双闭环直流调速系统的设计与仿真开题报告
双闭环直流调速系统的设计与仿真开题报告

南京工程学院自动化学院毕业设计开题报告课题名称:双闭环直流调速系统的设计与仿真研究姓名:吴杰班级:10 自动化 1指导教师:张贞艳所在系部:自动化学院专业名称:自动化南京工程学院2014 年3 月毕业设计(论文)开题报告毕业设计的内容和意义一、毕业设计的内容(包括技术要求、图标要求以及工作要求等):1. 简单闭环调速系统系统的性能分析,其中包括单闭环有、无静差转速负反馈调速系统以及带电流截止转速负反馈调速系统的性能分析。
通过比较它们的性能分析结果,得出它们的不足之处,从而引出双闭环直流调速系统。
2. 双闭环直流调速系统的设计,其中包括建立双闭环调速系统的方框图以及仿真模型。
并且通过仿真分析结果,与简单的闭环调速仿真分析进行比较,从而得出双闭环直流调速优越性。
3. 双闭环V-M系统的设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结果分析等。
4. 双闭环PWM-M调速系统设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结构分析等。
二、毕业设计的意义1. 根据MATLAB/Simulink 仿真平台,研究双闭环直流调速系统的性能。
双闭环直流调速系统是目前应用最广泛的调速系统,该系统具有调速范围宽、稳定性好、精度高等许多优点,在拖动领域中发挥着极其重要的作用[1]。
采用该系统可获得优良的静、动态调速特性。
此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础[2]。
2. 通过比较单闭环有、无静差转速负反馈调速系统和带电流截止负反馈调速系统的仿真结果,从而得到它们各自的不足之处,从而突出双闭环直流调速系统的优越性以及必要性。
3. 通过对双闭环V-M系统和双闭环PWM-M调速系统这两种典型双闭环调速系统的的仿真分析,帮助我们更好的了解和应用双闭环直流调速系统。
4. 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。
双闭环直流调速系统的设计与仿真分析

双闭环直流调速系统的设计与仿真分析摘要:本文简要介绍了双闭环直流调速系统的组成与基本工作原理,并对双闭环转速、直流调速系统设计展开分析论述,阐明了双闭环直流调速系统的模型仿真。
关键词:双闭环;直流调速系统;仿真直流电动机因易于控制,起、制动、运行方便等特征在生活中的应用范围较广。
近年来,经济的增长推动了该调速系统在我国经济市场中的进一步发展,很多高性能高调速设备均需使用该系统(包括直流电力推进、海洋钻机、金属切割机床、纺织、造纸、轧钢、高层电梯、矿山采掘等),设备运行时,对调速系统的性能要求均较高,需弄清双闭环直流调速系统的基本工作原理,并对其进行仿真分析,使其更好为现代经济的发展服务。
1.双闭环直流调速系统组成与工作原理双闭环直流调速系统中有两个调节器,即电流ACR调节器与转速ASR调节器,两种调节器可对系统的电流与设备转速造成影响,若二者串联,且均带输出限幅电路,限幅值依次可为Usim与Ucm。
因调速系统的关键性被控量为转速,因而需将转速负反馈组成的环视作外环,这可让电动机转速无误的跟随给定电压,再将电流负反馈生成的环视作内环,以让设备在最大电流节约下,使得整个转速过渡过程得到最佳控制。
整个双闭环直流调速系统工作原理图如下所示:图1双闭环直流调速系统工作原理从上图中双闭环直流调速系统工作原理图可知,电动机的转速与给定电压之间的关系紧密,且受给定电压影响,调速系统的速度调节器ASR的输入偏差电压即△usr=usn-ufn,ASR的输出电压usi可视作整个调节系统的给定信号,电流调节器的输入偏差电压计算公式即为△ucr=-usi+ufi,ACR的输出电压Uc可视作直流调速系统的控制电压。
在系统运行过程中,若控制电压Uc改变,就可直接影响触发器控制角α与系统运行时的输出电压Udo,进而改变和控制电动机的转速,可自由调节、改变其运行速度[1]。
2.双闭环转速、直流调速系统设计在调速系统中,若要保证转速与电流负反馈均各自发挥相应作用,就应在系统的正确位置处安装两个调节器,用以快速调节转速与电流,并将二者串联。
转速电流双闭环可逆直流调速系统的仿真与设计(专业课程设计报告格式)

专业课程设计报告(级本科)题目:转速电流双闭环可逆直流调速系统的仿真与设计学院:学院专业:班级:姓名:学号:同组同学:设计时间:评定成绩:指导教师:年月大学专业课程设计任务书含给定滤波与反馈滤波的PI 型电流调节器(3)选择电流调节器参数要求%5%≤i σ时,应取5.0=∑i I T K ,因此s K i l I T T 11.1350037.05.0-==∑=于是,013.14005.05.003.01.135=⨯⨯⨯==Ks R K K i Ii βτ。
(4)校验近似条件 要求sci T 31<ω,现ci s s s T ω>=⨯=--111.1960017.03131。
要求l m ci T T 13≥ω,现ci l m s s T T ω<=⨯=--11243.45.011313。
要求oi s ci T T 131≤ω,现ci oi s s s T T ω>=⨯=--118.180002.00017.0131131(5)计算电流调节器电阻和电容 取Ω=k R 400,则Ω=Ω⨯==k k R K R n n 52.4040013.10 取Ω=k R n 40F F R C iii μτ75.0104003.03=⨯==取F μ75.0 F F R T C oi oi μμ2.0101040002.044630=⨯⨯⨯== 取F μ2.0 按照上述参数,电流环可以达到的动态指标为%5%3.4%<=i σ,故满足设计要求。
2.2转速环的设计 (1)确定时间常数电流环等效时间常数为s T i 0074.02=∑。
根据所用发电机纹波情况,取转速滤波时间常数s T on 01.0=。
转速小时间常数近似处理,取s T T T on i n 0174.02=+∑=∑。
(2)选择转速调节器结构按照设计要求,选用PI 调节器,其传递函数为()ss K s W n n nASR ττ1+=含给定滤波与反馈滤波的PI 型转速调节器(3)计算转速调节器参数按跟随和抗扰性能都较好的原则,取5=h ,则s s hT n n 087.00174.05=⨯=∑=τ222224.3960174.0252621--=⨯⨯=∑+=s s T h h K nN 则 ()7.11174.05.0007.01018.0132.005.0621=⨯⨯⨯⨯⨯⨯=∑+=nme n RT h T C h K αβ(4)检验近似条件115.34087.04.396--=⨯==s s K n N cn τω。
双闭环直流调速系统的设计与仿真

南京工程学院本科毕业设计(论文)题目:双闭环直流调速系统的设计与仿真研究专业:自动化班级: 10自动化1 学号: 20100710132 学生姓名:吴杰指导教师:张贞艳起讫日期:2014.2~2014.5Graduation Design (Thesis)Design and Simulation of Double Loop DC Motor Control SystemByWu JieSupervised byAssociate Prof. Zhang zhenyanDepartment of Automation EngineeringNanjing Institute of TechnologyMay, 2014摘要为了提高运动控制系统在实际工程中的应用效率,本文介绍了直流调速系统的工程设计方法[1],利用 MATLAB软件,对直流调速系统进行数学建模和系统仿真的研究。
所给出的仿真方法,可以灵活地调节系统的参数,从而获得理想的设计结果,并对设计出的系统进行分析。
建立调节器工程设计方法所遵循的原则是:1)概念清楚、易懂。
2)计算公式简明、好记。
3)不仅给出参数计算公式,而且指明参数调节方向。
4)能考虑饱和非线性控制的情况,同时给出简单的计算公式。
5)适合于各种可以简化成典型系统的反馈控制系统[2]。
由于这个课题相对简单,我在里面加入了相关性的内容以丰富本课题的广度和深度。
在本设计中,我加入了三种简单的单闭环直流调速系统,并且通过对它们进行仿真分析,比较找出了它们的不足之处,从而更明显地体现了双闭环直流调速系统的优越性。
并且通过对两种典型的双闭环直流调速系统进行仿真分析,从而更好地理解和运用双闭环直流调速系统[3]。
关键词:直流电动机;双闭环调速;MATLAB;仿真;直流调速系统;直流脉宽调制;工程设计方法ABSTRACTIn order to raise application efficiency of the motion control system in actual project ,this article discussed the engineering design methods of the speed-governing system of DC motor. The mathematical modeling and system simulation of direct current governor system are researched by means of MATLAB platform . The simulation method can adjust the system controller parameters flexibly, so as to achieve the ideal design results, and the design of the system are analyzed.A controller design method is the principles of:(1)The concept of clear, easy to understand.(2)Simple formula, easy to remember.(3)Not only gives the parameter calculation formula, and indicates the parameter adjustment direction.(4)Can consider the saturation nonlinear control, and gives a simple formula.(5)Suitable for all kinds of feedback control systems can be simplified into a typical system.Because this subject is relatively simple, I joined the correlation content inside to enrich the breadth and depth of the subject. In this design, I added three simple single loop DC speed regulation system, and then analyze them, compared to find their deficiencies, and thus more clearly showed the superiority of double closed loop DC speed regulating system. And through the simulation analysis of two kinds of typical double loop DC speed control system, so as to better understand and use the double loop DC speed control system.Keywords: DC motor, double closed loop,MATLAB,Simulation,V-M,PWM-M,The engineering design method目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 课题研究背景 (1)1.2 直流调速系统国内外研究现状 (1)1.3 研究双闭环直流调速系统的意义 (2)1.4 论文的主要研究内容 (2)第二章仿真软件以及相关硬件简介 (3)2.1 MATLAB/Simulink仿真平台 (3)2.2 仿真的数值算法 (3)2.3 工程设计法 (4)2.4 直流电动机 (4)第三章简单闭环调速系统的设计与仿真 (5)3.1 单闭环有静差转速负反馈调速系统的设计与仿真 (5)3.2 单闭环无静差转速负反馈调速系统的设计与仿真 (11)3.3 带电流截止负反馈的转速反馈系统的设计与仿真 (13)3.4 简单闭环调速系统的优缺点比较 (15)第四章转速、电流双闭环直流调速系统的设计与仿真 (17)4.1 转速、电流双闭环调速系统的设计与仿真 (17)4.2 V-M直流调速系统的设计与仿真 (19)4.3 PWM-M直流调速系统的设计与仿真 (26)第五章总结与展望 (34)致谢 (35)参考文献 (36)第一章绪论1.1 课题研究背景在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能[4]。
V-M双闭环不可逆直流调速系统设计报告(含电气原理图)

双闭环直流调速系统课程设计报告摘要:本设计是一个双闭环不可逆直流调速系统,采用了晶闸管---直流调速装置来调节直流电动机的转速。
采用晶闸管的好处是能使该直流电动机进行连续平滑的调速,且具有较宽地转速调速范围(D≥10)。
此装置有可靠的过电压过电流保护措施,该调速装置在5%负载以上变化的运行范围内工作时,晶闸管的输出电流连续,并且具有良好的静特性与动态性能。
关键词:双闭环晶闸管转速调节器电流调节器第1章主电路各器件的选择和计算1.1 变流变压器容量的计算和选择在一般情况下,晶闸管装置所要求的交流供电电压与电网电压往往不一致;此外,为了尽量减小电网与晶闸管装置的相互干扰,要求它们相互隔离,故通常要配用整流变压器,这里选项用的变压器的一次侧绕组采用△联接,二次侧绕组采用Y联接。
S为整流变压器的总容量,S为变压器一次侧的容量,1U为一次侧电压,I为一次侧电流, 2S为变压器二次侧的容量,2U为二次侧电压,1I为二次侧的电流,1m、2m为相数,以下就是各量的推导和计算过程。
2为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压U只能在一个较小的范围内变化,2为此必须精确计算整流变压器次级电压U。
2影响2U 值的因素有:(1)2U 值的大小首先要保证满足负载所需求的最大电流值的max d I 。
(2)晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用T V 表示。
(3)变压器漏抗的存在会产生换相压降。
(4)平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降。
(5)电枢电阻的压降。
综合以上因素得到的2U 精确表达式为:max 2max [1(1)]%[]100d N a T d d K d I U r nU I U I CU A B I ε+-+=-⋅ (4-1)式中 20U U A d =表示当控制角00α=时,整流电压平均值与变压器次级相电压有效值之比;d d U U B α=表示控制角为α时和00α=时整流电压平均值之比; C 是与整流主电路形式有关的系数;%K U 为变压器的短路电压百分比,100千伏安以下的变压器取5%=K U ,100~1000千伏安的变压器取%510K U =~;ε为电网电压波动系数。
双闭环直流调速系统设计和仿真分析

双闭环直流调速系统设计和仿真分析摘要:本文简要介绍了双闭环直流调速系统的组成与基本工作原理,并对双闭环转速,直流调速系统设计展开分析论述,阐明了双闭环直流调速系统的模型仿真。
关键词:双闭环;直流调速系统;仿真1.概述双闭环直流调速系统设计和仿真分析仿真时间8s。
具体要求如下:在一个由三相零式晶闸管整流装置供电的转速、电流双闭环调速系统中,已知电动机的额定数据为: kW , V , A , r/min , 电动势系数 =0.196 V·min/r , 主回路总电阻=0.18Ω,变换器的放大倍数 =35。
电磁时间常数 =0.012s,机电时间常数=0.12s,电流反馈滤波时间常数 =0.0025s,转速反馈滤波时间常数 =0.015s。
额定转速时的给定电压Un*N =10V,调节器ASR,ACR饱和输出电压Uim*=8V,Ucm =6.5V。
系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量≤5% ,空载起动到额定转速时的转速超调量≤10%。
试求:(1)确定电流反馈系数β(假设起动电流限制在1.1IN以内)和转速反馈系数α。
(2)试设计电流调节器ACR和转速调节器ASR。
(3)在matlab/simulink仿真平台下搭建系统仿真模型。
计算电动机带40%额定负载起动到最低转速时的转速超调量σn。
并与仿真结果进行对比分析。
(4)估算空载起动到额定转速的时间。
说明系统的起动过程,并与仿真结果进行对比分析。
(5)在4s突加40%额定负载,给出转速、电流、转速调节器输出、转速调节器积分部分输出波形,并对系统的抗扰过程加以分析。
(6)若要求转速超调量≤3%,研究该系统的转速超调解决方法,并进行仿真验证。
2.双闭环直流调速系统的动态数学模型图1双闭环直流调速系统动态数学模型动态数学模型如图1所示。
对调速系统而言,被控制的对象是转速。
随性能可以用阶跃给定下的动态响应描述。
能否实现所期望的恒加速过程,最终以时间最优的形式达到所要求的性能指标,是设置双闭环控制的一个重要的追求目标。
双闭环直流调速系统开题报告
基于V-M的双闭环直流运动控制系统的设计和校正学生:黄觉鸿指导教师:曾孟雄教学单位:机械与材料学院1 绪论1.1 课题的来源、研究背景及意义电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。
这些行业中绝大部分生产机械都采用电动机作原动机。
有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。
20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。
尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。
直流电动机因具有良好的起、制动性能,宜于在大围平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛应用。
晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管—电动机调速系统(简称V-M系统)。
采用速度、电流双闭环直流调速系统,可以充分利用电动机的过载能力获得最快的动态过程,调速围广,精度高,和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性,动态和静态性能均好,且系统易于控制。
双闭环系统的转速环用来控制电动机的转速,电流环控制输出电流;该系统可以自动限制最大电流,能有效抑制电网电压波动的影响;且采用双闭环控制提高了系统的阻尼比,因而较之单闭环控制具有更好的控制特性。
尽当今功率半导体变流技术已有了突飞猛进的发展,但在工业生产中V-M 系统的应用还是有相当的比重。
所以以此为课题进行研究具有一定的实用价值。
1.2 相关课题的发展历史控制系统其实从20世纪40年代就开始使用了,早期的现场基地式仪表和后期的继电器构成了控制系统的前身。
现在所说的控制系统,多指采用电脑或微处理器进行智能控制的系统,在控制系统的发展史上,称为第三代控制系统,以PLC和DCS为代表,从70年代开始应用以来,在冶金、电力、石油、化工、轻工等工业过程控制中获得迅猛的发展。
双闭环直流调速系统课程设计(matlab仿真设计)
Hefei University电子信息与电气工程系自动化专业控制系统数字仿真与CAD课程报告课题:直流电动机双闭环调速系统仿真班级:08自动化(1)班*名:**0805070073朱彤0805070068李方舟0805070053指导老师:***摘要:双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。
它具有动态响应快、抗干扰能力强的优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
对最常用的转速、电流双闭环调速系统的工程设计方法进行了详细的推导。
然后采用Matlab/Simulink方法对实际系统进行仿真,找出推导过程被忽略的细节部分对调速系统的影响,给出工程设计和实际系统之间产生差距的原因,有助于在实际中设计出较优的系统。
关键词:直流电机调速系统仿真MatlabAbstract: Double closed loop ( speed loop, current loop DC speed control system ) is a kind of current application is wide, economic, applicable power transmission system.The paper presents the derive ationof engineering design methods in the speed regulation system of speed and current double closed loop in details. Then,a demo is designed and simulated by Matlab/Simulink to study the influence resulted from the details of the derivation,which has been ignored in the speed regulation system. The reason of difference between the engineeringdesign and the real conditions is given to help working out theoptimaldesigninpractice. Keywords: DC motor Speed regulation system Simulation Matlab一、双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。
双闭环直流调速系统的设计与仿真实验报告
TGn ASR ACR U *n + -U n U i U *i + - U c TAV M + -U d I dUP E L- M T 双闭环直流调速系统的设计与仿真1、实验目的1.熟悉晶闸管直流调速系统的组成及其基本原理。
2.掌握晶闸管直流调速系统参数及反馈环节测定方法。
3.掌握调节器的工程设计及仿真方法。
2、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 3、实验要求用电机参数建立相应仿真模型进行仿真 4、双闭环直流调速系统组成及工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机—发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压U ct 作为触发器的移相控制电压,改变U ct 的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接,如图4.1。
把转速调节器的输出当作电流调节器的输入,再用电流的输出去控制电力电子变换器UPE 。
在结构上,电流环作为内环,转速环作为外环,形成了转速、电流双闭环调速系统。
为了获得良好的静、动态特性,转速和电流两个调节器采用PI 调节器。
图4.1 转速、电流双闭环调速系统 5、电机参数及设计要求5.1电机参数 直流电动机:220V ,136A ,1460r/min , =0.192V ? min/r ,允许过载倍数=1.5,晶闸管装置放大系数: =40电枢回路总电阻:R=0.5 时间常数: =0.00167s, =0.075s电流反馈系数: =0.05V/A 转速反馈系数:=0.007 V ? min/r 5.2设计要求要求电流超调量 5%,转速无静差,空载起动到额定转速时的转速超调量 10%。
6、调节器的工程设计 6.1电流调节器ACR 的设计 (1)确定电流环时间常数1)装置滞后时间常数 =0.0017s ; 2)电流滤波时间常数 =0.002s ;3)电流环小时间常数之和 = + =0.0037s ; (2)选择电流调节结构根据设计要求5%,并且保证稳态电流无差,电流环的控制对象是双惯性型的,且=0.03/0.0037=8.11<10,故校正成典型?I?型系统,显然应采用PI型的电流调节器,其传递函数可以写成?式中—?电流调节器的比例系数;?—?电流调节器的超前时间常数。
双闭环直流调速系统的设计与仿真实验报告
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.双闭环直流调速系统的设计,其中包括建立双闭环调速系统的方框图以及仿真模型。而且经过仿真分析结果,与简单的闭环调速仿真分析进行比较,从而得出双闭环直流调速优越性。
文献综述
1.国内外现状及发展趋势
[1]国内现状及发展趋势
从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。双闭环直流调速系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。采用双PI调节器,可获得良好的动静态效果【3】。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管当前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。可是直流电动机调速系统以其优良的调速性能仍有广阔的市场,而且建立在反馈控制理论基础上的直流调速原理也是交流控制的基础【4】。在我们国内,双闭环控制也已经经过了几十年的发展时期,当前已经基本发展成熟,可是当前的趋势仍是追赶着发达国家的脚步,向着数字化发展。
Ode15s是一种可变阶数的Numerical differentiation formulas (DNFS)算法,当遇到刚性(stiff)问题时或者使用ode45算法不行时,你能够试试这种算法[7]。
Ode23tb(stiff/TR-BDF2)采用TR-BDF2算法,即在龙格-库塔法的第一阶段用用梯形法,第二阶段用二阶的backward differentiation formulas算法,在容差比较大时,ode23tb和ode23t都比ode15s好【8】。
2.MATLAB/Simulink仿真平台
[1]MATLAB/Simulink的介绍
MATLAB是一种科学计算软件,MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,这是一种以矩阵为基础的交互式程序计算机语言。由于它使用方便,输入捷,运算高效,适应科技人员的思维方式,而且有绘图功能,有用户自行扩展的空间,特别受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学和科学研究的常见软件。
张贞艳
职称
讲师
所在系部
自动化学院
课题来源
老师自拟
课题类型
工程设计
课题名称
双闭环直流调速系统的设计与仿真研究
毕业设计的内容(包括技术准备、技术内容以及设计要求等):
毕业设计的内容(包括技术准备、技术内容以及设计要求等):
毕业设计的内容(包括技术准备、技术内容以及设计要求等):
毕业设计的内容和意义
1、毕业设计的内容(包括技术要求、图标要求以及工作要求等):
[2]国外现状及发展趋势
从80年代中后期起,世界各大电气公司都在竞相开发数字式调速传动装置直流调速已经发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制。特别采用了微机及其它先进技术,使数字式直流调速装置具有很高的精度、良好的控制性能和强大的抗干扰能力,在国内外受到广泛的应用【5】。当前,发达国家应用的先进电气调速系统几乎完全实现了数字化,双闭环控制系统已经普遍的应用到了各类仪器仪表,机械重工业以及轻工业的生产过程中。随着全球科技日新月异的发展,双闭环控制系统的总的发展趋势也向着控制的数字化、智能化和网络化发展。
Simulink系统的仿真环境实在MATLAB原来的工具箱基础上拓展和开发的,它包括Simulink仿真平台和系统仿真模型库两部分,它是一个高级计算和仿真平台[6]。
[2]仿真的数值算法
Ode45为基于显式Rung-Kutta和Dormand-Prince组合的算法,它是一种一步解法,只要知道前一段时间点的解,就能够计算当前时间点的方程解。这种算法适用于仿真线性化程度比较高的系统。此算法是仿真默认算法。
双闭环直流调速系统的设计与仿真开题报告
南京工程学院
自动化学院
毕业设计开题报告
课题名称:双闭环直流调速系统的设计与仿真研究
姓 名:吴杰
班 级:10自动化1
指 导 教 师:张贞艳
所 在 系 部:自动化学院
专 业 名 称:自动化
南京工程学院
3 月
毕业设计(论文)开题报告
学生姓名
吴杰
学号
专业
自动化
指导教师
姓名
2.经过比较单闭环有、无静差转速负反馈调速系统和带电流截止负反馈调速系统的仿真结果,从而得到它们各自的不足之处,从而突出双闭环直流调速系统的优越性以及必要性。
3.经过对双闭环V-M系统和双闭环PWM-M调速系统这两种典型双闭环调速系统的的仿真分析,帮助我们更好的了解和应用双闭环直流调速系统。
4.经过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,经过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个生产领域。
3.双闭环V-M系统的设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结果分析等。
4.双闭环PWM-M调速系统设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结构分析等。
2、毕业设计的意义
1.根据MATLAB/Simulink仿真平台,研究双闭环直流调速系统的性能。双闭环直流调速系统是当前应用最广泛的调速系统,该系统具有调速范围宽、稳定性好、精度高等许多优点,在拖动领域中发挥着极其重要的作用[1]。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础[2]。
3.直流调速系统
直流电动机具有良好的启动、制动性能,宜于在宽范围内平滑无级调速,在轨钢机、铁路机车、造纸机、金属切割机床、高层电梯、矿井卷场机、挖掘机等需要高性能可控电力拖动的领域中得到了广泛的运用。