6.杭州外国语学校推荐生选拔考试卷(数学) 答案

合集下载

2020-2021学年浙江省杭州外国语学校九年级(上)第一次月考数学试卷(解析版)

2020-2021学年浙江省杭州外国语学校九年级(上)第一次月考数学试卷(解析版)

2020-2021学年浙江省杭州外国语学校九年级(上)第一次月考数学试卷一、选择题(共10题;共30分)1.(3分)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯2.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.3.(3分)抛物线y=2x2+c的顶点坐标为(0,1),则抛物线的解析式为()A.y=2x2+1B.y=2x2﹣1C.y=2x2+2D.y=2x2﹣2 4.(3分)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+25.(3分)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2﹣2)>0D.若x1>x2,则a(x1+x2﹣2)<06.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.7.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A.B.C.D.8.(3分)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是()A.B.C.D.9.(3分)如图,在边长为2的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于点E,MF⊥CD于点F,连接EF,则EF的最小值为()A.1B.C.D.10.(3分)如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(共6题;共24分)11.(3分)表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)12.(3分)在一个盒子中装有若干乒乓球,小明为了探究盒子中所装乒乓球的数量,他先从盒子中取出一些乒乓球,记录了所取乒乓球的数量为m个,并在这些乒乓球上做了记号“*”,然后将它们放回盒子中,充分摇匀;接下来,他又从这个盒子中再次取出一些乒乓球,记录了所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,小明根据实验所得的数据m、n、p,可估计出盒子中乒乓球的数量有个.13.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.14.(3分)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是个.15.(3分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.16.(3分)如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C 在点A右侧),则线段BC的长为.三、解答题(共8题;共66分)17.(8分)已知一条抛物线分别过点(3,﹣2)和(0,1),且它的对称轴为直线x=2,试求这条抛物线的解析式.18.(8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求出一个回合能确定两人下棋的概率.19.(8分)对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如表:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n5010050010005000优等品数m45924558904500优等品频率(2)该厂生产乒乓球优等品的概率约为多少?20.(8分)已知二次函数y=0.5x2﹣x﹣0.5求顶点坐标,小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的②③④几个步骤中开始出现错误的是步,请将此题正确的求顶点的计算过程写在下面的方框内.小明的计算过程:y=0.5x2﹣x﹣0.5=x2﹣2x﹣1 ①=x2﹣2x+1﹣1﹣1 ②=(x﹣1)2﹣2 ③∴顶点坐标是(1,﹣2)④.21.(8分)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)22.(10分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.23.(10分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?24.(12分)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2020-2021学年浙江省杭州外国语学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共10题;共30分)1.(3分)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯【分析】根据事件发生的可能性大小判断.【解答】解:A、从一个只有白球的盒子里摸出一个球是白球,是必然事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A.2.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.3.(3分)抛物线y=2x2+c的顶点坐标为(0,1),则抛物线的解析式为()A.y=2x2+1B.y=2x2﹣1C.y=2x2+2D.y=2x2﹣2【分析】根据顶点式的坐标特点,可得出c=1,即可得到抛物线的解析式为=2x2+1.【解答】解:∵抛物线y=2x2+c的顶点坐标为(0,1),∴c=1,∴抛物线的解析式为y=2x2+1,故选:A.4.(3分)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2【分析】根据抛物线C1的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线C2的得到坐标,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的函数表达式.【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.5.(3分)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2﹣2)>0D.若x1>x2,则a(x1+x2﹣2)<0【分析】根据二次函数的性质和二次函数的图象及二次函数上点的坐标特征即可求解.【解答】解:∵直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象∴x=﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+c,∵点A(x1,y1)和点B(x2,y2)为其图象上的两点,∴y1=ax12﹣2ax1+c,y2=ax22﹣2ax2+c,当x1<x2,y1<y2即y1﹣y2<0,∴ax12﹣2ax1+c﹣(ax22﹣2ax2+c)<0,整理得:a(x1﹣x2)(x1+x2﹣2)<0,∵x1﹣x2<0,∴a(x1+x2﹣2)>0,故A,B不符合题意;当x1>x2,y1<y2即y1﹣y2<0,∴ax12﹣2ax1+c﹣(ax22﹣2ax2+c)<0,整理得:a(x1﹣x2)(x1+x2﹣2)<0,∵x1﹣x2>0,∴a(x1+x2﹣2)<0,故C不符合题意,D符合题意;故选:D.6.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.【分析】根据题意画出树状图得出所有等可能的情况数,再找出恰好抽到马鸣和杨豪的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是=;故选:C.7.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A.B.C.D.【分析】用红球的个数除以球的总个数即可得.【解答】解:∵袋子中一共有(m+n+3)个小球,其中红球有3个,∴任意摸出一个球是红球的概率是,故选:B.8.(3分)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是()A.B.C.D.【分析】根据题意和题目中给出的函数图象,可以得到函数y=ax2+(b﹣k)x+c的大致图象,从而可以解答本题.【解答】解:设y=y2﹣y1,∵y1=kx,y2=ax2+bx+c,∴y=ax2+(b﹣k)x+c,由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,故选项B符合题意,选项A、C、D不符合题意;故选:B.9.(3分)如图,在边长为2的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于点E,MF⊥CD于点F,连接EF,则EF的最小值为()A.1B.C.D.【分析】连接MC,证出四边形MECF为矩形,由矩形的性质得出EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,得出MC即可得出结果.【解答】解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=,∴EF的最小值为;故选:D.10.(3分)如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4个B.3个C.2个D.1个【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的对称轴为x=1,∴﹣=1,得2a+b=0,故①正确;当x=﹣2时,y=4a﹣2b+c<0,故②正确;该函数图象与x轴有两个交点,则b2﹣4ac>0,故③正确;∵二次函数y=ax2+bx+c(a≠0)的对称轴为x=1,点B坐标为(﹣1,0),∴点A(3,0),∴当y<0时,x<﹣1或x>3,故④错误;故选:B.二、填空题(共6题;共24分)11.(3分)表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为0.9.(精确到0.1)【分析】用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.12.(3分)在一个盒子中装有若干乒乓球,小明为了探究盒子中所装乒乓球的数量,他先从盒子中取出一些乒乓球,记录了所取乒乓球的数量为m个,并在这些乒乓球上做了记号“*”,然后将它们放回盒子中,充分摇匀;接下来,他又从这个盒子中再次取出一些乒乓球,记录了所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,小明根据实验所得的数据m、n、p,可估计出盒子中乒乓球的数量有个.【分析】首先确定样本中乒乓球的频率,然后用样本估计总体即可.【解答】解:∵所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,∴带有记号“*”的乒乓球的频率为,∴乒乓球的总个数为m÷=,故答案为:.13.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.【分析】使抛物线y=ax2+bx+c的开口向上的条件是a>0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得.【解答】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c 的开口向上的有3种结果,∴使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.14.(3分)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是210个.【分析】根据理解题意找出题目中所给的等量关系,找出规律,写出货包数量的函数解析式,再根据二次函数最值的求法求出快递货车装载的货包数量最多的站.【解答】解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.根据题意,完成下表:服务驿站序号在第x服务驿站启程时快递货车货包总数1n﹣12(n﹣1)﹣1+(n﹣2)=2(n﹣2)32(n﹣2)﹣2+(n﹣3)=3(n﹣3)43(n﹣3)﹣3+(n﹣4)=4(n﹣4)54(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n0由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.故答案为:210.15.(3分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是﹣3<x<1.【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.16.(3分)如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.【解答】解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x ﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题(共8题;共66分)17.(8分)已知一条抛物线分别过点(3,﹣2)和(0,1),且它的对称轴为直线x=2,试求这条抛物线的解析式.【分析】根据题意设抛物线的解析式为y=a(x﹣2)2+b,把(3,﹣2),(0,1)代入求得a、b即可.【解答】解:∵抛物线的对称轴为x=2,∴可设抛物线的解析式为y=a(x﹣2)2+b,把(3,﹣2),(0,1)代入解析式得,解得a=1,b=﹣3,∴所求抛物线的解析式为y=(x﹣2)2﹣3.18.(8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求出一个回合能确定两人下棋的概率.【分析】(1)此题需两步完成,可根据题意画树状图求得所有可能出现的结果;(2)根据树状图求得一个回合能确定两人下棋的情况,再根据概率公式求解即可.【解答】解:(1)根据题意画图如下:(2)一共有8种等可能的结果,一个回合能确定两人下棋的有6种,则一个回合能确定两人下棋的概率是=.19.(8分)对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如表:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n5010050010005000优等品数m45924558904500优等品频率0.90.920.910.890.9(2)该厂生产乒乓球优等品的概率约为多少?【分析】(1)利用频率的定义计算;(2)根据频率估计概率,频率都在0.9左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.9.【解答】解:(1)如表所示,求得事件A的概率公式为.;;;;;故答案为:0.9;0.92;0.91;0.89;0.9;(2)若想求得该厂生产乒乓球优等品的概率为多少,需要求得本次抽查的总数,和抽取优等品的总数,以总体优等品的概率表示该厂生产优等品的概率,即:.20.(8分)已知二次函数y=0.5x2﹣x﹣0.5求顶点坐标,小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的②③④几个步骤中开始出现错误的是①步,请将此题正确的求顶点的计算过程写在下面的方框内.小明的计算过程:y=0.5x2﹣x﹣0.5=x2﹣2x﹣1 ①=x2﹣2x+1﹣1﹣1 ②=(x﹣1)2﹣2 ③∴顶点坐标是(1,﹣2)④.【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=0.5x2﹣x﹣0.5=0.5(x2﹣2x)﹣0.5 ①=0.5(x2﹣2x+1﹣1)﹣0.5 ②=0.5(x﹣1)2﹣1③∴顶点坐标是(1,﹣1)④;故答案为:①;①;②;③;④;21.(8分)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)【分析】(1)共有3种等可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有等可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.【解答】解:(1)共有3种等可能出现的结果,被分到“B组”的有1中,因此被分到“B组”的概率为;(2)用列表法表示所有等可能出现的结果如下:共有9种等可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)==.22.(10分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.【分析】(1)列表确定出所有等可能的情况数,找出小球上写的数字不大于3的情况数,即可求出所求概率;(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是偶数的情况数,即可求出所求概率.【解答】解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,其中数字不大于3的情况有:1,2,3,共3种,则P(小球上写的数字不大于3)=;故答案为:;(2)列表得:1234 1﹣﹣﹣(1,2)(1,3)(1,4)2(2,1)﹣﹣﹣(2,3)(2,4)3(3,1)(3,2)﹣﹣﹣(3,4)4(4,1)(4,2)(4,3)﹣﹣﹣所有等可能的数有12种,两次摸出小球上的数字和恰好是偶数的情况有:(1,3),(2,4),(3,1),(4,2),共4种,则P(两次摸出小球上的数字和恰好是偶数)==.23.(10分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为y=﹣x+110.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?【分析】(1)利用待定系数法求出一次函数解析式即可;(2)当x=200时,代入y=﹣x+110,确定批发单价,根据总价=批发单价×200,进而求出答案;(3)首先根据服装厂获利w元,当100≤x≤300且x为10整数倍时,得出w与x的函数关系式,进而得出最值,再利用当300<x≤400时求出最值,进而比较得出即可.【解答】解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:,解得:,∴y与x的函数关系式为:y=﹣x+110,故答案为:y=﹣x+110;(2)当x=200时,y=﹣20+110=90,∴90×200=18000(元),答:某零售商一次性批发A品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(﹣x+110﹣71)x=﹣+39x=﹣(x﹣195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:﹣(200﹣195)2+3802.5=3800;②当300<x≤400时,w=(80﹣71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190元或200元时,w最大,最大值是3800元.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D 坐标,可求S△ABD=×2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立方程组得:,解得:,,∴点D(4,6),∴S△ABD=×2×6=6,设点E(m,2m﹣2),∵直线BE将△ABD的面积分为1:2两部分,∴S△ABE=S△ABD=2或S△ABE=S△ABD=4,∴×2×(2m﹣2)=2或×2×(2m﹣2)=4,∴m=2或3,∴点E(2,2)或(3,4);(3)若AD为平行四边形的边,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD=PQ,∴x D﹣x A=x P﹣x Q或x D﹣x A=x Q﹣x P,∴x P=4﹣1+2=5或x P=2﹣4+1=﹣1,∴点P坐标为(5,16)或(﹣1,16);若AD为平行四边形的对角线,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD与PQ互相平分,∴,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.。

杭高保送生招生测试数学试卷

杭高保送生招生测试数学试卷

杭高初三保送预选生素质测试数学试卷考生须知:1.本试卷分试题卷和答题卷两部分. 满分100分, 考试时间100分钟.2.答题时, 请在答题卷指定位置内写明学校、 姓名。

3.所有答案都必须做在答题卷标定的位置上, 请务必注意试题序号和答题序号相对应.4.考试结束后, 上交试题卷、答题卷和草稿纸.试题卷一、 精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.)1.实数a,b 在数轴对应的点A 、B 表示如图,化简a aa b 244-++-||的结果为 ( )A.22a b --ﻩB.22+-b a C .2-b ﻩ D.2+b 2.平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,则n 的值不可能为 ( )A.4 B. 3 C .2 D.13. 一个圆锥的底面半径为3,侧面展开图是半圆,则圆锥的侧面积是( )A.9πB.18π C .27π ﻩﻩ D .39π4.已知a 是方程0420102=+-x x 的一根,则代数式228040200954a a a -+++的值是( )A.2009B. 2010 C .2011 D.20125.下列命题中,正确的命题是( )①平分一条弦的直径一定垂直于弦;②二次函数2x y =的图象是由2(1)3y x =-+的图像向左平移1个单位,再向下平移3个单位得到;③关于x 的一元二次方程 x 2-2x +α=0没有两个不相等的实数根,则实数α的取值范围是α≥1;④在△ABC 中,AD 为BC 边上的高,若AD=1,BD=1,CD =3,则∠BAC 的度数为1050 ; A.①② B .③④ C. ②③ D.②④6.函数y =1-|x-x 2|的图象是( )A B -1 a 0 1 b7.如图,在菱形A BCD 中,∠DAB =120°,点E平分DC ,点P在BD 上,且PE +PC =1,那么边AB 长的最大值是( ).A .1 B.332 C .23 D.38.已知函数y =3-(x -m )(x -n ),并且a ,b 是方程3-(x -m)(x -n)=0的两个根,则实数m ,n ,a,b 的大小关系可能是( ).A.m <a <b<nB.m<a <n <b C .a <m <b <n D.a<m <n <b9.如图,直线PA 是一次函数y =x +n (n >0)的图象,直线P B是一次函数y =-2x +m (m >n )的图象.若PA 与y 轴交于点Q ,且四边形PQO B的面积是65,A B=2,则点P 的坐标为( ). A.(31,34) B.(31,23) C.(21,34) D.(21,23)10.如下图是某汽车维修公司的维修点环形分布如图。

2019年杭州市外国语学校招生考试数学模拟试卷(含答案)

2019年杭州市外国语学校招生考试数学模拟试卷(含答案)

杭州市外国语学校招生考试模拟试卷数学考生注意:1、考试时间:60分钟,满分:100分2、答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.答案使用0.5毫米的黑色中性签字笔或碳素笔书写,字体工整,笔迹清楚.3、.请按照题号在各题的答题区域黑色线框内作答超出答题区域书写的答案无效,保持卷面清洁、不破损.4、.做选考题时考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑.5.考试结束,监考员将试题卷、答题卡一并收回.一、填空题(共12小题,每小题5分,满分60分)1.(5分)计算=2、1111111111111111 ++++++-++++++= 68101281012146810121481012⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3.(5分)图为一个半径为2的四分之一圆和两个半径为1的半圆周构成的图形。

取3π≈,那么它的阴影部分的面积= 。

4.(5分)一个箱子里有8个红球,6个白球,4个绿球,1个黑球,则至少要取出个球才能保证取出的球至少有三种不同的颜色.5.(5分)右图是由若干个边长为1的正三角形构成的图形。

那么,图中所有大小正三角形的个数是()6.(5分)一个三角形,一个内角的度数是另两个内角度数和的,另两个内角的度数相差18度,这个三角形的最小的内角的度数是.7.(5分)在前2017个正数中,既不是平方数也不是立方数的有个.8.(5分)甲乙丙三人共得到1020元奖金,每人拿出相等的金额捐献给“爱心基金”,结果甲剩下原来的,乙剩下原来的,丙剩下原来的,三人共捐给“爱心基金”元.9.(5分)一昼夜过去了它的,这一昼夜余下的时间比过去的时间少.10.(5分)将k个自然数10+1,10+2,……10+k分成三组。

使各组中所有数之和满足比例关系2:3:5。

那么,k的最小值应为()。

11.(5分)三个容积相同的瓶子里面装满了酒精溶液,酒精与水的比分别是2:1,3:1,4:1,当把三瓶酒精溶液混合后,酒精与水的比是.12.(5分)如图所示,长方形的宽是8厘米,则阴影部分的面积是平方厘米.(π取3.14)二、解答题(本小题共4小题)13.(10分)足球赛门票15元一张,降价后观众增加一半,收入增加,一张门票降价多少元?14.(10分)计算:[75%﹣(﹣)×0.25]+[(+)÷﹣].15.(10分)税法规定,一次性劳务收入若低于800元,免交所得税.若超过800元,需教所得税,具体标准为:800~2000的部分按10%计,2000~5000元部分按15%计,5000~10000元部分按20%计.某人一次劳务收入上税1300元,他在这次劳务中税后的净收入为多少元?16.(10分)加工一批零件,甲、乙两人合做1小时,完成了这批零件的,乙、丙两人接着生产1小时,又完成了,甲和丙又合做2小时,完成了.剩下的任务,甲、乙、丙三人合做,还要小时完成.杭外参考答一、填空题(共12小题,每小题5分,满分60分)1.(5分)计算 =【解答】解:=== =2.)()()()(121101811411211018161-141121101811211018161++⨯+++++++⨯+++ =841解:设A=)(12110181++ ,B=)(14112110181+++ 原式=(61+A )×B -(61+B )×A =61×(B -A ) =61×141 =8413、右图是一个半径为2的四分之一圆和两个半径为1的半圆周构成的图形。

2022-2023学年浙江省杭州外国语学校九年级(上)期中数学试题及答案解析

2022-2023学年浙江省杭州外国语学校九年级(上)期中数学试题及答案解析

2022-2023学年浙江省杭州外国语学校九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 近年来,我国5G发展取得明显成效,截至2022年8月底,全国建设开通5G基站达210.2万个,占世界总数60%以上.将数据210.2万用科学记数法表示为( )A. 2.102×106B. 0.2102×107C. 210.2×104D. 2.102×1052. 使式子√x+1有意义的x的取值范围是( )A. x≠−1B. x≥−1C. x>−1D. x≥13. 下列计算正确的是( )A. 3a2−a2=3B. (−3a+b)(3a+b)=9a2−b2C. (a+1)(a−2)=a2+a−2D. (−2a2)3=−8a64. 函数y=2x和y=kx+5的图象交于点A(m,3),则不等式2x<kx+5的解集为( )A. x>3B. x<23C. x<32D. x>325. 如图,在△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C按逆时针方向旋转到△DEC 的位置,点B落在DE上,DC交AB于点F,则∠BFC的度数为( )A. 80°B. 75°C. 65°D. 50°6. 如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为( )A. 5B. 6C. 163D. 1737. 如图,四边形ABCD是⊙O的内接四边形,∠ADC=60°,⊙O的半径为3cm,则弦AC的长等于( )A. 3√2cmB. 3√3cmC. 32√3cm D. 3cm8. 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴正半轴交于点C,且OA=OC,OA<OB,则下列结论:①abc>0;②b2−4ac<0;③ac−b+1=0;④OA⋅OB=ca.其中正确的结论是( )A. ①B. ②C. ③D. ④9. 如图,一次函数y=√33x与反比例函数y=kx(k>0)的图象在第一象限交于点A,点C在以B(6,0)为圆心,以1为半径的⊙B上,已知当点C到直线OA的距离最大时,△AOC的面积为8,则该反比例函数的函数表达式为( )A. y=√3xB. y=2√3xC. y=2√2xD. y=4√3x10. 如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,小聪同学得出以下结论:①GF//EC;②AB=√3AD;③GE=√6DF;④△COF∽△CEG;⑤OC= 2√2OF.其中正确的是( )A. ①②③B. ①③⑤C. ①④⑤D. ②③⑤二、填空题(本大题共6小题,共24.0分)11. 如果分式x2−9的值为零,那么x=______.x+312. 已知一次函数y=kx+b的图象平行于直线y=−2x+3,且经过点A(2,1),则这个一次2函数的解析式是______.13. 如图,⊙O中,∠AOC=150°,则∠ABC=______度.14. 将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为______.15. 如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于______.16. 已知分段函数y,当x≤−1时,y=−2x2+2x+6,当x>−1时,y=2x2−2x−2,点A(x1,y1),B(x2,y2)为这个分段函数图象上的两点,且x1<x2,已知当x2−x1>m时,总有y2>y1,则m的最小值是______.三、解答题(本大题共7小题,共66.0分。

2024-2025学年浙江省杭州外国语学校九年级上学期开学考数学试题及答案

2024-2025学年浙江省杭州外国语学校九年级上学期开学考数学试题及答案

2024-2025学年浙江省杭州外国语学校九年级(上)开学数学试卷一、选择题:本题共8小题,每小题4分,共32分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在中,,,,那么等于( )A. B. C. D.2.小明不慎把家里的圆形镜子打碎了如图,其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是( )A. ①B. ②C. ③D. ④3.如图,点A、D、G、M在半上,四边形ABOC、DEOF、HMNO均为矩形.设,,,则下列各式中正确的是( )A.B.C.D.4.如图,在中,,,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是( )A. B. BD 平分C. D. 点D为线段AC的黄金分割点5.已知二次函数的y与x的部分对应值如表:x…013…y…131…则下列判断中正确的是( )A. 抛物线开口向上B. 抛物线与y轴交于负半轴C. 当时,D. 方程的正根在3与4之间6.二次函数和正比例函数的图象如图所示,则方程的两根之和( )A. 大于0B. 等于0C. 小于0D. 不能确定7.如图,直径为10的上经过点和点,B是y轴右侧优弧上一点,则的余弦值为( )A. B. C. D.8.如图,在半径为1的中,直径AB把分成上、下两个半圆,点C是上半圆上一个动点与点A、B不重合,过点C作弦,垂足为E,的平分线交于点P,设,,下列图象中,最能刻画y与x的函数关系的图象是( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

9.分解因式:______.10.如图,线段,于点A,于点B,,,点P为线段AB上一动点,且以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似,则AP的长为______.11.如图,在扇形OAB中,,点C是上的一个动点不与A,B重合,,,垂足分别为D,若,则扇形OAB的面积为______.12.已知二次函数图象的对称轴为,其图象如图所示,现有下列结论:①,②,③,④,,⑤正确的序号是______.三、解答题:本题共4小题,共42分。

【参考答案】九上杭州实验外国语学校九上开学考数学答案(一)

【参考答案】九上杭州实验外国语学校九上开学考数学答案(一)

杭州实验外国语学校九年级(上)开学考数学卷参考答案与试题解析一、选择题:1.【解答】解:14 000 000 000=1.4×1010,故选:C.2.【解答】解:∵=3,∴的平方根是±.故选:D.3.【解答】解:A、是有理数,故A错误;B、2﹣2=是有理数,故B错误;C、5.是有理数,故C错误;D、sin45°=是无理数,故D正确.故选:D.4.【解答】解:a4﹣2a2+1=(a2﹣1)2=[(a+1)(a﹣1)]2=(a+1)2(a﹣1)2.故选:D.5.【解答】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.P=,故选:D.6.【解答】解:分式方程去分母得:x﹣1﹣2x=3,故选:B.7.【解答】解:函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4),∵是向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,∴平移前的抛物线的顶点坐标为(﹣1,﹣1),∴平移前的抛物线为y=(x+1)2﹣1,即y=x2+2x,∴b=2,c=0.故选:B.8.【解答】解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选:A.9.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,在Rt△ACD中,AC===,在等腰直角△ABC中,AB=AC=×=,∴sinα==.故选:D.10.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选:A.二、填空题:11.【解答】解:原式=2+1﹣=3﹣2=1.故答案为:1.12.【解答】解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.13.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.14.【解答】解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.15.【解答】解:法一:设x=0.45…,则x=0.45+1/100 x,解得x=45/99=5/11法二:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故答案为:.16.【解答】解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故答案为:①④.三、解答题:17.【解答】解:5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)]=5xy﹣[x2+4xy﹣y2﹣x2﹣2xy+2y2],=5xy﹣[2xy+y2],=5xy﹣2xy﹣y2,=3xy﹣y2,当x=﹣,y=﹣时,原式=3×(﹣)(﹣)﹣(﹣)2=﹣=.18.【解答】解:能;(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,当y=kx,原式=(4x2﹣k2x2)2=(4﹣k2)2x4,令(4﹣k2)2=1,解得k=±或±,即当k=±或±时,原代数式可化简为x4.19.【解答】解:=﹣2,分式方程去分母得:2x=3a﹣4(x﹣1),移项合并得:6x=3a+4,解得;x=,∵分式方程的解为非负数,∴≥0且﹣1≠0,解得:a≥﹣且a≠.20.【解答】解:(1)∵抛物线的对称轴为直线x=1,∴﹣﹣=1,∴b=﹣2∵抛物线与y轴交于点C(0,﹣3),∴c=﹣3,∴抛物线的函数表达式为:y=x2﹣2x﹣3;∵抛物线与x轴交于A、B两点,当y=0时,x2﹣2x﹣3=0.∴x1=﹣1,x2=3.∵A点在B点左侧,∴A(﹣1,0),B(3,0)设过点B(3,0)、C(0,﹣3)的直线的函数表达式为y=kx+m,则,∴∴直线BC的函数表达式为y=x﹣3;(2)∵Rt△CDE 中∠CDE=90°,直线BC的解析式为y=x﹣3,∴∠OCB=45°,∵点D在对称轴x=1与直线y=x﹣3交点上,∴D坐标为(1,﹣2 )Rt△CDE为等腰直角三角形易得E的坐标(0,﹣1),∵点P在CE垂直平分线上,∴点P纵坐标为﹣2,∵点P在y=x2﹣2x﹣3上,∴x2﹣2x﹣3=﹣2,解得:x=1±,∵P在第三象限,∴P的坐标为(1﹣,﹣2);(3)过P作PK∥x轴,交直线BC于点K,设P(m,n),则n=m2﹣2m﹣3∵直线BC的解析式为y=x﹣3,∴K的坐标为(n+3,n),∴PK=n+3﹣m=m2﹣3m,∵S△PBC=S△PKC+S△PKB=,∴×3KP=∴m2﹣3m=,解得:m=﹣或,∵P在第三象限,∴P的坐标为(﹣,﹣)∵点P在CE垂直平分线上,∴E的坐标为(0,﹣)。

浙江省杭州市西湖区杭州外国语校2024届中考猜题数学试卷含解析

浙江省杭州市西湖区杭州外国语校2024届中考猜题数学试卷含解析

浙江省杭州市西湖区杭州外国语校2024届中考猜题数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.722.下列条件中不能判定三角形全等的是( )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等3.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.2C.2 D2 4.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直5.如图,矩形ABCD 中,12AB =,13BC =,以B 为圆心,BA 为半径画弧,交BC 于点E ,以D 为圆心,DA 为半径画弧,交BC 于点F ,则EF 的长为( )A .3B .4C .92D .56.如图,三棱柱ABC ﹣A 1B 1C 1的侧棱长和底面边长均为2,且侧棱AA 1⊥底面ABC ,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )A .3B .23C .22D .47.如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是 ( )A .点AB .点BC .点CD .点D8.在Rt △ABC 中,∠ACB=90°,AC=12,BC=9,D 是AB 的中点,G 是△ABC 的重心,如果以点D 为圆心DG 为半径的圆和以点C 为圆心半径为r 的圆相交,那么r 的取值范围是( ) A .r <5B .r >5C .r <10D .5<r <109.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为( ) A . B .C .D .10.若等式(-5)□5=–1成立,则□内的运算符号为( ) A .+B .–C .×D .÷二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:x2y﹣4xy+4y=_____.12.在函数中,自变量x的取值范围是.13.分解因式:m3–m=_____.14.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.15.在△ABC中,点D在边BC上,BD=2CD,AB a=,AC b=,那么AD= .16.函数y=213xx+-的自变量x的取值范围是_____.三、解答题(共8题,共72分)17.(8分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了A B、两种玩具,其中A类玩具的金价比B玩具的进价每个多3元.经调查发现:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.求A B、的进价分别是每个多少元?该玩具店共购进A B、了两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得的利润不少于1080元,则该淘宝专卖店至少购进A类玩具多少个?18.(8分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.19.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.20.(8分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y 轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线2y ax bx c=++(0a≠)过E,A′两点.(1)填空:∠AOB= °,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且13BPAP=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.21.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率P 为;(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.22.(10分)计算:4cos30°+|312|﹣(12)﹣1+(π﹣2018)023.(12分)若两个不重合的二次函数图象关于y 轴对称,则称这两个二次函数为“关于y 轴对称的二次函数”. (1)请写出两个“关于y 轴对称的二次函数”;(2)已知两个二次函数21y ax bx c =++和22y mx nx p =++是“关于y 轴对称的二次函数”,求函数12y y +的顶点坐标(用含,,a b c 的式子表示).24.某品牌手机去年每台的售价y (元)与月份x 之间满足函数关系:y =﹣50x+2600,去年的月销量p (万台)与月份x 之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p 关于x 的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m 的值.参考答案一、选择题(共10小题,每小题3分,共30分) 1、B 【解题分析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n 个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个. 考点:规律题 2、D 【解题分析】解:A 、符合AAS ,能判定三角形全等; B 、符合SSS ,能判定三角形全等;; C 、符合SAS ,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.3、A【解题分析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【题目详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【题目点拨】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.4、D【解题分析】根据菱形,平行四边形,正方形的性质定理判断即可.【题目详解】A.菱形的对角线不一定相等,A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误;C. 正方形的对角线相等,C错误;D.正方形的对角线相等且互相垂直,D 正确; 故选:D . 【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 5、B 【解题分析】连接DF ,在Rt DCF △中,利用勾股定理求出CF 的长度,则EF 的长度可求. 【题目详解】 连接DF ,∵四边形ABCD 是矩形∴12,13AB CD BE AD BC DF ====== 在Rt DCF △中,90C ∠=︒222213125CF DF CD ∴=--=13121EC BC BE =-=-= 514EF CF EC ∴=-=-=故选:B . 【题目点拨】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键. 6、B 【解题分析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解. 详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD 后, ∴等边三角形的高223AC AD -=2×33=故选B .点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度. 7、B 【解题分析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B 所表示的数的绝对值最小.故选B . 8、D 【解题分析】延长CD 交⊙D 于点E ,∵∠ACB=90°,AC=12,BC=9,∴AB=22AC BC +=15,∵D 是AB 中点,∴CD=115AB=22, ∵G 是△ABC 的重心,∴CG=2CD 3=5,DG=2.5,∴CE=CD+DE=CD+DF=10, ∵⊙C 与⊙D 相交,⊙C 的半径为r , ∴ 510r <<, 故选D.【题目点拨】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG 的长是解题的关键. 9、C 【解题分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b 亿元,即可得出a 、b 之间的关系式. 【题目详解】∵2013年我省财政收入为a 亿元,2014年我省财政收入比2013年增长8.9%, ∴2014年我省财政收入为a (1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b 亿元, ∴2015年我省财政收为b=a (1+8.9%)(1+9.5%); 故选C . 【题目点拨】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题. 10、D 【解题分析】根据有理数的除法可以解答本题. 【题目详解】解:∵(﹣5)÷5=﹣1, ∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷, 故选D . 【题目点拨】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.二、填空题(本大题共6个小题,每小题3分,共18分) 11、y (x -2)2 【解题分析】先提取公因式y ,再根据完全平方公式分解即可得. 【题目详解】原式=2(44)y x x -+=2(2)y x -, 故答案为2(2)y x -. 12、。

浙江省杭州市杭州外国语学校2021-2022学年九年级上学期12月月考数学试题

浙江省杭州市杭州外国语学校2021-2022学年九年级上学期12月月考数学试题
可得1-a=0,2a+b=0,b2-4ac=0,
解得a=1,b=-2,c=1,
∴ .
故选:A.
【点睛】
本题主要考查二次函数的性质与一元二次方程之间的关系以及方程根的个数的判断规律.熟练掌握相关的性质和规律是解题的关键.
10.A
【分析】
作 ,延长 、 交于点 ,设 ,根据相似三角形的性质求解即可.
【详解】
24.如图,在平面直角坐标系中,直线y=kx和双曲线 在第一象限相交于点A(1,2),点B在y轴上,且AB⊥y轴.有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t>0),过点P作PD⊥y轴,交直线OA于点C,交双曲线于点D.
(1)求直线y=kx和双曲线 的函数关系式;
(1)求证: ABC∽ DCF;
(2)当∠1=∠2,DF=10 ,AE:EC=1:2时,求圆O的半径.
(3)在(2)的条件下,连接DG交BC于点M,则 (直接写出答案).
23.某产品每件成本为25元,经过市场调研发现,这种产品在未来20天内的日销售量m(单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如表:
A.1和2之间B.2和3之间C.3和4之间D.4和5之间
4.把多项式x3﹣2x2+x分解因式结果正确的是()
A.x(x2﹣2x)B.x2(x﹣2)
C.x(x+1)(x﹣1)D.x(x﹣1)2
5.已知关于 的分式方程 的解是非负数,则 的取值范围为()
A. B. 且 C. D. 且
6.如图,在 ABC中,BD平分∠ABC,AD⊥BD于点D,过D作DE BC交AC于点E.若AB=10,BC=16,则线段DE的长度为()
(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档