1 摩擦学
摩擦学是二十世纪六十年代逐渐形成的一门新兴边缘学科。 摩擦学—Tribology:是希腊语tribod派生而来的。 定义:摩擦学是研究相对运动的相互作用表面及其有关 理论与实践的一门科学技术。 定义中着重强调了“相对运动”和“相互作用”。通俗 来说,摩擦学就是研究相互作用表面在相对运动中过程发生 的摩擦、磨损、润滑现象的一门科学与技术,是摩擦、磨损、 润滑及其有关的实践活动的总称。 实践表明,作相对运动的接触表面在摩擦过程中,将产 生一系列的物理、化学、冶金学、力学等方面的变化,要研 究这一过程和变化,必将涉及数学、物理、化学、力学、冶 金学、机械工程、材料科学、石油化工等多种学科领域。因 而,摩擦学是一门理论性和实践性都很强、综合性边缘学科。
摩擦学设计是在产品完成了功能原理设计,或 说是完成方案设计之后,就必须进行地。一方 面是对产品系统进行设计;另一方面是对在摩 擦学性能方面起重要作用的所有零部件进行设 计,机械零件的摩擦学设计是在完成了运动学 设计和强度设计之后进行的。机械系统及其零 部件的摩擦学设计是其他任何设计方法所不能 替代的。
作如下描述。
摩擦学问题广泛存在于产品的制造过程和使用过程,特别 是在机械工业方面,摩擦学设计的好坏对一个产品的性能和 使用寿命有极大影响。据调查分析,30%的工业零件因摩擦 而损坏,主要原因是摩擦学设计方法还不能在工业生产中得 到很好的应用。目前,设计一个能经济可靠地实现运动、保 证功能的摩擦学系统,主要采用的摩擦学设计方法有: 磨料磨损计算方程、粘着磨损计算方程、胶合计算方程 IBM的零磨损、可测磨损的计算方法; 组合磨损计算方法; 以数值解为基础,考虑热效应的热弹流、考虑动态效应的非 稳态流、考虑润滑剂非牛顿性的流变弹流以及分析粗糙表面 的微观弹流等润滑理论与方法; 将各种实际因素全部纳入分析的普适性最高的润滑方程
摩擦学原理-绪论
斥力 引力
第1章 绪 论
摩擦学的发展过程
(2) 古典摩擦定律:
20世纪: 1939年苏联学者,以摩擦力二重性为依据,统一了分子论 和凹凸学说,建立了摩擦的分子机械论。
1950包登的粘着说。 当今纳米摩擦问题(原子量级)
F=αAr+βW
第1章 绪 论
摩擦学的发展过程
(3) 润滑理论
① Reynolds方程: 1886年提出, 其基础为三个人
第1章 绪 论
摩擦方面的杂志和国际会议
文献:
① ASME Transection. Jounal. of Tribrlogy (美) ② STLE Tribology, Transection (美) ③ Lnbrication. Engineering (英) ④ Wear (英) ⑤ International Tribology (英) ⑥ 摩擦学学报 (日) ⑦ 磨擦学学报 (中) ⑧ 润滑与密封 (中)
D: 粘度与分子结构的关系
膨胀性
① 分子大剪切阻力大粘度高 ② 分子链的结构特征与粘度有关
应变率γ
第1章 绪 论
小结
三大 支柱
摩擦 润滑 磨损
① 表面制膜:(等离子喷涂,等离子辅助沉积,真空蒸镀、电镀、化学镀等) ② 表面处理:(强化、加工处理等等)
③ 表面改性
第1章 绪 论
现代摩擦学研究新动向
(1) 纳米摩擦学
(纳米级薄膜润滑、纳米级摩擦的规律和本质, 微米级磨损问题)。 美国:F.F. Ling说过,青年人应投身Nano Phonomana研究。
32KW
125,000miles
Rolling resistance
Air resistance
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摩擦学研究及发展趋势摘要本文主要介绍了摩擦学的发展历程以及发展趋势,说明了发展摩擦学的重要性,并结合我国实际情况,简要论述了我国摩擦学的发展之路。
关键词:摩擦学发展历程及趋势发展之路一概述摩擦学是科学和工程学中最重要的领域之一,因为它既具有提高产品的可靠性、延长其使用寿命及节约材料和能源的意义,又是当今最活跃的交叉科学领域之一。
它涉及流体力学、固体力学、化学、物理、材料科学、数学和机械工程学等学科,它的发展经历了以下几个阶段:古典摩擦定律,“凸凹(或机械)说”与“分子(或分子粘附)说”两个学派的争论。
分子一机械说”。
二摩擦学研究的方法2.1 主要方法20世纪80年代以来摩擦学设计受到广泛的重视,但所有讨论都集中在摩擦副的设计上,而摩擦学设计所拥有的系统依赖性、时问依赖性和多学科、跨学科特性决定了摩擦学问题的研究难度。
主要采用的摩擦学设计方法有:(1)磨料磨损计算方程、粘着磨损计算方程、胶合计算方程(2)IBM的零磨损、可测磨损的计算方法;(3)组合磨损计算方法;(4)以数值解为基础,考虑热效应的热弹流、考虑动态效应的非稳态流、考虑润滑剂非牛顿性的流变弹流以及分析粗糙表面的微观弹流等润滑理论与方法;(5)将各种实际因素全部纳入分析的普适性最高的润滑方程;( 6 )现代通信技术、计算机技术和信息技术的发展为摩擦学设计建立知识资源库提供新的思路,现代制造、敏捷制造、CIMS和计算机支持协同工作等新技术为摩擦学设计的知识资源库提供了可资利用的基础。
2.2中国摩擦学数据库主要有摩阻材料、固定磨粒磨料磨损、松散磨粒磨料磨损、静摩擦系数、边界往复润滑条件下的摩擦磨损、咬死极限、滑动轴承疲劳磨损、国产润滑油高温高压下的粘压一一粘温试验、减摩耐磨表面强化摩擦磨损、润滑脂、流体动力轴承刚度和阻尼系数等。
当前在建设知识资源库中所要解决的主要问题是:(1)建立原有知识与数据资源的查询利用模块,有效收集、存取、设计有关信息;(2)新知识和新数据的存储与旧知识和旧数据的更新模块。
新产品必须被理解为新知识的物化,能用一定方式帮助专家提取、存储与设计相关的各种知识,并提供各种知识操作方法;(3)问题分析和设计模块。
能对设计行为进行分析、评价,以便设计者作出正常决策;(4)数据转化模块。
材料的摩擦学特性,通常不是其固有属性,从各种渠道收集到的特性数据,都是在某一特定条件或标准系统下所获得的性能,因而要把这种特性数据用于当前设计对象,必须通过系统分析实现不同系统条件的转化。
三摩擦学研究取得的重大科技成果20多年来,在摩擦学研究方面已经取得了许多重要的科技成果:3.1 原理与基础方面对低压润滑,加深了流体动静压轴承的空穴现象及其对轴承中润滑剂的流量和高速重载下转子稳定性影响的了解;对高压润滑及在光滑面上线和点接触时的牛顿流体和非牛顿流体的弹流润滑也加深了认识;应用多重网格法将实际表面粗糙形貌作为计算时的输入数据,提高了对粗糙表面润滑的理解;d.考虑表面形貌特征,能更好地预测用不同加工方法制得的润滑表面粗糙峰的行为;对弹流润滑接触条件下的摩擦和附着与润滑剂分子结构的关系的理解取得了明显的进展等。
3.2 润滑剂和润滑方面弄清了润滑剂中混入粒子对弹流接触表面磨损速度和耐磨寿命的影响,计算含粒子润滑剂所产生的剪切力可预测润滑表面的耐磨寿命;弹流润滑和材料技术(净化钢)的研究,使滚动轴承的疲劳寿命大幅度延长(达25年),凸轮和齿轮也有了同样的进步;弄清了聚合物基复合材料的性能与结构对润滑性的影响,以及环境因素的影响;开发了合成烃,如聚a一烯烃(PAo),适用于汽车、飞机及其它工业部门;抗磨添加剂的组成和相互作用,以及温度的分解效应的研究取得了进展;f.开发了既适用于烃类,又适用于水系润滑剂的异极添加剂;发展了金属一有机系润滑化合物等。
3.3 材料与表面处理方面耐磨表面涂层技术的开发,特别是减摩、耐磨的物理气相沉积(PvD)、化学气相沉积(CvD)及离子注入技术的开发;开发了切削刀具用的极薄的TIN、TIAIN、TIBN及其它涂层的涂膜方法,广泛应用于从机械制造的金属切削工具到土木工程用挖掘机前铲齿的大量机械中,使生产效率大大提高;开发了高温下摩擦学应用的强韧性整体陶瓷;开发了固体润滑填充聚合物及聚合物一金属复合材料;发展了人造卫星摩擦部件空间真空用干膜润滑剂(铅膜和MoSZ膜)的涂膜工艺,制成了在真空中极长寿命的铅膜润滑球轴承(典型的达到l护转);类金刚石膜涂膜技术的开发等。
3.4设计和运转方面开发了电磁式磁悬轴承,不仅用于宇宙飞船、工业泵和马达,而且用于涡轮发电机(直径lm)和高速研磨机;空气轴承的开发;发展了永磁磁悬轴承;铁粉流体动力密封和轴承的开发;核反应堆摩擦学的发展等。
四摩擦学研究的发展趋势摩擦学设计前沿涉及多学科、多工程技术领域,需要从设计方法、手段、技术等方面有新的突破。
由此所带来的经济效益也是巨大的。
现代摩擦学的发展总趋势将是交叉综合化,柔性集成化,智能数字化,精密微型化,高效清洁化。
摩擦学与机构学、仿生机械和仿生制造领域交叉结合,可重构机械工程设计理论与制造系统的技术模式。
摩擦学研究已从传统的力学向材料科学与技术转移;适合于高温应用的或具有低摩擦长寿命的摩擦学材料和润滑剂;磁记录和微型机械的微观摩擦学及纳米级材料摩擦学;摩擦学设计和摩擦学知识的转移。
主要由以下几个方面:4.1 生态/环境摩擦学生态/环境摩擦学最重要的任务就是节约能源和减少对环境的负面影响,主要包括资源和材料的节约,优化设计,优化运行,降低能耗和环境保护。
(1)自行乳化的生物润滑剂(美)和符合新的欧洲生态标记技术标准的新的环境友好添加剂(英)。
(2)金属切削液中的生物添加剂(美),含植物油的金属切削液(瑞典),金属切削液环境(冷却液系统)中悬浮于空气中的颗粒、微生物和内毒素(Endotoxin)的研究(美、德),以及切削液对皮肤的适应性的研究(德)。
4. 2 生物/人体摩擦学(1)人工关节摩擦学的基础性研究,包括临床和实验室对人工髋节的磨损机制的研究(德),可修复的人工关节软骨的耐磨性研究瑞典),以及蛋白质和类脂化合物对超高分子量聚乙烯(UHMPE)磨损性能综合作用的研究(日)。
(2)牙齿和颅面的摩擦学用金属/金属和丙烯酸/金属配置的颞下颌关节的关节成形术(美)。
(3)人类皮肤摩擦学人类皮肤摩擦机制以及识别与皮肤触摸特性相关的声学特征(法)。
4.3 磁存贮摩擦学(1)浮动块的动力学以及超低飞行的浮动块/盘界面的弯月形粘附的研究(美);(2)控制飞行高度的纳米-热致动器(美);(3)新的合成多功能全氟聚醚(PFPE)润滑剂(日)。
4.4 纳米摩擦学(1)微机电系统(MEMS)界面的纳米摩擦学(美);(2)纳米磨损图(美)和纳米微动磨损(以色列);(3)类金刚石碳(DLC)纳米复合材料涂层(美,海军研究实验室)和Au/MoS2纳米复合材料膜(美,宇航公司);(4)制备润滑添加剂的纳米材料:包括无机类富勒烯纳米颗粒(WS2, MoS2),碳纳米管,碳纳米管/聚乙烯基吡咯烷酮共聚物(中,日,以色列)。
五我国摩擦学的发展我国学者2004年在国际上发表的论文数量在国际摩擦学界居第4位,可以算是一个摩擦学大国。
但是,我国摩擦学界至今还没有对我国国民经济和科学技术的发展做出过十分重大的贡献,在国际上的影响也还不大(至今还没有人获得过国际摩擦学界的最高奖——摩擦学金奖),为了加速我国摩擦学发总体上正确把握我国摩擦学发展的方向,明确战略目标和发展重点,而发展战略就是指导全局发展的重大谋划(方略)。
因此,从总体上认真研究我国摩擦学的发展战略具有重要的现实意义,应当成为我国摩擦学界当前的首要任务。
(1)摩擦学的研究要适应技术与经济以及社会的发展,加强摩擦学研究成果向工业转化,以充分发挥应用摩擦学知识和技术获取重大经济与社会效益的作用。
(2)要找到可充分发挥摩擦学多学科性的优势和克服跨学科研究的各种障碍的体制和机制。
(3)要使公众不断深化对摩擦学在经济与社会中的重要作用的认识。
六总结在未来的10年,摩擦学研究面临的挑战将主要来自生态/环境,信息和生物3方面的技术发展和需求。
未来环境和能源的需求将会提出越来越困难的摩擦学问题,常规的摩擦学考虑将会被排除在主要的设计和开发过程之外,而对再循环、轻量化和在摩擦学应用中采用仿生的办法等技术的需求将会随着设计的可持续性需求的增加而增长。
我们将面临多方面的挑战,如想取得重大的突破和进展,就必须克服开展跨学科研究和利用全球装备的各种障碍。
提出摩擦学的主要挑战是能够设计出可达到预期寿命的自修复、自保持的摩擦学系统和具有特定概率寿命的、不用维护的摩擦学系统。
参考文献【1】周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006.【2】温诗铸,摩擦学原理,清华大学出版社,1990【3】Jiange.D.,Tribo一ogyInternationaz,1997,30(11):789一793【4】周受钦,谢友柏,摩擦学现代设计虚拟研发系统,《中国机械工程》1999,10(8):932~934 【5】周受钦,谢友柏.摩擦学现代设计虚拟研发系统.中国机械工程,1999, 10(8):932~934 【6】薛群基,党鸿辛.摩擦学研究的发展概况与趋势.摩擦学学报,1993, 13(1):73~81【7】Bhushan B. Micro/Nano Tribology, Second Edi-tion, CRC Press, 1999: 797~831【8】董云开,刘莹,温诗铸.微观摩擦与表面形貌相关性的试验研究[J].中国机械工程,2005,26(6):。