圆周运动中绳模型和杆模型的一般解析

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

高中物理必修二拉绳

高中物理必修二拉绳

高中物理必修二拉绳
高中物理必修二拉绳问题是一个涉及关联速度和圆周运动的问题。

在拉绳问题中,通常涉及到两个物体通过绳子连接,其中一个物体拉动绳子,使另一个物体运动。

在这种情况下,两个物体在运动过程中速度通常是不一样的,但它们在绳子方向上的速度大小是相等的,这就是所谓的关联速度。

对于圆周运动问题,当小球在竖直平面内做圆周运动时,涉及到绳模型和杆模型两种情况。

绳模型:在这个模型中,绳子只能产生拉力,当小球能够过最高点时,它的速度必须达到临界值,这个临界值取决于绳子的长度和小球的质量。

当小球的速度小于临界值时,小球不能通过最高点,而是会掉下来;当小球的速度大于临界值时,绳子会产生拉力,帮助小球通过最高点。

杆模型:在这个模型中,轻杆对小球既能产生拉力,又能产生推力。

因此,与绳模型不同,小球的速度可以等于零,只要它保持在竖直平面内运动。

如果小球的速度小于零,那么它将在竖直平面内做圆周运动;如果小球的速度大于零,那么它将离开竖直平面。

总的来说,高中物理必修二拉绳问题涉及到了关联速度和圆周运动等知识点。

需要理解不同情况下物体的运动规律和受力情况,从而掌握解题技巧。

高频考点解密物理——抛体运动与圆周运动考点6竖直面的圆周运动

高频考点解密物理——抛体运动与圆周运动考点6竖直面的圆周运动

一、竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”。

2.绳、杆模型涉及的临界问题绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由rmvmg2=得:grv=临由小球恰能做圆周运动得v临=0讨论分析(1)过最高点时,grv≥2NmvF mgr+=,绳、轨道对球产生弹力2NmvF mgr=-(2)不能过最高点时,grv<,在到达最高点前小(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心(2)当grv<<时,2NmvF mgr-+=,F N背向圆心,随v的增大而减小(3)当grv=时,F N=0球已经脱离了圆轨道(4)当gr v >时,2N mv F mg r+=,F N 指向圆心并随v 的增大而增大二、竖直面内圆周运动的求解思路1.定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同;2.确定临界点:gr v=临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说F N 是表现为支持力还是拉力的临界点;3.研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况;4.受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向.5.过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程。

(2014·新课标全国卷Ⅱ)如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大圆环上的质量为m 的小环(可视为质点),从大圆环的最高处由静止滑下,重力加速度为g 。

当小圆环滑到大圆环的最低点时,大圆环对轻杆拉力的大小为:A .Mg –5mgB .Mg+mgC .Mg+5mgD .Mg+10mg 【参考答案】C【试题解析】小圆环到达大圆环低端时满足:2122mg R mv⋅=,对小圆环在最低点,有牛顿定律可得:2N vF mg mR;对大圆环,由平衡可知:TN F MgF ,解得T5F Mgmg ,选项C 正确。

高中物理:物体在竖直面内的圆周运动

高中物理:物体在竖直面内的圆周运动

1、轻绳或细杆作用下物体在竖直面内的圆周运动(1)轻杆作用下的运动如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内做圆周运动,小球在最高点A时,若杆与小球m之间无相互作用力,那么小球做圆周运动的向心力仅由重力提供:得=,由此可得小球在最高点时有以下几种情况:当=0时,杆对球的支持力F N = mg,此为过最高点的临界条件。

②当=时,,=0③当0<<时,m g>>0且仍为支持力,越大越小④当>时,>0,且为指向圆心的拉力,越大越大(2)细绳约束或圆轨道约束下的运动:如图所示为没有支撑的小球(细绳约束、外侧轨道约束下)在竖直平面内做圆周运动过最高点时的情况。

①当,即当==时,为小球恰好过最高点的临界速度。

②当<,即>=时(绳、轨道对小球还需产生拉力和压力),小球能过最高点③当>,即<=时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了圆周轨道。

竖直面内的圆周运动一般不是匀速圆周运动,而是变速圆周运动,此时由物体受到的合力沿半径方向的分力来提供向心力,一般只研究最高点和最低点,此情况下,经常出现临界状态,应注意:(1)绳模型:临界条件为物体在最高点时拉力为零(2)杆模型:临界条件为物体在最高点时速度为零例1、一根绳子系着一个盛水的杯子,演员抡起绳子,杯子就在竖直面内做圆周运动,到最高点时,杯口朝下,但杯中的水并不流出来,如图所示,为什么呢?解析:对杯中水,当=时,即=时,杯中水恰不流出,若转速增大,<时,>时,杯中水还有远离圆心的趋势,水当然不会流出,此时杯底对水有压力,即N+=,N=-;而如果>,<时,水会流出。

例2、如图所示,轻杆OA长l=0.5m,在A端固定一小球,小球质量m=0.5kg,以O点为轴使小球在竖直平面内做圆周运动,当小球到达最高点时,小球的速度大小为=0.4m/s,求在此位置时杆对小球的作用力。

(g取10 m/s 2)解法一:先判断小球在最高位置时,杆对小球有无作用力,若有作用力,判断作用力方向如何小球所需向心力==0.5×=0.16 N小球受重力=0.5×10=5 N重力大于所需向心力,所以杆对小球有竖直向上的作用力F,为支持力以竖直向下为正方向,对小球有-F=解得:F= 4.84 N解法二:设杆对小球有作用力F,并设它的方向竖直向下,对小球则有-F=F=-=-4.84 N“-”表示F方向与假设的方向相反,支持力方向向上。

绳模型和杆模型

绳模型和杆模型
B C
(二)轻杆模型 A)特点: 小球在竖直平面内做圆周运动时,物体能被支持 B)临界条件 (1)能否到达最高点的临界条件: V=0
(2)拉力还是支持力的临界条件: C)讨论: F
1)当 V> rg 时,杆对小 球施加拉力,且速度越大, 拉力越大(此时杆子相当于 绳子) 2)当 0<V< rg 时,杆对球施加支 持力,速度越大,支持里越小
表演“水流星” ,需要保证杯 子在圆周运动最高点的线速度不 得小于 gr v gr 即:
V rg
K

E G
例1.如图所示,质量为m的小球置于正方
体的光滑盒子中,盒子的边长略大于球的直径。 某同学拿着该盒子在竖直平面内做半径为R的 匀速圆周运动,已知重力加速度为g,问: 图5-7-6
要使盒子在最高点时盒子与小球之间恰好无作用力,
则该盒子做匀速圆周运动的周期为多少?
[思路点拨] 解答本题时应注意: 1小球在最高点的合力等于向心力。 2通过最高点的临界
[解析 ] 设此时盒子的运动周期为 T 0,因为在最高点时
盒子与小球之间恰好无作用力,因此小球仅受重力作用。 根据牛顿第二定律得
4 2 mg m 2 r T0


T0 2
r g
1)质量为m的小球在竖直平面内的圆轨道的内则运动, 经过最高点而不脱离轨道的临界速度为V,当小球以2V 的速度经过最高点时,对轨道的压力是多大? 解析: v m 由临界速度得:mg= r , 当小球的速度为2v时,
(2)当V2=4m/s时,杆受到的力大小,是拉力还 是压力?
A
B
3)如图:在A与B点,杆对球 的力是( AD ) A)A处可能为拉力,B处为拉力 B)A处可能为拉力,B处为压力 C)A处可能为支持力,B处为压力 D)A处可能为支持力,B处为拉力

2022年高考物理模型专题突破-绳杆模型

2022年高考物理模型专题突破-绳杆模型

真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。

现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。

当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。

已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。

设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。

高中物理新教材同步必修第二册 第6章 圆周运动专题强化 竖直面内的圆周运动

高中物理新教材同步必修第二册 第6章 圆周运动专题强化 竖直面内的圆周运动
1 2 3 4 5 6 7 8 9 10 11
2.(多选)如图2所示,一个内壁光滑的弯管处于竖直平面内,其中管道半
径为R.现有一个半径略小于弯管横截面半径的光滑小球在弯管内运动,
小球通过最高点时的速率为v0,重力加速度为g,则下列说法中正确的是
√A.若v0= gR ,则小球对管内壁无压力
√B.若v0> gR ,则小球对管内上壁有压力
综上分析,选项D错误.
1 2 3 4 5 6 7 8 9 10 11
3.(2021·济南市山东师范大学附中高一期中)游客乘坐过山车,在圆弧轨
道上做匀速圆周运动,且在最低点处获得的向心加速度为10 m/s2,g取
10 m/s2,那么运动到此位置时座椅对游客的作用力相当于游客重力的
A.1倍 C.3倍
√B.2倍
图4 1.分析求解小球通过最高点的最小速度. 答案 由于杆和管在最高点处能对小球产生向上的支持力,故小球恰能 到达最高点的最小速度v=0,此时小球受到的支持力FN=mg.
2.分析小球在最高点时杆上的力(或管道的弹力)随速度
的变化. 答案 (1)v= gr时,mg=mvr2,即重力恰好提供小球所需要的向心力, 轻杆(或圆管)与小球间无作用力.
例1 如图2所示,长度为L=0.4 m的轻绳,系一小球
在竖直平面内做圆周运动,小球的质量为m=0.5 kg,
小球半径不计,g取10 m/s2,求:
(1)小球刚好通过最高点时的速度大小;
答案 2 m/s
图2
解析 小球刚好能够通过最高点时,恰好只由重力提供向心力,故有 mg =mvL12,解得 v1= gL=2 m/s.
力是压力,B 正确,A、C、D 错误.
1 2 3 4 5 6 7 8 9 10 11

高中物理 圆周运动典型例题详解

高中物理    圆周运动典型例题详解

B、作匀速圆周运动的物体,在所受合外力突然消失时,
将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,
维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
【例4】以下属于离心现象应用的是( BC ) A、水平抛出去的物体,做平抛运动 B、链球运动员加速旋转到一定的速度后将链球抛开 C、离心干燥器使衣物干燥 D、锤头松了,将锤柄在石头上磕风下就可以把柄安牢
解题感悟
2.两个圆周运动临界问题
v0
v0
杆连球(管通球)模型的临界问题
小球速度 运动情况 弹力的方向
弹力的大小
v=0 平衡状态 竖直向上的支持力
v gr 圆周运动 竖直向上的支持力
FN=mg
FN

mg
m
v2 r
v gr
圆周运动
v gr 圆周运动 指向圆心的拉力
FN

FN=0 mg
m
解题感悟
解决竖直平面内的变速圆周运动问题的关键是掌握两个圆周 运动模型和两个圆周运动临界问题: 1.两种圆周运动模型:
最低点圆周运动模型
最高点圆周运动模型
v0
v0
第四章 曲线运动和万有引力→3圆周运动
(三)考点应用,精讲精析 典型问题三:曲线运动中的动力学问题(四)------竖直平面内的变速圆周运动
例1 下列关于离心现象的说法正确的是( ) A.当物体所受的离心力大于向心力时产生离心现 象 B.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都
突然消失后,物体将沿切线做匀速直线运动 D.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做曲线运动 【解析】向心力是根据效果命名的,做匀速圆周 运动的物体所需要的向心力是它所受的某个力或 几个力的合力提供的,因此,它并不受向心力的 作用.它之所以产生离心现象是由于F合=Fn<mω2r,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动中绳模型和杆模型的一般解析
一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。

现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。

(2)当能通过最高点时,绳子拉F 。

解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用,
故,由其做圆周运动得:
L v m mg 2= 故 gL v =
(2)由分析得,当小球到最高点时速度gL v v =>'时, 则,mg L mv F -=2
'
而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。

二:杆模型:若一硬质轻杆长L ,其一端有一质量m
的小球(可看成质点)。

现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。

(2)当能通过最高点时,杆对小球的作用力F 。

解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。

(2)①由绳模型可知,当小球通过最高点速度gL v =时,
恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。

②当小球通过最高点时速度gL v >时,
则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动
故对小球有, L mv mg F 2=+
③同理,当小球通过最高点时速度gL v <时,
则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用,
故对小球有, L mv F mg 2=-。

相关文档
最新文档