正比例和反比例整理与复习及练习1

合集下载

六年级《正比例与反比例》(含答案)

六年级《正比例与反比例》(含答案)

【专项复习】六年级《正比例与反比例》1.判断下面的两个量成正比例、反比例还是不成比例.①圆的周长和半径.②圆的面积和半径.③正方形的周长和边长.④圆柱的侧面积一定,圆柱的高和底面的半径.⑤一个自然数和它的倒数.⑥比例尺一定,图上距离和实际距离.2.判断下面各题中的两个量,哪些成正比例?哪些成反比例,哪些不成比例?填入横线内.(1)正方形的周长与边长.(2)小丽步行上学的平均速度与所花时间.(3)一个人的身高和年龄.(4)三角形的面积一定,它的底和高.(5)一捆100米长的电线,用去的长度和剩下的长度..3.观察下面的两个表,然后回答问题.(1)上表中各有哪两种相关联的量?(2)在各表的两种相关的量中,一种量是怎样随着另一种量的变化而变化的?它们的变化规律各有什么特征?(3)哪个表中的两种量成正比例关系?哪个表中的两种量成反比例关系?4.根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.(1)选择正确的答案序号填在( )中.表1中的两种量( ),表2中的两种量( ),表3中的两种量( ).A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用( )张纸,175张纸能装订( ) 本.5.下图中线段OA表示购买饮料应付金额与瓶数的关系,看图回答问题。

(1)购买饮料应付金额与瓶数成正比例吗?为什么?(2)观察图象,买4瓶饮料需要多少钱?45元可以买几瓶饮料?6.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为( ).(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?7.文具盒每个售价8元,购买2个,3个,⋯分别需要多少元?(1)填一填.(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花( )元.(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的倍.8.食堂每天开饭人数与购买蔬菜的数量如表:(1)根据已知的数量关系补充完整上面的表格.(2)根据表中的数在下面图中描出对应的点,再把各个点连接起来.(3)上面的两种量成比例吗?如果成,成什么比例,为什么?9.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)10.某运输队在为灾区抢运120吨救灾物资.如果要一次把所有救灾物资全部运出,车辆的载重量与所需车辆的数量如下表,请把表格填写完整.(1)车辆的载重量和所需车辆的数量成什么比例?为什么?(2)如果用载重量6吨的卡车来运,一共需要多少辆?11.某工程队铺一段路,原计划每天铺9.6千米,15天铺完,实际每天比原计划多铺2.4千米,实际要用多少天铺完?(用比例解答)12.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?13.某工厂四月份(30天)计划生产一批零件,平均每天要生产400个才能完成任务,实际上前6天就生产了3000个.照这样计算,完成原计划任务要用多少天?(分别用正、反比例解)14.一台机器上有一对相互啮合的齿轮,其中大齿轮有400个齿,每分钟转30圈,小齿轮有80个齿,每分钟转多少圈?15.A、B两城相距240千米,四种不同的交通工具从A城到B城的速度和所用的时间情况如下表.(1)请把上表填写完整.(2)不同的交通工具在行驶这段路程的过程中,哪个量没有变?(3)速度和所用时间成什么比例关系?为什么?(4)如果轿车要在25小时行完全程,那么每小时应行驶多少千米?16.一种药水是由药粉和水按照1:200的质量比配制而成的.(1)补充表格.(2)根据表格中的数据在下面的方格纸上描点连线.(3)12克药粉需要加入多少克水?要把2.5千克水配成药水,需要药粉多少克?17.要修一条长12千米的公路,前3天修了1.5千米,照这样计算,修完这条公路还要用多少天?(用比例解)18.修路队修一条公路,前4天修了320米,照这样的速度,又用了10天把路全部修完.这条路全长多少米?(用比例求解)19.一个工程队要修一条长4340米公路,前6个月已修了1860米.照这样的进度,还要几个月才能完成任务?20.自行车中的学问.右图是自行车的前后齿轮示意图,在骑自行车的过程中,蹬一圈,前齿轮就转一圈,后齿轮随之转几圈,后齿轮每转一圈,自行车车轮随之转一圈.请你依据生活经验填写下表.(1)由上表可看出,在骑自行车的过程中,蹬的圈数和车前进的距离成( ) 比例.(2)贝贝每分钟蹬80圈,骑着这辆自行车,每分钟前进多少米?(保留到整数)21.如图是两个互相啮(nie)合的齿轮,它们在同一时间内转动时,大齿轮和小齿轮转过的总齿数是相同的。

六年级数学下册《正比例和反比例》(1)

六年级数学下册《正比例和反比例》(1)

六年级数学下册《正比例和反比例》(1)一.解答题(共30小题)1.小明家的客厅长6m,宽4m,现在准备铺地砖,每块地砖的面积和所需要的地砖数量如表所示,600 1200 2400每块地砖的面积/cm2所需地砖的数量/块400 200 100所需地砖的数量与每块地砖的面积是否成反比例关系?为什么?2.根据x×y=40,填下表.y 20 40.5x 10 52.53.同学们做早操,每行站的人数与站的行数关系如表:8 12 16 24 48每行站的人数站的行数60 40 30 20 10(1)写出几组对应的行数和每行站的人数的乘积,并比较它们的大小.(2)这个乘积表示什么意义?用关系式表示它与以上两种量之间的关系.4.下列各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来.工作时间/时 1 2碾米质量/t 0.6 1.2杆高/m 5 9影长/m 2.5 4.55.一种铅笔每支售价0.5元,把下表填写完整.数量/支0 1 2 3 4 5 6 …总价/元0 0.5 …(1)把铅笔的数量与总价所对应的点在图中描出来,并连线.(2)买7支铅笔需要多少钱?(3)小丽买铅笔花的钱是小明的4倍,小丽买的铅笔支数是小明的几倍?6.工地要运一批水泥,每天运的吨数和运的天数如下表.每天运的吨数/吨60 30 20 15 10运的天数/天 1 2 3 4 6(1)表中相关联的两种量是和.(2)每天运的吨数增加,运的天数就会;每天运的吨数减少,运的天数就会.(3)表中表示的几种量的关系是一定,与成反比例.7.如图所示的图象表示斑马和长颈鹿的奔跑情况.(1)斑马的奔跑路程与奔跑时间是否成正比例关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑了多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?8.电脑兴趣小组的同学练习打同一份稿件,下表记录了每人打字所用的时间.欢欢笑笑乐乐跳跳打字所用的时间/分30 40 50 60平均每分钟打字数/80字(1)表中和是两种相关联的量,随着的变化而变化.(2)笑笑打完稿件共用了40分钟,他平均每分钟打个字;跳跳打完稿件共用了60分钟,他平均每分钟打个字,一共打了个字.(3)在本题中,一定,所以和成比例.9.捷悔希望小学操场上直立着4根不同长度的木桩,上午9时整,小霞同学测量出这些木桩的高度及其影子的长度如表木桩高度(米) 1.2 1.8 2.1 2.5影子长度(米)0.72 1.08 1.20 1.5木桩高度与影长的比(1)补充上表.(2)根据上表数据写两个比例.(3)小霞身高150厘米,这时她的影长是多少?10.(1)判断下列说法是否正确(对的画“√”,错的画“×”)①甲、乙两车是同时出发的.②甲和乙行驶的路程相同.③甲车比乙车速度快.(2)从图中可以看出,随着时间的增加,距离有什么变化?11.如图是A汽车行驶路程与耗油量的统计图:下表是B汽车行驶路程与耗油量关系表:耗油量/升3 6 9 12路程/千米20 40680如果驾驶A汽车,行驶50千米耗油多少升?12.根据题中的条件,回答下面的问题.某省打长途电话的时间与话费的对照表通话时间/分钟1 2 3 4 5 6 7 8 …话费/元0.300.60.91.21.51.82.12.4…(1).和是两种相关联的量,增加,也随着增加.(2).通话5分钟需付话费元,2.10元可通话分钟.(3).话费和通话时间这两种量中相对应的两个数的比值都是,这个比值实质表示的.(4).因为比值一定,所以表中的两种量是成的量,它们的关系叫做.13.判断下面各题中的两个量是否成正比例或反比例关系(1)全班人数一定,出勤人数与缺勤人数.(2)已知=3,y与x.(3)三角形的面积一定,它的底与高.(4)正方体的表面积与它的一个面的面积.(5)已知xy=1,y与x.(6)出油率一定,花生油的质量与花生的质量.14.购买同一种茶杯的数量和总价如表:数量/1 3 6 8 …个总价/15 45 90 120 …元用同样多的钱购买不同单价的茶杯和数量如表:单价/5 6 8 10 …元数量/24 20 15 12 …个每个表中两个量的变化各有什么规律?哪个表中的两个量成正比例关系?哪个表中的两个量成反比例关系?15.在下面成正比例关系的两个量的后面画“√”.(1)平行四边形的底一定,它的面积与高..(2)汽车行驶的速度一定,行驶的路程与时间..(3)正方形的面积和边长..(4)订阅《英语报》的份数和总钱数..(5)圆的周长和它的半径..(6)4A=12B(A、B均不为0),A和B..(7)圆的半径和它的面积..(8)李玲的体重和她的身高..16.判断下面每题中两种量是否成反比例,并说明理由.(1)比值一定,比的前项和后项.(2)被减数一定,减数和差.(3)修路的总米数一定每天修的米数和修路的天数.(4)花生的出油率一定,花生的重量和油的重量.(5)分母一定,分子和分数值.17.判断下面各题中的两种量是否成反比例关系,并说明理由(1)煤的数量一定,使用天数与每天的平均用煤量.(2)全班的人数一定,按各组人数相等的要求分组,组数与每组的人数.(3)圆柱体积一定,圆柱的底面积与高.(4)在一块菜地上种的黄瓜与西红柿的面积.(5)书的总册数一定,按各包册数相等的规定包装书,包数与每包的册数.18.如图,一个棱长为a的正方体,它的表面积与棱长是否成比例?体积与棱长是否成比例?19.x、y、z三个相关联的量,并有xy=z.(1)当z一定时,x与y成比例关系.(2)当x一定时,z与y成比例关系.(3)当y一定时,z与x成比例关系.20.判断下面各题中的两种量是否成正比例:(1)圆的周长和直径.(2)圆的面积和半径.(3)圆柱的底面半径一定,侧面积和高.21.根据表格填空:汽车行驶时间/时 3 5 7 9 11 13汽车行驶路程/千240 400 560 720 880 1040米(1)表中两种相关联的量是.(2)当时间扩大时,行驶的路程也随着;当时间缩小时,行驶的路程也随着.(3)在变化过程中,始终没有发生变化.(4)汽车行驶的时间和路程成关系.(5)当汽车行驶8时,路程是千米,汽车要到600千米的地方,需要时.22.下面各题中的量,哪些成正比例,哪些成反比例,哪些不成比例?(1)教室的面积一定,某班学生人数与人均占地面积比例.(2)大豆油的总质量一定,大豆的质量和出油率比例.(3)圆的半径和周长比例.(4)长方形的周长一定,长和宽比例.(5)一袋面粉用去的质量和剩下的质量比例.(6)长度一定的铁丝平均分成若干段,每段长度和截的段数.23.(2015•广东)一些长方形的长与宽的长度变化如下表.长/厘米 5 7.5 10 12.5 15 17.5 …宽/厘米 2 3 4 5 6 7 …(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)24.(2015春•利辛县校级月考)一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(1)填写下表.长度/米 1 2 3 4 5总价/元6 0(2)根据表中的数据,在如图中描出长度和总价对应的点,把这些点按顺序连起来.(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?25.(2015•龙泉驿区校级三模)右面的图象表示小军骑车的路程和时间的关系.(1)看图填表.时间/分30路程/千米24(2)小军骑车行驶的路程和时间成比例,这是因为:.(3)利用图象估计,小军20分钟大约行千米;行20千米大约需要分钟.行驶区间车次起始时刻到站时刻经历时间全程甲地到乙地K12 14:26 22:26 8时640千米26.(2015•衡水模拟)如图是某厂甲、乙两个车间各生产600个零件过程中,生产零件的个数与生产时间的关系图:(1)从图上可以看出两个车间生产零件的个数分别与它们所用的时间成比例.(2)乙车间生产天后赶上甲车间生产的个数,甲、乙两个车间完成任务时,车间所用的时间多(3)当乙完成任务时,甲还有个没做,车间工作效率高,高%.27.(2015春•台安县期中)买笔记本的数量和钱数的关系如下表:数量(本) 1 2 3 4 5 6总价(元)1.53(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?28.(2015春•海安县校级期中)根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.装订的本数1 2 3 4 5 …纸的张数25 50 75 100 125…表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.用了的张数10020030004005000…剩下的张数90080070006005000…表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.装订的本数900 7506045036…纸的张数10 12 15 20 25 …(1)选择正确的答案序号填在横线中.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.29.(2014•佛山)小丽用自制的橡皮筋来称量物体质量.她把测量的数据制作成的统计图和统计表.(皮筋最多可称量2kg质量)物体质量与皮筋伸长长度的统计表所称质量/g 皮筋伸长长度/cm0 0100 26450……a(a<2000)(1)根据统计图补充表格.(2)填空,我们可以发现与所称物体的质量成(选填“正比”或“反比”)(3)小丽用此皮筋称一袋苹果,皮筋长43厘米,求这袋苹果的质量.30.(2014春•利川市期末)某商场全部商品打八折出售(如图).原价10元的商品,现价8元,原价50元的商品,现价元.请你在左图中描出这个点.如果用x表示商品的原价,y表示商品的现价,那么y=,现价与原价成比例.。

正比例和反比例题型

正比例和反比例题型

六年级下册正比例和反比例专项训练题一、知识整理1.比例的基本性质与比例的意义比例:表示两个比相等的式子叫做比例。

要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。

2.比例的基本性质:组成比例的四个数,叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

在比例里,两个外项的积等于两个内项的积。

3.假设两因素x、y正比例:如果y值随x值增加而以一固定数值增加,则称y与x成正比例变化;反比例:如果y值随x值增加而以一固定数值减小,则称y与x成反比例变化。

二、专项训练1.填空。

(1)18∶()==()÷6==()%(2)运一批粮食,卡车的载重量和所需次数如下表:载34568重量/吨所4030242012需次数①把上表填完整。

②表中涉及这批粮食的总质量、()、()三种量,其中()是一定的,()和()是相关联的量,它们成()比例。

(3)甲数和乙数的比是2∶9,甲数是乙数的()分之(),乙数是甲数的()倍;甲数与甲、乙两数和的比是()。

(4)教室的面积一定,这个班的学生人数与平均每人的占地面积成()比例。

(5)如果a和b成正比例,b和c成正比例,那么a和c成()比例。

(6)《小学生故事报》的定价一定,订阅的份数和所需要的总钱数成()比例。

(7)圆的半径和周长成()比例。

(8)长方形的周长一定,长和宽()比例。

(9)一根铁丝用去的长度和剩下的长度()比例。

(10)长度一定的铁丝,平均分成若干段,每段的长度和截的段数成()比例。

(11)圆柱的高一定,它的底面积和体积成()比例。

(12)如果y=5x,那么x和y成()比例。

(13)在比例尺、图上距离、实际距离这三个量中:①当比例尺一定时,()和()成()比例;②当图上距离一定时,()和()成()比例;③当实际距离一定时,()和()成()比例。

(14)在比例尺是1∶3000的图纸上,两地的距离是3厘米,实际距离是()。

(15)甲仓存粮的和乙仓存粮的相等,甲仓存粮的质量∶乙仓存粮的质量=()∶(),已知两仓共存粮680吨,甲仓存粮()吨,乙仓存粮()吨。

小学数学总复习专题讲解及训练(八)正比例和反比例

小学数学总复习专题讲解及训练(八)正比例和反比例

小学数学总复习— 正比例和反比例知识总结1、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。

2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。

对照图像,能根据一种量的值,估计另一种量相对应的值。

3、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。

4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。

典型例题例1、(正比例的意义)一列火车行驶的时间和路程如下表。

这两种量有什么关系?分析与解:(1)从上表可以看出,表中有时间和路程两种量。

(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。

所以它们是两种相关联的量。

(3)路程和时间的比值始终不变,1120 = 120,2240= 120,3360 = 120……这个比值就是火车的行驶速度。

通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:时间路程= 速度(一定)。

具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。

点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。

正比例函数和反比例函数复习一、二、三

正比例函数和反比例函数复习一、二、三

y =5,求当 x =5 时 y 的值。
3、如图所示,在反比例函数图像上有一的点 A,AB⊥X 轴,三角形 AOB 的 面积为 10,求反比例函数的解析式.
y A B O x
4、 如图所示的双曲线是函数 y= 3)是图象上一点。 (1)求这个函数解析式
k (k 0) 在第一象限内的图像,A(4, x
0
C
A E x B D F y C
5
3、如图,已知:在△ABC 中,∠C= 90

, B 30 , AC 6 ,点 D、E、F 分别在边 BC、AC、AB 上(点 E、
F 与△ABC 顶点不重合) ,AD 平分∠CAB,EF⊥AD,垂足为 H. (3 分)(1)求证:AE=AF; (3 分) (2)设 CE=x,BF=y,求 y 与 x 的函数解析式,并写出定义域; (4 分) (3)当△DEF,是直角三角形时,求出 BF 的长.
A F E
B
D
C
课后练习 1.解方程: x
2
6 x 18 0
2.解方程:
(3 x ) 2 x 2 9
3.解不等式: 2 x
10 > 5 x 2


6
4.已知正比例函数的图像经过点( 2 ,8) ,经过图像上一点 A 作 求: (1)点 A 坐标(2) AOB 的面积。
3. 已知在 y=
8 x
(x>0)反比例函数的图象上有不重合的两点 A、
B,且 A 点的纵坐标是 2,B 点的横坐标为 2,且 AB⊥OB,CD⊥OD, 求(1)双曲线的函数解析式; (2)△OAB 的面积; (3)△OAC 的面积。
4、 上海磁悬浮列车在一次运行中速度 V(千米/小时)关于时间 t(分钟)的函数图像如图,回答下列问 题。 (1) (2) (3) (4) 列车共运行了_______分钟 列车开动后,第 3 分钟的速度是__________千米/小时。 列车的速度从 0 千米/小时加速到 300 千米/小时,共用了_________分钟。 列车从___________分钟开始减速。

正比例反比例函数复习

正比例反比例函数复习

正比例函数和反比例函数一、知识要点1.如果变量y是自变量x的函数,对于x在定义域内取定的一个值a ,变量y的对应值叫做当x=a时的函数值。

(为了深入研究函数,我们把“y是x的函数”用记号y=f(x)表示,这里括号里的x表示自变量,括号外的字母f表示y随x变化而变化的规律。

f(a)表示当x=a时的函数值)2.函数的自变量允许取值范围,叫做这个函数的定义域。

3.正、反比例函数的解析式、定义域、图像、性质4.函数的表示法有三种:列表法,图像法,解析法。

二、课堂练习1.油箱中有油60升,油从管道中匀速流出,1小时流完,求油箱中剩余油量Q(升)与流出时间t(分钟)间的函数关系式为__________________,•自变量的范围是_____________.当Q=10升时,t=_______________。

2.在函数xxy+-=12中,自变量x的取值范围是。

3.一棵小树苗长10cm,从发芽起每年长高3cm,则x年后其高度y关于x的函数解析式为_________,y___(填“是”或“不是”)x的正比例函数.4.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是s。

按此规律推断出s与n的关系式为。

正比例函数反比例函数解析式y=kx(k≠0)y=xk(k≠0)图像经过(0,0)与(1,k)两点的直线经过(1,k)与(k,1)两点的双曲线经过象限当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

增减性当k>0时,y随着x的增大而增大;当k<0时,y随着x的增大而减小。

当k>0时,在每个象限内,y随着x的增大而减小;当k<0时,在每个象限内,y随着x的增大而增大。

5. 已知等腰三角形的周长为12,设腰长为x ,底边长为y ,则y 关于x 的函数解析式,及自变量x 的取值范围__________________6. 若点P(3,8)在正比例函数y=kx 的图像上,则此正比例函数解析式是________________。

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。

根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。

问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。

根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。

2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。

根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。

问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。

根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。

以上为八年级正比例和反比例比例练题的部分解答。

六年级下册数学教案-正比例和反比例——整理与复习 西师大版

六年级下册数学教案-正比例和反比例——整理与复习 西师大版

六年级下册数学教案-正比例和反比例——整理与复习教学目标
1.理解正比例和反比例的概念,能够辨别正比例和反比例关系的特点。

2.掌握正比例和反比例的计算方法。

3.能够应用正比例和反比例的知识解决实际问题。

教学重点
1.正反比例的定义和特点。

2.正反比例的计算方法。

教学难点
1.正反比例的应用。

教学准备
教师准备好以下物品或文件:
•教学课件
•标有实例的习题
教学过程
1.复习正比例和反比例
•让学生回顾正比例和反比例的概念和特点。

•强调正反比例的区别和联系。

•通过案例练习,让学生掌握正反比例的计算方法。

2.练习正比例和反比例的题目
•让学生自己解决练习题。

•教师可以选择其中的几道题目进行讲解,并针对学生出现的问题进行解答。

3.应用正反比例解决问题
•通过综合案例,让学生理解正反比例的应用。

•教师结合现实生活中的实际问题,让学生掌握应用正反比例解决问题的方法和技巧。

教学总结
•教师进行教学总结,对本节课讲授的知识点进行概括性总结。

•总结学生掌握的知识点,并指出需要重点掌握的地方。

•对下节课的内容进行适当预告。

课后作业
•独立完成练习题。

•对应用正反比例解决实际问题的案例进行思考,写出3-5个类似问题,并尝试使用正反比例解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元 正比例和反比例整理与复习 一、比例:
1.比例的意义:表示两个比相等的式子叫做比例。

例如:6:4 = 3:2 或
2
346=。

2.比例的项:组成比例的四个数叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例 的
2
3
(可转化为6:4 = 3:2来找内项、外项)。

3.比例的基本性质:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

(即:若a :b= c:d 或
d c b a =, 则ad = bc; 反之,若ad = bc ,则a :b= c:d 或 d
c
b a =…) 4.解比例:求比例中未知项的过程,叫做解比例。

如:解比例9 :x = 3 : 4或4
3
9=x 。

利用比例的基
本性质“两个外项的积等于两个内项的积”来解。

二、正比例:
1.正比例的意义:两种相关联的量,一种量变化(扩大或缩小若干倍),另一种量也随着变化(扩大或缩小相同倍数),如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

即:
)(一定k y
x
=。

2.正比例的图像:是一条直线,根据图像可以直观地估计出有关数据来解决问题。

3.正比例的应用:抓住“两种相关联的量中相对应的两个数的比值(也就是商)一定”来列出比例式,一定要注意比的顺序。

三、反比例:
1.反比例的意义:两种相关联的量,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同倍数,但相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

即:[]
)(一定k xy =
2.反比例的应用:抓住“两种相关联的量中相对应的两个数的乘积一定”来列出等积式。

附:表一(正比例和反比例对比)
表二(比和比例对比)
正比例和反比例习题精选 姓名 5.判断题:1、圆的面积和圆的半径成正比例。

( ) 2、圆的面积和圆的半径的平方成正比
例。

( ) 3、植树棵数一定,成活棵数与成活率成反比例。

( ) 4、在同一张地图上,图上距离和实际距离成正比例.。

( ) 5、正方形的周长和边长成正比例。

( ) 6、长方形的面积一定时,长和宽成反比例。

( )7、长方形的周长一定时,长和宽成反比例。

( ) 8、三角形的面积一定时,底和高成反比例。

( )9、梯形的面积一定时,上底和下底的和与高成反比例。

( ) 10、圆的周长和圆的半径成正比例。

( )11.路程一定,速度和时间成正比例。

( ) 12.一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

( ) 13.花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

( ) 14.平行四边形的面积不变,它的底与高成反比例。

( ) 15.两个相关联的量一定成比例关系( ). 16.六(四)班男、女生之比为15:16,则男生与全班人数的比为15:31。

( ) 二.填空: 1. 六(2)班学生站队列如下表:
6.一个装满水的圆锥形容器,底面半径是5厘米,高10厘米,倒掉一部分水后,水面半径3厘米,那么这时的水面高度是多少?。

相关文档
最新文档