离散数学第六章资料
合集下载
《离散数学》 第六章 集合的基数

6.2.1 可数集
定理6.2.5 可数个可数集的并集仍然是一可数集。
在上面元素的排列中,由左上端开始,其每一斜线上的每一元素
的两足码之和都相同,依次为2,3,4,…,各斜线上元素的个
数依次为1,2,3,4,…,故A的排列为: a11,a21,a12,a31,a22,a13,… 故S是可数的,定理得证。
(3)card X = card Y。
6.3 基数的比较
定理6.3.3 设X、Y为任意两个集合, 如果cardX ≼· cardY,cardY ≼· cardX, 则cardX=cardY。
例6.3.1
证明[0,1]和(0,1)有相同的基数。
解 根据定理6.3.3,我们只需构造两个单射函数:
f:(0,1) → [0,1],f(x)=x
6.2 可数集和不可数集
6.2.1 可数集
定理6.2.5
证明 为:
可数个可数集的并集仍然是一可数集。
设S1,S2 , S3,……是可数个可数集,分别表示 S1={a11,a12,a13,…,a1n,…} S2={a21,a22,a23,…,a2n,…} S3={a31,a32,a33,…,a3n,…} …………
6.1 基数的概念
定义 6.1.3 设 X 为任意集合,称 card X 为集合 X 的基数,并作 以下规定: ( 1 )对于任意的集合 X 和 Y ,规定 card X = card Y ,当且仅当 X≈Y; (2)对于任意有限集合X,规定与X等势的那个唯一的自然数n为X 的基数,记作 card X = n (3)对于自然数集合N,规定 card N = (读作阿列夫零) (4)对于开区间(0,1),规定 card(0,1)= (读作阿列夫)
⑵ 若X≈Y,则X≼· Y且Y≼· X。
定理6.2.5 可数个可数集的并集仍然是一可数集。
在上面元素的排列中,由左上端开始,其每一斜线上的每一元素
的两足码之和都相同,依次为2,3,4,…,各斜线上元素的个
数依次为1,2,3,4,…,故A的排列为: a11,a21,a12,a31,a22,a13,… 故S是可数的,定理得证。
(3)card X = card Y。
6.3 基数的比较
定理6.3.3 设X、Y为任意两个集合, 如果cardX ≼· cardY,cardY ≼· cardX, 则cardX=cardY。
例6.3.1
证明[0,1]和(0,1)有相同的基数。
解 根据定理6.3.3,我们只需构造两个单射函数:
f:(0,1) → [0,1],f(x)=x
6.2 可数集和不可数集
6.2.1 可数集
定理6.2.5
证明 为:
可数个可数集的并集仍然是一可数集。
设S1,S2 , S3,……是可数个可数集,分别表示 S1={a11,a12,a13,…,a1n,…} S2={a21,a22,a23,…,a2n,…} S3={a31,a32,a33,…,a3n,…} …………
6.1 基数的概念
定义 6.1.3 设 X 为任意集合,称 card X 为集合 X 的基数,并作 以下规定: ( 1 )对于任意的集合 X 和 Y ,规定 card X = card Y ,当且仅当 X≈Y; (2)对于任意有限集合X,规定与X等势的那个唯一的自然数n为X 的基数,记作 card X = n (3)对于自然数集合N,规定 card N = (读作阿列夫零) (4)对于开区间(0,1),规定 card(0,1)= (读作阿列夫)
⑵ 若X≈Y,则X≼· Y且Y≼· X。
《离散数学》第六章 集合代数

例2:某学校有12位教师,已知有8位老师可以教数学,6位 可教物理,5位可教化学.其中有5位教师既教数学又教 物理.4位老师兼教数学和化学,3位老师兼教物理和化 学,3位老师兼教这三门课. 1.求不教任何课的老师有几位? 2.只教一门课的老师有几位? 3.正好教其中两门课的老师有几位?
例3: 4个x ,3个y,2个z的全排列中,求不出现xxxx,yyy ,zz图象的排列。
设x不具有性质P1,P2,…,Pm ,那么x∉Ai,i= 1,2,…m。则它对等式左边计数的贡献为1,对 等式右边的计数的贡献也是1。
根据牛顿二项式定理不难得到上面式子的结果是0.而 由于x具有n个性质,它对等式左边的贡献也为0。
4.3 几个例子
例1:求1-1000之间(包括1和1000)不能被5,也不能被6, 还不能被8整除的整数有多少个?
总体上还是多采用命题逻辑中的等值式,但在叙述
上采用半形式化的方法。
例6.6 证明A-(B∪C)=(A-B)∩(A-C).
证明: 对于∀x
x ∈ A-(B∪C) Ù x ∈ A ∧ x ∉(B∪C) Ù x ∈ A ∧ ⎤ (x∈B ∨ x∈C) Ù x ∈ A ∧ (⎤x∈B ∧ ⎤x∈C) Ù x ∈ A ∧ (x ∉ B ∧ x ∉ C) Ù x∈A∧x∉B∧x∉C Ù (x ∈ A ∧ x ∉ B) ∧ (x ∈ A ∧ x ∉ C) Ù x ∈ A- B ∧ x ∈ A- C Ù x ∈( A- B) ∩(A- C)
全排列的个数为:9!/(4!3!2!)=1260; 所以要求的排列数为
1260-(60+105+280)+(12+20+30)-6 =871.
4.4 三个练习
练习1:求由a,b,c,d构成的n位符号串中,a,b,c,d都至 少出现一次的符号串的数目。
例3: 4个x ,3个y,2个z的全排列中,求不出现xxxx,yyy ,zz图象的排列。
设x不具有性质P1,P2,…,Pm ,那么x∉Ai,i= 1,2,…m。则它对等式左边计数的贡献为1,对 等式右边的计数的贡献也是1。
根据牛顿二项式定理不难得到上面式子的结果是0.而 由于x具有n个性质,它对等式左边的贡献也为0。
4.3 几个例子
例1:求1-1000之间(包括1和1000)不能被5,也不能被6, 还不能被8整除的整数有多少个?
总体上还是多采用命题逻辑中的等值式,但在叙述
上采用半形式化的方法。
例6.6 证明A-(B∪C)=(A-B)∩(A-C).
证明: 对于∀x
x ∈ A-(B∪C) Ù x ∈ A ∧ x ∉(B∪C) Ù x ∈ A ∧ ⎤ (x∈B ∨ x∈C) Ù x ∈ A ∧ (⎤x∈B ∧ ⎤x∈C) Ù x ∈ A ∧ (x ∉ B ∧ x ∉ C) Ù x∈A∧x∉B∧x∉C Ù (x ∈ A ∧ x ∉ B) ∧ (x ∈ A ∧ x ∉ C) Ù x ∈ A- B ∧ x ∈ A- C Ù x ∈( A- B) ∩(A- C)
全排列的个数为:9!/(4!3!2!)=1260; 所以要求的排列数为
1260-(60+105+280)+(12+20+30)-6 =871.
4.4 三个练习
练习1:求由a,b,c,d构成的n位符号串中,a,b,c,d都至 少出现一次的符号串的数目。
离散数学第六章 集合 自然数与自然数集

学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世
称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。
,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质
(1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
数学归纳法——皮亚诺公设的第5条
离散数学第六章---群论

得Computer仍是字母串。
第6章 群论
定理6.1 一个半群(S,),如果它有一个子代 数 (M, ) ,则此子代数也是一个半群。
定义6.2 一个半群(S,)的子代数 (M, )也是 半群,称为(S,)的子半群。
第6章 群论
一个半群(S,)中的元素a ,可定义它的幂: a1=a , a2=a a , …,an+1=an a
第6章 群论
定理6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群。
定义6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群,称为(S,)的子单位半群 。
Hale Waihona Puke 第6章 群论定义6.5 :一个单位半群(S,)如果由它的一个 元素a 所生成,则称为由 a 所生成的循环单位半 群,元素 a 称为此单位半群的生成元素。
定理6.6 :一个循环单位半群是一个可换单位半 群。
第6章 群论
6.2 群
一、群与群的同构 1、群的有关定义
定义6.7 如果代数系统(G, )满足 (1) (G, )为一半群; (2) (G, )中有单位元e; (3) (G,)中每一元素a∈G都有逆元 a-1 则称代数系统(G, )为群。
第6章 群论
第六章 群论 6.1 半群与单元半群 6.2 群
第6章 群论
群在代码的查错、改错的研究,自动机理论等 方面都有应用。
第6章 群论
6.1 半群与单元半群
半群与群都是具有一个二元运算的代数系 统,群是半群的特殊例子。事实上,群是历史 上最早研究的代数系统,它比半群复杂一些, 而半群概念是在群的理论发展之后才引进的。 逻辑关系见图6.1.1。
第6章 群论
定理6.1 一个半群(S,),如果它有一个子代 数 (M, ) ,则此子代数也是一个半群。
定义6.2 一个半群(S,)的子代数 (M, )也是 半群,称为(S,)的子半群。
第6章 群论
一个半群(S,)中的元素a ,可定义它的幂: a1=a , a2=a a , …,an+1=an a
第6章 群论
定理6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群。
定义6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群,称为(S,)的子单位半群 。
Hale Waihona Puke 第6章 群论定义6.5 :一个单位半群(S,)如果由它的一个 元素a 所生成,则称为由 a 所生成的循环单位半 群,元素 a 称为此单位半群的生成元素。
定理6.6 :一个循环单位半群是一个可换单位半 群。
第6章 群论
6.2 群
一、群与群的同构 1、群的有关定义
定义6.7 如果代数系统(G, )满足 (1) (G, )为一半群; (2) (G, )中有单位元e; (3) (G,)中每一元素a∈G都有逆元 a-1 则称代数系统(G, )为群。
第6章 群论
第六章 群论 6.1 半群与单元半群 6.2 群
第6章 群论
群在代码的查错、改错的研究,自动机理论等 方面都有应用。
第6章 群论
6.1 半群与单元半群
半群与群都是具有一个二元运算的代数系 统,群是半群的特殊例子。事实上,群是历史 上最早研究的代数系统,它比半群复杂一些, 而半群概念是在群的理论发展之后才引进的。 逻辑关系见图6.1.1。
离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。
离散数学第6章(屈)

例3 已知5阶有向图的度数列和出度列分别为3,3,2,3,3和 1,2,1,2,1, 求它的入度列 解 2,1,1,1,2
12
实例
例4 证明不存在具有奇数个面且每个面都具有奇数条棱 的多面体.
证 用反证法. 假设存在这样的多面体, 作无向图G=<V,E>,
其中 V={v | v为多面体的面}, E={(u,v) | u,vV u与v有公共的棱 uv}. 根据假设, |V|为奇数且vV, d(v)为奇数. 这与握手定理的 推论矛盾.
并且 (vi,vj) (<vi,vj>) 与 (f(vi),f(vj)) (<f(vi),f(vj)>)的重 数相同,
则称G1与G2是同构的,记作G1G2.
24
Hale Waihona Puke 实例25实例例6 画出4阶3条边的所有非同构的无向简单图 解 总度数为6, 分配给4个顶点, 最大度为3, 且奇度顶点 数为偶数, 有下述3个度数列: (1) 1,1,1,3;(2)1,1,2,2;(3)0,2,2,2.
e1
v1 e3
e2 v2 e4 v4 e5 v3 e6
v5
e7
4
有向图
定义6.2 有向图D=<V,E>, 其中V称为顶点集, 其元素称为 顶点或结点; E是VV的多重子集, 称为边集, 其元素称为有 向边,简称边. 有时用V(D)和E(D)分别表示V和E
例如, D=<V,E>如图所示, 其中V={a, b, c, d} E={<a,a>,<a,b>, <a,b>, <a,d>, <c,b>,<c,d>,<d,c>} 有限图: V, E都是有穷集合的图 n 阶图: n个顶点的图 零图: E=的图 平凡图: 1 阶零图
离散数学第六章 集合-自然数与自然数集

第二归纳法
若 n=0时命题成立, 假定当n 小于等于k 时命题成立,可以证明 n等于k+1 时命题也成立。
则对于一切自然数命题成立。
这种归纳方法又叫第二归纳法。
性质
①设n1,n2和n3是三个任意的自然数,若
n1∊n2,n2∊n3,则n1∊n3 。 ②设n1和n2是两个任意的自然数,则下述三个 式中有一个成立: n1∊n2, n1=n2, n2∊n1 ③设S是自然数集的任意非空子集,则存在 n0∊S ,使得n0∩S=Ø。
后继、前驱
对于任意两个自然数m和n, 如果m=n+,即 m=n∪{n}, 称m为n的后继,可以记为 m=n+1, 也称n为m的前驱,也可以记为 n=m-1。
自然数集 N
定义3 存在一个由所有自然数组成的集 合叫自然数集,记为
N
皮亚诺公设(Peano’s Axioms)
设N表示自然数集。则: 1.0∊N 2.如果n∊N,那么n+∊N , 3.0不是任何自然数集的后继,即不存在自然数m∊N ,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质 (1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
证明:对m用归纳法。 若m=n+,则 n∊m成立, 此时有n+=m 。 归纳假设对任意的m, 若n∊m,则n+=m,或者n+∊m之一成立。 考察m+=m∪{m}, 若n ∊m+={m}∪m, n ∊{m}∪m
n =m n+ =m+
离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如例2中的 Z, ,Q, ,R, , P(A), ,
Zn, 都是阿贝尔群。
例3、Klein四元群。
G e, a,b,c,运算o由下表给出:
3、群的阶。 群 有 无限 限群 群
有限群 G 的阶, 记 G 。 例如: Zn, 的阶为 n ,
Klein 四元群的阶为4。
4、群中元素的幂 xn 。 对于群 G ,定义:xn (x1)n 则可以把独异点中的关于 xn 的定义扩充为: x0 e xn1 xn ox ( n 为非负整数) xn (x1)n ( n 为正整数) 有关幂的两个公式:xm oxn xmn
(xm )n xmn (m, n Z )
5、群中元素 x 的阶 (或周期)。
群 G中元素 x 的阶x
的阶
有限,记 x k 无限(不存在以上的k
)
例如:Klein 四元群中,
a,b, c的阶都是2,记 a b c 2。
e 的阶为1,记 e 1 。
例如: Z , , N, 都是 Z, 的子半群,
且 N, 是 Z, 的子独异点。
二、群。 1、定义。
代数系统 G,o 满足:
①结合律, ②有幺元, ③任意元有逆元,
则称 G,o 为群。
例2、(1) Z, ,Q, , R, 都是群, 因任意元素 x 的逆元(x)存在, 而 Z , ,N, 不是群, Z , 没有幺元,
第六章 几个典型的代数系统 第一节 半群与群
内容:半群,群,子群。 重点:1、半群,可交换半群,独异点的定义,
2、群,交换群 (阿贝尔群)的定义及性质, 3、群的阶的定义, 4、循环群,生成元的定义及例子, 5、子群的定义及判定。
一、半群。
1、定义:满足结合律的代数系统 S,o 称为半群。 例1、(1) Z , ,N, ,Z, ,Q, ,
R, 都是半群。 (2) Mn (R),g 是半群。 (3) P(A), 是半群,其中 表示集合的对称
差运算。
一、半群。
1、定义:满足结合律的代数系统 S,o 称为半群。
(4) Zn, 是半群,其中 Zn 0,1, 2,L , n 1,
表示模 n 的加法。
可交换半群
2、独异点 (含幺半群): 记作 S,o, e 如例1中除了 Z , 不是独异点外,其余的均是 独异点,分别记作 N, ,0 , Z, ,0 , Q, ,0
N, 除0外,其余元素都没有逆元。 (2) Mn (R),g 不是群,
因不是所有的 n 阶矩阵都可逆。
(3) P(A), 是群, 为幺元, x P(A) ,x1 x (x x )
(4) Zn, 是群,0为幺元,
x Zn
,x1
n
0
x
x0 x0
2、交换群 (也称阿贝尔 ( Abel)群)。
例6、如果 G中的每一个元素 a都满足 a2 e, 则 G 是阿贝尔群。 证明:a,b G , 由题设知,a1 a ,b1 b,(ab)1 ab 从而 ab (ab)1 b1a1 ba , 所以 G是阿贝尔群。
例7、设群G不是阿贝尔群,则 G中存在两个 非幺元的元素a, b ,a b ,使得 ab ba 。 证明:(1) 先证存在 a G ,使 a1 a 。 事实上,若a G ,都有 a1 a,即 a2 e 由例6知,G 是阿贝尔群,与题设矛盾。
证明:设 G 为阿贝尔群, 则 a,b G ,有 ab ba , 故 (ab)2 (ab)(ab) a(ba)b
a(ab)b (aa)(bb) a2b2
例5、证明 G是阿贝尔群当且仅当对a,b G, (ab)2 a2b2 。
证明:反之,设 a,b G ,(ab)2 a2b2 , 即 (ab)(ab) (aa)(bb) , 即 a(ba)b a(ab)b , 由消去律,得 ba ab , 故 G 为阿贝尔群。
R, ,0 ,Mn (R),g, E ,P(A), , , Zn,,0 。
3、半群中元素幂 xn 。 定义运算的幂,x S ,xn 指的是: x1 x xn1 xn ox ( n 为正整数) x0 e xn oxm xnm (xn )m xnm (m、n为非负整数)
4、子半群。 半群的子代数叫子半群, 独异点的子代数叫子独异点。
(2) 再证结论成立。
设 a G,a1 a ,令 b a1 , 则 a, b非幺元,且 a b ,但 ab ba 。
三、子群。
1、定义: 设群 G, ,H 是 G 的非空子集, 若 H, 为群,则称H 为G的子群,记作 H G。 例8、(1) 群 Z, ,
令2Z 2z z Z,则 2Z, 是 Z, 的子群,
同样,0, 也是 Z, 的子群。
三、子群。
1、定义: 设群 G, ,H 是 G 的非空子集, 若 H, 为群,则称H 为G的子群,记作 H G。 例8、(2) Klein四元群,
G a,b,c,e有5个子群: e,e, a,e,b ,e,c,G
其中e和 G是平凡子群,其余均为真子群。
2、判定。
定理: 设 G 为群,H 是 G 的非空子集,若对任意 x, y H ,都有xy1 H ,则H 是 G 的子群。
若 ab ac ,则 b c , 若 ba ca,则 b c 。
6、群的性质。 (4) 幺元是群中唯一的幂等元。
(5) a,b G ,方程 ax b和 ya b 在 G
中有唯一解。 (6) 有限群的运算表中,每一行 (每一列)都是
G中元素的一个排列。
不同行 (列)的排列不同。
例5、证明 G是阿贝尔群当且仅当对a,b G, (ab)2 a2b2 。
例4、Z6 0,1, 2,3, 4,5,求模6的加群 Z6,
中各元素的阶。
解:因 2 2 2 0 ,即 23 0 , 所以 2 3 。
同理可得:1 6 ,3 2, 4 3
5 6 ,0 1。
6、群的性质。
(1) x, y G,(x1)1 x,(x o y)1 y1 o x1 。 (2) 若 G 1,则 G 中无零元。 (3) G中消去律成立,即