空间两点之间的距离公式
4.3.2空间两点间的距离公式

2
2
2
这就是空间两点间的距离公式. 这就是空间两点间的距离公式
思考2:在空间直角坐标系中, 思考 在空间直角坐标系中,坐标平面上的点 在空间直角坐标系中 A(x,y,0),B(0,y,z),C(x,0,z), 与坐标原点O的距离分别是什么 的距离分别是什么? 与坐标原点 的距离分别是什么?
| OA |=
思考:若直线 平面的一条斜线, 思考 若直线P1P2 是xOy平面的一条斜线, 若直线 平面的一条斜线 则点P 的距离如何计算? 则点 1、P2的距离如何计算?
z P1 O y x M N P2
A
| P1P2 |=
(x1 - x2 ) + (y1 - y2 ) + (z1 - z2 )
2
2
2
这就是空间两点间的距离公式. 这就是空间两点间的距离公式
2 2
| OP |=
x +y +z
• 思考 在空间直角坐标系中,方程 思考5:在空间直角坐标系中, 在空间直角坐标系中 x2+y2+z2=r2(r>0为常数)表示 为常数) 为常数 什么图形是什么? 什么图形是什么?
z
P
O y
x
探究(二):空间两点间的距离公式 探究( 空间两点间的距离公式
在空间中,设点 在空间中 设点P1(x1,y1,z1),P2(x2,y2,z2)在xOy平面上的 设点 , 在 平面上的 射影分别为M、 射影分别为 、N. 思考1:点M、N之间的距离如何? 思考1:点 之间的距离如何? 1:
B O A C
y
x
|OA|=|x|; |OB|=|y|; |OC|=|z|.
思考:若直线 平面的一条斜线, 思考 若直线P1P2 是xOy平面的一条斜线, 若直线 平面的一条斜线 则点P 的距离如何计算? 则点 1、P2的距离如何计算?
2.空间两点间的距离公式

通过建立直角坐标系可以确定空间中点的位置。 z z
M (x,y,z)
O x x y y
如何计算空间两点之间的距离?
4.3.2 空间两点间的 距离公式
思考
类比平面两点间距离公式的推导,你能猜想一下 空间两点 P1 ( x1,y1,z1 ), P2 ( x2 , y2 , z2 ) 间的距离公式吗? 平面内两点P1(x1,y1), P2(x2,y2) 的距离公式
|P1Q1|=|x1-x2|; |Q1R1|=|y1-y2|;|R1P2|=|z1-z2|
|P1P2|2=|P1Q1||2+|Q1R1|2+|R1P2|2
| P1P2 | (x1 x 2 )2 (y 1 y 2 )2 (z1 z 2 )2
空间内两点 P1 (x1 , y1 , z1 ), P2 (x2 , y 2 , z 2 )的距离公式是:
| AB | (10 4) 2 ( 1 1) 2 (6 9) 2 7 | BC | (4 2) 2 (1 4) 2 (9 3) 2 7 | AC | (10 2) 2 ( 1 4) 2 (6 3) 2 98
因为 7 7 98,
所以
| OP |
x2 y2 z 2
思考
如果|OP|是定长r,那么 x2 y 2 z 2 r2 表示什 么图形? z
O
x y
表示以原点为球心,r为半径的球体。
空间任意两点间的距离. R2 z S2 O x Q1 y Q2
P2 (x2,y2,z2) S1 P1 (x1,y1,z1) R1
| P1 P2 | ( x2 x1 ) 2 ( y2 y1 ) 2
4.3.2 空间两点间的距离公式

O
M1 M M2 H N2 y N
N1
在xOy平面上, MN ( x2 x1 )2 ( y2 y1 )2 . 过点P1作P2N的垂线,垂足为H,
则 MP 1 z1 , NP 2 z2 , 所以 HP2 z2 z1 .
P1 O M1 N1 x M M2 H N2 y N z
解:设所求的点为M(0, 0, z),依题意有
MA MB
2
2
2 2 2 2 2 2 即 (0 4) (0 1) ( z 7) (3 0) (5 0) (2 z)
14 解之得 z 9 14 (0, 0, ). 所以所求点的坐标是 9
在z轴上求一点M,使点M 到A(1,0,2)与点B(1,-3,1)
2.在Rt△ABC中,∠BAC=90°,三点的坐标为A(2,1,1), 2 B(1,1,2),C(x,0,1),则x=_____. 3.若点P(x,y,z)到A(1,0,1),B(2,1,0)两点的距离 2x+2y-2z-3=0 相等,则x、y、z满足的关系式是_______________. 4.已知点P在z轴上满足|OP|=1(O是坐标原点),则点P到
P2
在Rt PHP 1 2中,
2 2 PH MN ( x x ) ( y y ) 1 2 1 HP ( x x ) ( y y ) ( z z ) 1 2 2 1 2 1 2 1 , 2 2
因此,空间中任意两点P1(x1,y1,z1)、P2(x2,y2,z2)
2或 6 。 点A(1,1,1)的距离是_________
5.正方体不在同一平面上的两个顶点的坐标分别为A(-1,
4 。 2,-1),B(3,-2,3),则正方体的棱长为_____
空间两点间距离公式含详解

一、选择题
1.点 P 22, 33,- 66到原点的距离是
()
30 A. 6
B.1
33 C. 6
35 D. 6
[答案] B
2.点P(a,b,c)到坐标平面xOy的距离是
()
A.|a|
二、填空题 4.已知点A在x轴上,点B(1,2,0),且d(A,B)=,则点 A的坐标是____________. [答案] (0,0,0)或(2,0,0) [解析] 设点A坐标为(x,0,0),
解得x=0或x=2. ∴点A的坐标为(0,0,0)或(2,0,0).
5.已知点P在z轴上,且d(P,O)=1(O是坐标原点), 则点P到点A(1,1,1)的距离是________.
[例3] 求到两点A(2,3,0)、B(5,1,0)距离相等的点P的坐 标满足的条件.
[解析] 设 P(x,y,z), 则 PA= (x-2)2+(y-3)2+z2, PB= (x-5)2+(y-1)2+z2. ∵PA=PB, ∴ (x-2)2+(y-3)2+z2= (x-5)2+(y-1)2+z2. 化简得 6x-4y-13=0. ∴点 P 的坐标满足的条件为 6x-4y-13=0.
[解析] 以塔底C为坐标原点建立如下图所示的坐标 系.
则D(0,0,5),A(3,-4,0),
已知空间三点A(1,2,4)、B(2,4,8)、C(3,6,12),求证A、 B、C三点在同一条直线上.
[解析] d(A,B)= (2-1)2+(4-2)2+(8-4)2= 21, d(B,C)= (3-2)2+(6-4)2+(12-8)2= 21, d(A,C)= (3-1)2+(6-2)2+(12-4)2=2 21, ∴AB+BC=AC,故 A、B、C 三点共线.
两点间距离公式用法

两点间距离公式用法
两点间距离公式用法:
两点间距离公式是用来计算平面上或空间中两个点之间距离的公式。
在平面上,我们可以使用勾股定理来计算两点间的距离,而在三维空间中,我们需要使用三维勾股定理来计算。
在平面上,如果给定两个点的坐标为 (x1, y1)和 (x2, y2),那么可以使用勾股定
理来计算它们之间的距离。
勾股定理的公式为:d = √((x2 - x1)² + (y2 - y1)²),其中
d 表示两点之间的距离。
在三维空间中,如果给定两个点的坐标为 (x1, y1, z1)和 (x2, y2, z2),我们可以
使用三维勾股定理来计算它们之间的距离。
三维勾股定理的公式为:d = √((x2 -
x1)² + (y2 - y1)² + (z2 - z1)²),其中 d 表示两点之间的距离。
使用这些公式时,我们需要将两个点的坐标代入相应的公式中,然后进行计算。
最终得到的结果就是两点之间的距离。
需要注意的是,这些公式只适用于平面上或空间中的直线距离计算。
如果需要
计算两点之间的其他类型的距离,如曲线或曲面上的距离,可能需要使用其他公式或方法进行计算。
总而言之,两点间距离公式是用来计算平面上或空间中两个点之间距离的数学
工具。
通过代入坐标并使用相应的公式,我们可以准确计算出这两点之间的距离。
2.4.2空间两点间的距离公式

2.在Rt△ABC中,∠BAC=90°,三点 . △ 中 ° 的坐标为A(2,1,1),B(1,1,2),C(x, , , , , , , 的坐标为 , 0,1),则x= , , 2 .
3.若点P(x,y,z)到A(1,0,1),B(2,1, 3.若点P(x,y,z)到A(1,0,1),B(2,1, 0)两点的距离相等,则x、y、z满足的关 两点的距离相等, 、 、 满足的关 两点的距离相等 系式是 2x+2y-2z-3=0 - - .
2
M 3 M 1 = (4 − 5) + ( 3 − 2) + (1 − 3) = 6,
2
2 2 2
∴ M 2 M 3 = M 3 M1 ,
原结论成立. 原结论成立
轴上, 例 2 设 P在 x轴上,它到 P (0, 2,3)的距离 1 的距离的两倍, 的坐标. 为到点 P (0,1,−1)的距离的两倍, 求点 P的坐标 2
解:
轴上, 点坐标为 因为 P 在 x 轴上, P点坐标为 ( x ,0,0), 设
PP1 = x 2 + ( 2 )2 + 3 2 = x 2 + 11, PP2 = x + (− 1) + 12 = x 2 + 2 ,
2 2
Q PP1 = 2 PP2 , ∴ x 2 + 11 = 2 x 2 + 2
C1 A1 B1
C A B
(1)建立适当的坐标系,并写出 、B1、 )建立适当的坐标系,并写出B、 C、C1的坐标; 、 的坐标; 解:(1)如图建立空间直角坐标系, :( )如图建立空间直角坐标系, 则B(0,a,0),B1(0,a,2 a), , , , , , ,
空间直角坐标系点面距离公式(一)

空间直角坐标系点面距离公式(一)空间直角坐标系点面距离公式一、点到点的距离公式两点之间的距离可以用勾股定理来计算,即两点间直线的欧氏距离公式。
公式如下:d = √[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]其中,(x1, y1, z1)、(x2, y2, z2) 分别为两个点的坐标。
示例:假设有两个点 A(1, 2, 3) 和 B(4, 5, 6),要计算它们之间的距离。
根据公式计算可得:d = √[(4 - 1)² + (5 - 2)² + (6 - 3)²]= √[3² + 3² + 3²]= √[9 + 9 + 9]= √27≈所以点 A 到点 B 的距离约为。
二、点到直线的距离公式点到直线的距离可以利用点到点的距离公式来计算。
设点 P(x, y, z) 到直线 L 的距离为 d,直线 L 上一点为 A(x1, y1, z1),则有:d = |(Ax - Px) * i + (Ay - Py) * j + (Az - Pz) * k|/ √(i² + j² + k²)其中,(x, y, z) 为点 P 的坐标,(x1, y1, z1) 为直线上一点的坐标,(i, j, k) 为直线的方向向量。
示例:考虑一条直线 L 过点 A(1, 2, 3),且方向向量为 (2, 2, 1)。
现有一点 P(-1, 0, 1),要计算 P 到直线 L 的距离。
根据公式计算可得:d = |(2(-1 - 1) + 2(0 - 2) + 1(1 - 3))| / √(2² + 2²+ 1²)= |-4 - 8 - 2| / √(4 + 4 + 1)= |-14| / √9= 14 / 3≈所以点 P 到直线 L 的距离约为。
三、点到平面的距离公式点到平面的距离可以类比点到直线的距离公式,利用点到点的距离公式来计算。
两点之间的距离计算公式

两点之间的距离计算公式在数学中,两点之间的距离可以通过使用坐标系的方法来计算。
坐标系是一个图形化的方法,用于定位和测量点之间的距离。
假设我们有两个点A和B,它们分别具有(x1,y1)和(x2,y2)的坐标。
我们可以使用直角三角形的定理来计算两个点之间的距离。
直角三角形的定理是基于勾股定理。
根据这个定理,两个直角三角形的直角边的平方和等于斜边的平方。
在我们的例子中,斜边就是点A到点B的距离,而直角边就是每个点的x坐标和y坐标之间的差值。
因此,两点之间的距离d可以用以下公式计算:d=√[(x2-x1)²+(y2-y1)²]这个公式适用于任何两个二维坐标系中的点。
让我们通过一个简单的例子来解释:假设我们有两个点A(2,3)和B(5,7)。
我们可以使用上述公式计算它们之间的距离。
首先,我们计算x坐标之间的差值:5-2=3然后,我们计算y坐标之间的差值:7-3=4接下来,我们将这些差值的平方相加:3²+4²=9+16=25最后,我们将这个和开根号所以,点A和点B之间的距离为5个单位。
这个公式也可以扩展到三维坐标系中。
在三维中,我们有三个坐标轴(x,y,z),因此两个点之间的距离公式变为:d=√[(x2-x1)²+(y2-y1)²+(z2-z1)²]这个公式适用于在空间中计算两个点之间的距离。
总结:两点之间的距离可以通过使用直角三角形的定理来计算,在二维坐标系中使用d=√[(x2-x1)²+(y2-y1)²]的公式,在三维坐标系中使用d=√[(x2-x1)²+(y2-y1)²+(z2-z1)²]的公式。
这些公式是计算两点之间的距离的基础。
通过了解这些公式,我们可以在数学和物理中应用它们,计算点之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间两点间的距离公式
教学目标:
1、通过特殊到一般的情况推导出空间两点间的距离公式
2、感受空间两点间距离公式与平面两点间距离公式的联系与区别 教学重点
两点间距离公式的应用
教学难点
利用公式解决空间几何问题
教学过程
一、复习
1、空间点的坐标的特点
2、平面两点间的距离公式P 1(x 1,y 1),P 2(x 2,y 2)
________________ 线段P 1P 2中点坐标公式______________
二、新课
1、设P 的坐标是(x,y,z),求|OP|
|OP|=___________________________
2、空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),求 |P 1P 2|
|P 1P 2|=___________________________
线段P 1P 2中点坐标公式_________________
例:()()间的距离求空间两点1,0,6523
21--,P ,,P
练习:()()()513432251,,,C ,,,B ,,A ABC 的三个顶点已知∆
(1)求。
ABC 中最短边的边长
∆ (2)求边上中线的长度AC
例:试解释()()()365312222=-+++-z y x 的几何意义。
练习:1、已知()1,,222=++z y x z y x M 满足则M 点的轨迹为_________________
2、求P ⎪⎪⎭
⎫ ⎝⎛66,33,22到原点的距离。
3、()()。
a AB a ,B ,,A 的值求设,4,,3,0210=
4、在长方体1111D C B A ABCD -,AD=2,AB=3,AA 1=2,E 为AC 中点,求D 1E 的长。
三、小结。