对数正态分布教程文件
2 对数正态分布

4
对数正态分布的应用
1 计算颗粒的平均粒径
经过一定的数学处理可得如下表中的计算公式
质量基准和个数基准的表达式是不同的.
2计算粉体的比表面积:
sw
s p Dsv
质量基准:D’50=D50exp(3ln2δg); 所以:
δ’g= δg
DsV
D5' 0 exp(3ln 2
Dnl=D50exp(0.5ln2δg)=23.4 作业:计算该例题的各平均粒径、单位质
量颗粒个数和比表面积。
罗辛-拉姆勒分布.ppt
平均粒径计算
11
DnL f (x)x d ln x
1
2 ln g
x
exp
ln
x 2
ln
ln
x
g
2
d
ln
x
对该式积分,得到:
DnL
x
exp(1 ln 2 2
g)
D50
exp(1 2
ln
2
g)
(2)其他平均径的推导类似。
g
)
•
exp(2.5
ln
2
g
)
D5' 0
exp(0.5ln 2 g )
5
3 计算单位质量的颗粒个数:
n 1
pv Dn3v
4对数正态概率纸:横坐标:logDp; 纵坐标:loglog1/f(Dp),如果符合对数正态
分布的粉体在对数正态概率纸上描点,应 该是一条直线。
6
高斯对数正态分布

高斯对数正态分布引言在统计学中,高斯对数正态分布(Gaussian Log-normal Distribution)是一种概率分布模型,常用于描述连续型随机变量的分布。
高斯对数正态分布在金融学、生态学和社会科学等领域有着广泛的应用。
本文将详细探讨高斯对数正态分布的定义、性质、参数估计以及应用案例。
定义高斯对数正态分布是一种连续型概率分布,其概率密度函数(ProbabilityDensity Function,简称PDF)可以表示为:f(x;μ,σ)=1xσ√2π(−(ln(x)−μ)22σ2)其中,x>0为连续型随机变量的取值,μ为对数期望值,σ为对数标准差。
性质高斯对数正态分布具有以下性质:1.对称性:高斯对数正态分布的概率密度函数是关于对数期望值μ对称的,呈现出左右对称的特点。
2.正态性:高斯对数正态分布的对数值服从正态分布,即取对数后的随机变量近似符合正态分布。
3.右偏性:高斯对数正态分布的概率密度函数在右尾部分较长,即出现较多比均值大的值。
4.收敛性:高斯对数正态分布在标准差逐渐增大时,逐渐收敛为对数正态分布。
参数估计在实际应用中,需要对高斯对数正态分布的参数进行估计。
一种常用的估计方法是最大似然估计(Maximum Likelihood Estimation,简称MLE)。
MLE的目标是找到一组参数值,使得给定样本观测值在该参数下的联合概率密度函数取得最大值。
对于高斯对数正态分布,MLE估计的参数是对数期望值μ̂和对数标准差σ̂。
应用案例高斯对数正态分布在许多领域都有广泛的应用。
以下是几个典型的应用案例:金融学在金融学中,高斯对数正态分布常用于建模股票收益率的分布。
根据股票收益率的历史数据,可以估计出股票收益率的对数期望值和对数标准差,从而得到股票收益率的高斯对数正态分布模型。
基于这个模型,可以进行风险评估、投资组合优化等分析。
生态学在生态学中,高斯对数正态分布常用于描述物种数量的分布。
【免费下载】对数正态分布log normal distribution

或者更为一般的矩
[编辑] 局部期望
随机变量 X 在阈值 k 上的局部期望定义为
其中 f(x) 是概率密度。对于对数正态概率密度,这个定义可以表示为
其中 Φ 是标准正态部分的累积分布函数。对数正态分布的局部期望在保险业及经济领域都有 应用。
[编辑] 参数的最大似然估计
为了确定对数正态分布参数 μ 与 σ 的最大似然估计,我们可以采用与正态分布参数最大似然 估计同样的方法。我们来看
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
python 对数正态分布拟合

Python 对数正态分布拟合1. 引言在统计学中,正态分布是一种常见的概率分布,也被称为高斯分布。
然而,在某些情况下,我们可能需要拟合的数据不符合正态分布,而是符合对数正态分布。
对数正态分布是一种概率分布,它的对数服从正态分布。
Python作为一种强大的编程语言,在数据科学和统计学领域有着广泛的应用。
本文将介绍如何使用Python拟合对数正态分布,并展示如何使用相关的库来进行数据处理和可视化。
2. 对数正态分布简介对数正态分布是一种连续概率分布,它的概率密度函数(Probability Density Function, PDF)可以表示为:f(x;μ,σ)=1xσ√2π−(lnx−μ)22σ2其中,x是随机变量,μ是均值参数,σ是标准差参数。
对数正态分布的特点是其取值范围在0到正无穷之间,并且呈现出右偏(长尾)的形状。
3. 数据准备在进行对数正态分布拟合之前,我们需要准备一组数据。
这些数据可以是实际观测到的数据,也可以是模拟生成的数据。
在本文中,我们将使用Python的NumPy库来生成一组符合对数正态分布的随机数。
我们需要安装NumPy库:pip install numpy在Python代码中导入NumPy库:import numpy as np接下来,我们可以使用NumPy的random模块中的lognormal函数来生成一组对数正态分布的随机数。
该函数有三个参数:均值(mean)、标准差(sigma)和数量(size)。
data = np.random.lognormal(mean=1, sigma=0.5, size=1000)在上述代码中,我们生成了1000个符合均值为1、标准差为0.5的对数正态分布的随机数。
4. 对数正态分布拟合在Python中,有多种方法可以拟合对数正态分布。
本文将介绍两种常用的方法:最大似然估计和最小二乘法。
4.1 最大似然估计最大似然估计是一种常用的参数估计方法,在拟合对数正态分布时也可以使用。
对数正态分布word版本

对数正态分布在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。
如果X是正态分布的随机变量,则exp(X) 为对数分布;同样,如果Y 是对数正态分布,则 ln(Y) 为正态分布。
如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。
一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。
对于,对数正态分布的概率分布函数为其中与分别是变量对数的平均值与標準差。
它的期望值是方差为给定期望值与标准差,也可以用这个关系求与与几何平均值和几何标准差的关系对数正态分布、几何平均数与几何标准差是相互关联的。
在这种情况下,几何平均值等于,几何平均差等于。
如果采样数据来自于对数正态分布,则几何平均值与几何标准差可以用于估计置信区间,就像用算术平均数与标准差估计正态分布的置信区间一样。
置信区间界对数空间几何3σ 下界2σ 下界1σ 下界1σ 上界2σ 上界3σ 上界其中几何平均数,几何标准差[编辑]矩原始矩为:或者更为一般的矩[编辑]局部期望随机变量在阈值上的局部期望定义为其中是概率密度。
对于对数正态概率密度,这个定义可以表示为其中是标准正态部分的累积分布函数。
对数正态分布的局部期望在保险业及经济领域都有应用。
[编辑]参数的最大似然估计为了确定对数正态分布参数μ与σ的最大似然估计,我们可以采用与正态分布参数最大似然估计同样的方法。
我们来看其中用表示对数正态分布的概率密度函数,用—表示正态分布。
因此,用与正态分布同样的指数,我们可以得到对数最大似然函数:由于第一项相对于μ与σ来说是常数,两个对数最大似然函数与在同样的μ与σ处有最大值。
因此,根据正态分布最大似然参数估计器的公式以及上面的方程,我们可以推导出对数正态分布参数的最大似然估计[编辑]相关分布•如果与,则是正态分布。
•如果是有同样μ参数、而σ可能不同的统计独立对数正态分布变量,并且,则Y 也是对数正态分布变量:。
正态分布和对数正态分布

对数正态分布的峰度为$frac{e^{2sigma^2}1+6sigma^2}{sigma^2}$。
描述性统计量
偏度和峰度用于描述数据的形状,偏度表示数据分布的不对称性, 峰度表示数据分布的尖锐程度。
06
对数正态分布在实践中的 应用
数据建模
自然现象
医学研究
对数正态分布常用于描述自然现象,如地震、 火山喷发、降雨量等,因为这些现象的强度 或频率往往呈现对数增长的特点。
正态分布的应用领域
自然现象
01
许多自然现象的随机变量服从正态分布,如人类的身高、智商、
考试分数等。
金融领域
02
金融市场中的许多随机变量,如股票收益率、汇率波动等,也
呈现出正态分布的特征。
统计学与数据分析
03
在统计学中,正态分布被广泛应用于样本数据的统计分析,如
参数估计和假设检验。
正态分布在统计学中的重要性
正态分布和对数正态 分布
目录
• 正态分布概述 • 正态分布的性质 • 正态分布在实践中的应用 • 对数正态分布概述 • 对数正态分布的性质 • 对数正态分布在实践中的应用
01
正态分布概述
定义与特性
定义
正态分布是一种连续概率分布, 其特征是数据呈现钟形曲线,且 曲线关于均值对称。
特性
正态分布具有集中性、对称性和均 匀分散性的特点,其中标准正态分 布的均值为0,标准差为1。
中心极限定理在金融、生物、医学、工程等多个领域都有广泛应用。例如,在金融领域,我们经常使用正态分布 来描述股票价格的波动;在生物和医学领域,我们使用正态分布来描述人类身高、血压等生理指标的分布。
参数估计
参数估计
参数估计是统计学中的一种重要方法,其目的是通过样本数据来估计总体参数 的值。在正态分布的背景下,我们通常使用样本均值和样本标准差来估计总体 均值和总体标准差。
对数正态分布

對數正態分佈概率密度函數具有相同位置參數μ但不同尺度參數σ一些對數正態分佈密度函數累積分佈函數對數正態分佈的累積分佈函數(μ = 0)在概率理論,對數正態分佈是連續概率分佈的隨機變數的對數是通常的分散式。
如果X 是一個隨機變數與一個正常的分佈,然後Y = exp (X ) 具有對數正態分佈 ;同樣,如果Y 是日誌通常分佈,然後X = (Y ) 日誌已正常分配。
一個隨機變數,日誌通常分發需要只有正面的真正價值。
日誌正常也會寫入日誌正常或對數。
法蘭西斯 · 高爾頓後的角度來看分佈可能偶爾提到的高爾頓分佈或高爾頓的分佈,作為。
[1]日誌正常分配也已經與其他的名稱,例如,麥卡利斯特、 Gibrat 和Cobb –Douglas 相關聯。
[1]可能作為日誌正常建模變數,如果它可以被看作乘法的產品很多獨立的隨機變數每個其中是積極。
(這被辯解通過考慮中日誌域的中心極限定理)例如,在金融領域,該變數可以表示複合返回從一個序列的多個行業 (每個表示,它的回歸 + 1) ;或者可以從產品的短期折扣因素派生一個長期折扣係數。
在無線通訊中,造成的陰影或緩慢衰落從隨機物件的 sas 常常假定日誌通常分發: 請參見日誌-距離路徑損失模型.對數正態分佈是最大熵概率分佈的隨機變數X 的帄均值和方差的固定的。
[2]內容[隱藏]∙ 1 Μ和σ∙2 表徵o 2.1 概率密度函數o2.2 累積分佈函數o 2.3 、 特徵函數及母函數的時刻∙3 屬性o3.1 位置及規模▪ 3.1.1 幾何的時刻▪3.1.2 算術的時刻o 3.2 模式和中位數 o 3.3 變異係數o 3.4 局部期望o3.5 其他∙ 4 發生∙ 5 最大似然估計的參數 ∙6 多元日誌-正常代表是漸近的分歧,但不足為數值的目的資∙7 生成日誌通常分佈隨機變數∙8 相關的分佈∙9 相似的發行∙10 又見∙11 筆記∙12 引用∙13 進一步閱讀∙14 外部連結[編輯] Μ和σ在對數正態分佈X,參數來表示μ和σ分別是,意思是和變數的自然對數的標準差(根據定義,該變數的對數通常分發),這意味著與Z標準正態變數。
对数正态分布函数

对数正态分布函数对数正态分布函数是一种统计分布,它模拟重要的实际随机变量的分布,特别是许多来自自然界的量的分布。
它的名字源于“对数”,指的是取数据的自然对数,而“正态”是指与正态分布函数相似的轮廓。
对数正态分布函数最常用于描述基于大量观察数据而建构出的函数,因为它与真实发生的现实情况(比如尝试预测股票市场或以太币价格)很好地符合。
对数正态分布函数的形状与正态分布函数的几乎完全一样,它以期望值0为中心,两边分布等量,且其形状是凸型钟形的。
此外,对数正态分布函数的斜率在期望处处于最大值,在其最高点处斜率急剧发生改变,然后接近两侧曲线的平衡。
因此,这种分布函数中心呈现出典型的“U”形,因此它也被称为“Cauchy–U”分布。
对数正态分布函数被广泛应用于金融经济和生物统计学中,其自如地模拟许多重要的数据实例。
它甚至可以被用于模拟半幂率分布的数据,如大小为百万的供应量,在之后的拟合中,可以更轻松地应用期望值和标准偏差。
对数正态分布函数和指数分布函数相关联。
它们都可以应用于描述持续性随机变量的数据,但它们却大不相同。
对数正态分布函数用于强健性拟合,可以有效地拟合出期望及数据具有自变性特征的常见问题,它们显示了明显的“U”型形状,即可以观察到数据从低值到期望值缓慢变化,之后从期望值转变到高值的趋势。
另一方面,指数分布函数应用于与对数正态分布函数相关的情况,它可以提供完全不同的见解,如它可以描述短期内多个时间点的大量数据。
总而言之,对数正态分布函数是一种常见的概率分布函数,它可以用于描述变量的递增或递减情况,且可用于拟合复杂的偏态数据,如股票价格、全球最低气温以及期货市场等等场景,因而近年来它被越来越多用于金融经济学研究和数据挖掘中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。
如果X是正态分布的随机变量,则exp(X) 为对数分布;同样,如果Y是对数正态分布,则 ln(Y) 为正态分布。
如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。
一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。
对于,对数正态分布的概率分布函数为
其中与分别是变量对数的平均值与標準差。
它的期望值是
给定期望值与标准差,也可以用这个关系求与
与几何平均值和几何标准差的关系
对数正态分布、几何平均数与几何标准差是相互关联的。
在这种情况下,几何平均值等于,几何平均差等于。
如果采样数据来自于对数正态分布,则几何平均值与几何标准差可以用于估计置信区间,就像用算术平均数与标准差估计正态分布的置信区间一样。
其中几何平均数,几何标准差
或者更为一般的矩
[编辑]局部期望
随机变量在阈值上的局部期望定义为
其中是概率密度。
对于对数正态概率密度,这个定义可以表示为
其中是标准正态部分的累积分布函数。
对数正态分布的局部期望在保险业及经济领域都有应用。
其中用表示对数正态分布的概率密度函数,用—表示正态分布。
因此,用与正态分布同样的指数,我们可以得到对数最大似然函数:
由于第一项相对于μ与σ来说是常数,两个对数最大似然函数与在
同样的μ与σ处有最大值。
因此,根据正态分布最大似然参数估计器的公式以及上面的方程,我们可以推导出对数正态分布参数的最大似然估计
•如果与,则是正态分布。
•如果是有同样μ参数、而σ可能不同的统计独立对数正态分布变量,并且,则Y也是对数正态分布变量:。
μ=0
μ=0
is asymptotically divergent but sufficient for numerical purposes。