大学物理第四章静电场课后习题

合集下载

《大学物理》静电场习题

《大学物理》静电场习题
E0a2 2 0 r1
1

a r
2
例2 有一瓦楞状直长均匀带电薄板,面电荷 密度为σ,瓦楞的圆半径为 a 试求:轴线中部一 点P 处的电场强度。
a
P. L
解:
y
q dq o
x dqσ L
a
q dE
dl
dq L s dS s Ldl
s dl
E dE
=ρd 1S
0
E2
ε E2
=
ρd 1
20
1.0×10-4×0.3×10-2 = 2×8.85×10-12
=1.69×104 V/m
E3 S
d
d
ρ
(3)
E3
ρd S
ε E3S + E3S = 0
ε E3
=
ρd
20
1.0×10-4×0.5×10-2 = 2×8.85×10-12
=2.83×104 V/m
dx d
7-19 一层厚度为d =0.5cm的无限大平板,均 匀带电,电荷体密度为ρ =1.0×10-4 C/m3 。求: (1)这薄层中央的电场强度; (2)薄层内与其表面相距0.1cm处的电场强
度; (3)薄层外的电场强度。
ρd
解:(1) E1=0
E2
S d1ρ d
ε (2)
E2S
+ E2S
cosq
π
0
=πσε0
=-2.4V/m
例1 设气体放电形成的等离子体在圆柱内的 电荷分布可用下式表示

r

1
0
r a
2

2
式中r是到圆柱轴线的距离, ρ0是轴线处的电 荷体密度,a 是常量。试计算其场强分布。

大学物理:静电场练习题

大学物理:静电场练习题

由对称性可知 U p 0
l
l
l
0
12
的均匀电场!
练: 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。今在球面上挖去非常小块的面积
ΔS (连同电荷), 且假设
不影响原来的电荷分布, 则挖去ΔS后球心处电场
R
O
S
强度的大小E= QS /(16 2 0 R 4 )
其方向为 由圆心O点指向S
解:由场强叠加原理,挖去S 后的电场可以看作
和Φ2 ,通过整个球面的电场强度通量为 ΦS ,则
(C) (A) Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
(B)Φ1 Φ2 , ΦS 2q / 0
(C) Φ1 Φ2 , ΦS q / 0
(D) Φ1 Φ2 , ΦS q / 0
解:由高斯定理 ΦS q / 0
(D) 0
解:过P点作如图同轴圆柱形高斯面S,由高斯定理
SE dS 2rlE 0
R1
所以E=0。
l
2
1 R2O r P
4. 有两个点电荷电量都是 +q, 相距为2a。今以左边的
点电荷所在处为球心,以a为半径作一球形高斯面,
在球面上取两块相等的小面积 S1 和 S2 , 其位置如图 所示。设通过 S1 和 S 2 的电场强度通量分别为 Φ1
2. 上半部带正电,下半部带负电,线密度为
3. 非均匀带电,线密度为 0sin
y
dq
d o
x
R
dE
思路:叠加法
dq dE E
解:1)
dq Rd
dE
dq
4 0 R 2
;沿径向

大学物理静电场作业(四)习题与解答

大学物理静电场作业(四)习题与解答

1、在间距为d 的平行板电容器中,平行地插入一块厚为d/2的金属大平板,则电容变为原来的 倍,如果插入的是一块厚为d/2,相对介电常数为4r ε=的大介质平板,则电容变为原来的 倍。

平行地插入一块厚为d/2的金属大平板,相当于两平行板间的距离缩小了d/2,则000'2/2SC C d ε==,故电容变为原来的2倍;如果插入的是一块厚为d/3相对介电常数为4r ε=的大介质平板,相当于两个电容器串联,0108/2r SC C d εε==0202/2SC C d ε==1212' 1.6C C C C C C ==+2、如图,110C f μ= 25C f μ= 315C f μ= 100u V =,则此电容器组和的等效电容为 ,电容器1C 的储存的电能为 。

2、解:7.5f μ 0.0125J1C 与2C 并联12'10515C C C f μ=+=+='C 与3C 串联33'1515''7.5'1515C C C f C C μ⨯===++'C 与3C 串联 电容大小相等,所以'C 上分到一般的电压50V ,1C 的储存的电能为262111(1010)500.012522e W C V J -==⨯⨯=3、[ ] 真空中A 、B 两平行板相距为d ,面积均为S ,分别均匀带电q +和q -,不计边缘效应,则两板间的作用力为:(1) 220/4f q d πε=; (2) 20/f q S ε=; (3) 20/2f q S ε=解答:200/2/2f qE q q S q Sεε==⨯=4、[ ]真空中带电的导体球面与均匀带电的介质球体,它们的半径和所带的电量都相同,设带电球面的静电能为1W ,带电球体的静电能为2W ,则: (1) 12W W >; (2) 12W W =; (3) 12W W <解答:设电量为Q ,半径为R. 则均匀带电球面的静电能202222001820'422QR RVE R W dV r dr r πεεερπε∞⎛⎫=== ⎪⎝⎭⎰⎰则均匀带电球体的静电能22200022233220002408202004422323RQ Q Q RRRR VE r R W dV r dr r dr r πεπεπεεεερρππεε∞⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰所以12W W <。

大学物理(第四版)课后习题及答案 静电场

大学物理(第四版)课后习题及答案 静电场
电场强度E的方向为带电平板外法线方向。
证2:如图所示,取无限长带电细线为微元,各微元在点P激发的电场强 度dE在Oxy平面内且对x轴对称,因此,电场在y轴和z轴方向上的分量之 和,即Ey、Ez均为零,则点P的电场强度应为
积分得 电场强度E的方向为带电平板外法线方向。 上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
(2)由于正、负电荷分别对称分布在y轴两侧,我们设想在y轴上能 找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上 等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电 荷中心。等效正负电荷中心一定在y轴上并对中心O对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y轴方向分割为一组相互平行的元电偶极子,每一元 电偶极子带电
行,对电场强度通量贡献为零。整个高斯面的电场强度通量为 由于,圆柱体电荷均匀分布,电荷体密度,处于高斯面内的总电荷 由高斯定理可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得 题7.16:一个内外半径分别R1为R2和的均匀带电球壳,总电荷为Q1,球 壳外同心罩一个半径为 R3的均匀带电球面,球面带电荷为Q2。求电场 分布。电场强度是否是场点与球心的距离r的连续函数?试分析。
题7.16分析:以球心O为原点,球心至场点的距离r为半径,作同心球面 为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面 上电场强度沿径矢方向,且大小相等。因而,在确定高斯面内的电荷 后, 利用高斯定理 即可求的电场强度的分布 解:取半径为r的同心球面为高斯面,由上述分析 r < R1,该高斯面内无电荷,,故
E=0 在距离圆孔较远时x>>r,则 上述结果表明,在x>>r时。带电平板上小圆孔对电场分布的影响可以忽 略不计。 题7.15:一无限长、半径为R的圆柱体上电荷均匀分布。圆柱体单位长 度的电荷为,用高斯定理求圆柱体内距轴线距离为r处的电场强度。

大学物理参考答案(白少民)第4章 静电场

大学物理参考答案(白少民)第4章 静电场

E=
1 q ⋅ 2 πε 0 4a − L2
(2) 在棒的垂直平分线上,离棒 a 处的场强为
E= q 1 ⋅ 2πε 0 a L2 + 4a 2
证明:选棒的中心为坐标原点,沿棒的方向为 x 轴方向,垂直于棒的方向为 y 轴
1 (1) E = 4πε 0
(2) E =

l 2 l − 2
λdx λ 1 l/2 1 q = | −l / 2 = ⋅ 2 2 4πε 0 a − x πε 0 4a − L2 (a − x)
r1 < R < r2 )的高斯面上任意一点的场强大小由
Q 4πε0 R 2
变至 ______,电势由
Q 变 4πε0 R
至_______,通过这个高斯面的 E 的通量由 Q / ε0 变至______ 。 答:(1)变为 0(高斯面内无电荷,且球对称);(2)
Q 4πε0 r2
;(3)0
4.4 电势为零的地方,电场强度是否一定为零?电场强度为零的地方,电势是否一定为零? 分别举例说明之。 答:电势为零的地方,电场强度不一定为零(电势零点可选任一位置);电场强度为零的地 方,电势也不一定为零。例如导体内电场为零,但电势可以不为零。
7
由于铜的电阻率大于铝的电阻率,所以铜线中的电流小于铝线中的电流。 4.10 电力线(电场线)与电位移线之间有何关系?当电场中有好几种电介质时,

电力线是否连续?为什么? 电场线和电位移线都是用来形象描述电场分布的,前者与电场强度 E 相对应, 后者与电位移矢量 D 相对应,它们的关系通过介质的性质方程 D = ε0 E + P 相联系。 当电场中有好几种电介质时,电力线是不连续的,这是由于介质极化将在介质的表面

大连理工大学大学物理作业4(静电场四)及答案详解

大连理工大学大学物理作业4(静电场四)及答案详解

作业4 静电场四导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。

.A 不带电荷.B 带正电 .C 带负电荷.D 外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。

否则内球壳内的静电场不为零。

如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。

电场强度由内球壳向外的线积分到无限远,不会为零。

即内球壳电势不为零。

这与内球壳接地(电势为零)矛盾。

因此,内球壳外表面一定带电。

设内球壳外表面带电量为q (这也就是内球壳带电量),外球壳带电为Q ,则由高斯定理可知,外球壳内表面带电为q -,外球壳外表面带电为Q q +。

这样,空间电场强度分布r r qr E ˆ4)(201πε=ρρ,(两球壳之间:32R r R <<)r r Qq r E ˆ4)(202πε+=ρρ,(外球壳外:r R <4)其他区域(20R r <<,43R r R <<),电场强度为零。

内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Q q R R q r d r rQq r d r r q r d r E r d r E l d E U R R R R R R R πεπεπεπερρρρρρρρρρ则04432=++-R QR q R q R q ,4324111R R R R Q q +--=由于432R R R <<,0>Q ,所以0<q即内球壳外表面带负电,因此内球壳负电。

2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为σ,该处表面附近的场强大小为E ,则0E σ=。

那么,E 是[ ]。

.A 该处无穷小面元上电荷产生的场 .B 导体上全部电荷在该处产生的场 .C 所有的导体表面的电荷在该处产生的场 .D 以上说法都不对答案:【C 】解:处于静电平衡的导体,导体表面附近的电场强度为0E σ=,指的是:空间全部电荷分布,在该处产生的电场,而且垂直于该处导体表面。

大学物理第四章静电场课后习题概要


b
p
o
x
l
dx
x
kxdx dE 4 0 x b 2 kxdx k bl l E ln 2 0 4 4 0 b l b 0 x b
l
1
1
方向沿x轴的负方向。
练习题4-7 图为两个分别带有电荷的同心球壳系统。 设半径为 R1 和R2 的球壳上分别带有电荷 Q1 和 Q2 ,求: (1)I、II 、III三个区域中的场强;(2)若 Q1 Q2 , 各区域的电场强度又为多少?画出此时的电场强度分 布曲线。 q内 2 解: s E dS 4r E 0
0 r R1
E1 0
Q1
R1
R1 r R2
r R2
当 Q1 Q2 时
40 r Q1 Q2 E3 40 r 2
2
E2
Q1
Q2
Ⅲ Ⅱ
O Ⅰ
R2
0 r R1
E1 0
R1 r R2
r R2
当 Q1 Q2 时
0 r R1
当 Q1 Q2 时
Q1
R1
R2
O Ⅰ Ⅱ Ⅲ
Q2
r
练习题4-12 同轴电缆是由两个很长且彼此绝缘的同 轴金属圆柱体构成,如图所示。设内圆柱体的电势 为U1,半径为R1;外圆柱体的电势为U2 ,外圆柱体 的内半径为R2,两圆柱体之间为空气。求两个圆柱 体的空隙中离轴为r处(R1 < r <R2)的电势。
定理可知球外空间的场强E外
(3)因为球表面的场强 E表 变小。
q 4 0 r
2
。由此可知,球
外空间的场强与气球吹大过程无关。

长春工业大学物理答案光静电场c 1-4

练习一 静电场(一)1.如图1-1所示,细绳悬挂一质量为m 的点电荷-q ,无外电场时,-q 静止于A 点,加一水平外电场时,-q 静止于B 点,则外电场的方向为水平向左,外电场在B 点的场强大小为qmg tan2.如图1-2所示,在相距为a 的两点电荷-q 和+4q产生的电场中,场强大小为零的坐标x= 2a 。

3.如图1-3所示,A 、B 为真空中两块平行无限大带电平面,已知两平面间的电场强度大小为0E ,两平面外侧电场强度大小都是0E /3,则A 、B 两平面上的电荷面密度分别为 和 。

4.(3)一点电荷q 在电场中某点受到的电场力,f很大,则该点场强E 的大小:(1)一定很大; (2)一定很小;(3)其大小决定于比值q f /。

5.(2)有一带正电金属球。

在附近某点的场强为E ,若在该点处放一带正电的点电荷q 测得所受电场力为f ,则:(1)E=f/q (2)E>f/q (3)E<f/q6.两个电量都是+q 的点电荷,相距2a 连线中点为o ,求连线中垂线上和。

相距为r 的P 点的场强为E ,r 为多少时P 点的场强最大?解:经过分析,E x =0a r dr E d drdE r a qr a q E r r y 220|,0|)(21sin 412222/3220220±=<=+=+=得:由πεθπε7.长L =15cm 直线AB 上,均匀分布电荷线密度λ=5.0⨯10-9c/m 的正电荷,求导线的延长线上与导线B 端相距d=5.0cm 的P 点的场强。

)/(67544120.005.02020C N x dx E x dxdE ===⎰πελλπε 练习二 静电场(二)1.场强为E 的均匀电场与半径为R 的半球面的轴线平行,则通过半球面的电通量Φe=E R 02επ2.边长为L 的正方形盒的表面分别平行于坐标面XY 、YZ 、ZX ,设均匀电场j i E ρρρ65+=,则通过各面电场强度通量的绝对值 ,6,5,022L L X Z Z Y Y X =Φ=Φ=Φ3.如用高斯定理计算:(1)无限长均匀带电直线外一点P的场强(图2-3(a));(2)两均匀带电同心球面之间任一点P的场强(图2-3(b)),就必须选择高斯面。

大学物理静电场作业题参考答案


解得 q 2l sin 4 0mg tan 7.3.4 长 l =15.0cm的直导线AB上均匀地分布着线密度 =5.0x10-9C·m-1的正电荷.试
求:(1)在导线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直 平分线上与导线中点相距 d2 =5.0cm 处 Q 点的场强.
S
(D) 曲 面 S 的 电 场 强 度 通 量 不 变 , 曲 面 上 各 点 场 强 变
化.
题 7.1(2)图
[答案 D ]
(3)在电场中的导体内部的 [ ] (A)电场和电势均为零; (B)电场不为零,电势均为零; (C)电势和表面电势相等; (D)电势低于表面电势。 [答案:C]
(4)两个同心均匀带电球面,半径分别为 Ra 和 Rb (Ra<Rb), 所带电荷分别为 Qa 和
Uo
4U1
4
8.99
109
1.25 5
108 102
8.99 103V
(2)根据电势差的定义,有UO q0 (U UO )
选取无穷远处为电势零点WO q0 (U UO ) 8.99 106 J
电场力做负功,说明实际需要外力克服电场力做功。
题 7.3.11 图 7.3.11 如题7.3.11图所示,在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB
解:如题 7.3.4 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为 dEP
1 4π 0
dx (a x)2
EP
dE P
4π 0
l 2 l 2
dx (a x)2
4π 0
[ a
1
l
1 a

大连理工大学大学物理作业4(静电场四)及答案详解

作业4 静电场四它们离地球很远,内球壳用细导线穿过外球壳上得绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。

不带电荷 带正电 带负电荷外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。

否则内球壳内得静电场不为零。

如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。

电场强度由内球壳向外得线积分到无限远,不会为零。

即内球壳电势不为零。

这与内球壳接地(电势为零)矛盾。

因此,内球壳外表面一定带电。

设内球壳外表面带电量为(这也就就是内球壳带电量),外球壳带电为,则由高斯定理可知,外球壳内表面带电为,外球壳外表面带电为。

这样,空间电场强度分布,(两球壳之间:) ,(外球壳外:)其她区域(,),电场强度为零。

内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Qq R R q r d r rQq r d rr q r d r E r d r E l d E U R R R R R R R πεπεπεπε则,由于,,所以即内球壳外表面带负电,因此内球壳负电。

2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为,该处表面附近得场强大小为,则。

那么,就是[ ]。

该处无穷小面元上电荷产生得场 导体上全部电荷在该处产生得场 所有得导体表面得电荷在该处产生得场 以上说法都不对 答案:【C 】解:处于静电平衡得导体,导体表面附近得电场强度为,指得就是:空间全部电荷分布,在该处产生得电场,而且垂直于该处导体表面。

注意:由高斯定理可以算得,无穷小面元上电荷在表面附近产生得电场为;无限大带电平面产生得电场强度也为,但不就是空间全部电荷分布在该处产生得电场。

3.一不带电得导体球壳半径为,在球心处放一点电荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下列几种说法是否正确,为什么? (3)穿过高斯面的电通量为零时,高斯面上各点的 电场强度必为零。 (4)高斯面上各点的电场强度为零时,穿过高斯面 的电通量一定为零。 答:(3)错 穿过高斯面的电通量为零时,只说明整个高斯面的 电通量为零。并不一定电场强度处处为零。 (4)对 E = 0,则整个高斯面的 E dS 为零。所以电通量 S φ =0。
El dV dl
(3) 在电场强度为零处,电势是否一定为零?
答:(3)否。因为如果El等于零,则电势梯度为 零,但电势不一定为零。实际例子:两个相同电 荷连线中点处。
练习题 4-4 如图所示,长为 l 的细直线 OA 带电线密度 为 ,求下面两种情况下在线的延长线上距线的端点 O点为b的P点的电场强度: (1) 为常量,且>0;(2) =kx,k为大于零的常量,( 0 x l )。 dx 解: (1) 将带电直线分 b x x 割成无数个线元 dx , dx 的坐标 是 x 。它 所带的 p o l 电荷元 dq dx ,dq在P 点产生的电场强度的大 小为 1 dx dE 2 4 0 x b
因为所有电荷元产生的场强方向都相同,所以场强的 矢量叠加可用代数方法相加。于是带电直线在 P点产 生的电场强度为
E
l
Байду номын сангаас
1 4 0
E dS EdS E dS ES
S S
完成,进而利用高斯定理求得E。
一段有限长均匀带电直线的电荷分布 及其激发的电场固然具有轴对称性, 如题所示,但当取一同轴的封闭圆柱 面作为高斯面时可以发现,对于该面 上各点处的场强 E 并不具备上述利用 高斯定理求 E 的条件。就是说,对这 个封闭圆柱面,高斯定理成立,但不 能利用它求出场强。当取其他具有轴 对称的封闭曲面时,同样会发现,或 者面上各处的 E 不平行或垂直于面法 线,或者面上各处 E 的大小不等。所 以,对于一段有限长均匀带电直线, 找不到合适的高斯面来求出它的场强。
(2)根据点电荷的场强公式 q E r 2 0 4 0 r 从形式上看,当所考察的场点和点电荷 q 间的距离 r→0时,则按上式,将有E→ ,但这是没有物理意 义的。对这个问题你如何解释? 答: (2) 当带电体 q 的线度远远小于带电体与考察点 的距离r时,带电体才可抽象为点电荷,考察点的场 强才可用点电荷的场强公式计算。当 r → 0 时,带电 体本身的线度不能忽略,因而带电体就不能当成点 电荷, 这时点 电荷的 公式已 失效 , 也就不 能推论 E→∞。

思考题4-6 一个点电荷q位于一个边长为a的立方体 的中心,通过该立方体各面的电通量是多少?
答:点电荷位于立方体中心时,通过该立方体各面 的电通量都相等,并且等于总通量的1/6。由高斯定 理可知总通量为

S
q E dS
0
于是,通过各面的电通量为
q 6 0
a
q
思考题4-7 一根有限长的均匀带电直线,其电荷分布 及所激发的电场有一定的对称性,如图所示。能否利 用高斯定理算出场强来? 答:否。利用高斯定理求电场强度E, 要求带电体及其激发的电场强度在空 间的分布具有很强的对称性:在所取 的整个高斯面S上或其部分面积上的E, 处处与dS平行,且面上各dS处E的大 小不随dS而变;或者各dS处E的方向 处处与dS垂直,使通过该部分面积的 E通量为零。在这种情况下,通过S面 的E通量可由下列过程
思考题4-9 试利用电场强度与电势的关系式 下列问题:
El
dV dl
分析
(1)在电势不变的空间内,电场强度是否为零? 答:(1)是。当电势处处相等时,电势沿任何方向 V 的空间变化率为零,由 El d 可知,场强为零。实际 dl 例子:静电平衡的导体内。 (2) 在电势为零处,电场强度是否一定为零? (2)否。因为电势为零处,电势梯度 不一 定为零,所以El也不一定为零。实际例子:电偶极 子连线中点处。
思考题4-3 (1)在电场中某一点的场强定义为 若该点没有试验电荷 q0 ,那么该点有无场强?如果电 荷在电场中某点受的电场力很大,该点的电场强度是 否一定很大?
E F q0 ,
答:(1)电场强度是反映电场本身性质的物理量,与有 没有试验电荷没有关系。电场力不仅与场强有关,也 与试验电荷量有关,电场强度一定时,只要试验电荷 越大,受力也就越大;而场强为 E F q0 却可以保持不 变。
第四章 静电场
(Electrostatic Field)
思考题4-1 在真空中两个点电荷之间的相互作用力 是否会因为其他带电体的移近而改变。
答:在真空中两个点电荷之间的相互作用是独立的, 不会因为其他带电体的移近而改变。也就是说,只 要这两个点电荷的带电量及距离一定,不管周围有 无其他带电体,其相互作用力是一定的。
思考题4-4 一个均匀带电球形橡皮气球,在其被吹大 的过程中,下列各场点的场强将如何变化?(1)气球内 部;(2)气球外部;(3)气球表面。 答: (1) 因为电荷分布在球面上,球内部无电荷,在 球内取半径为r( r<R )的球形高斯面,由高斯定理可知 球内的场强E内= 0。
(2) 在球外取半径为r ( r>R )的球形高斯面,由高斯
定理可知球外空间的场强E外
(3)因为球表面的场强 E表 变小。
q 4 0 r
2
。由此可知,球
外空间的场强与气球吹大过程无关。
q 4 0 R
2
,在球被吹大的过
程中,R变大,所以,球表面的场强随气球的吹大而
思考题4-5 下列几种说法是否正确,为什么? (1)高斯面上电场强度处处为零时,高斯面内必 定没有电荷。 (2)高斯面内净电荷数为零时,高斯面上各点的 电场强度必为零。 答:(1)错 因为依高斯定理,E = 0 只说明高斯面内净电荷 数(所有电荷的代数和)为零。 (2)错 高斯面内净电荷数为零,只说明穿过整个高斯面 的电通量为零。并不一定电场强度处处为零。
相关文档
最新文档