03-傅里叶变换解析

合集下载

傅里叶变换最通俗的理解

傅里叶变换最通俗的理解

傅里叶变换最通俗的理解傅里叶变换是一种数学工具,它可以将一个周期性信号分解成多个不同频率的正弦波,并且可以将非周期性信号转换成一个连续的频谱图。

在信号处理、图像处理、音频处理等领域中,傅里叶变换被广泛应用。

本文将从以下几个方面来解释傅里叶变换的原理和应用。

一、什么是傅里叶级数在介绍傅里叶变换之前,我们需要先了解傅里叶级数。

傅里叶级数是一种将周期性函数表示为无穷多个正弦和余弦函数之和的方法。

具体地说,给定一个周期为T的函数f(t),可以表示为以下形式:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中ω=2π/T,a0、an和bn是常数系数。

这个式子意味着,任何一个周期函数都可以被分解成由不同频率的正弦波组成的和。

这就是傅里叶级数的基本思想。

二、什么是离散时间傅里叶变换离散时间傅里叶变换(Discrete Fourier Transform, DFT)是一种将离散时间序列(例如数字信号)转换为频域表示的方法。

它可以将一个长度为N的离散时间序列x(n)转换成一个长度为N的复数序列X(k),其中k=0,1,...,N-1。

具体地说,DFT可以用以下公式表示:X(k) = Σ(x(n)*exp(-j2πnk/N))其中j是虚数单位,n和k分别是时间和频率的索引。

这个式子意味着,任何一个离散信号都可以被分解成由不同频率的正弦波组成的和。

DFT将原始信号转换成了一组复数表示,其中每个复数表示了对应频率上正弦波和余弦波的振幅和相位。

三、什么是傅里叶变换傅里叶变换(Fourier Transform, FT)是一种将连续时间信号转换为频域表示的方法。

它可以将一个连续时间函数f(t)转换成一个连续频谱函数F(ω),其中ω是角频率。

具体地说,FT可以用以下公式表示:F(ω) = ∫f(t)*exp(-jωt)dt这个式子意味着,任何一个连续信号都可以被分解成由不同角频率的正弦波组成的积分。

傅里叶变换本质及其公式解析

傅里叶变换本质及其公式解析

傅里叶变换的本质傅里叶变换的公式为dt et f F tj ⎰+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式:t j e t f F ωπω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。

)(2,21)(2121Ω-Ω==⎰Ω-ΩΩΩπδdt e e e t j t j t j下面从公式解释下傅里叶变换的意义 因为傅里叶变换的本质是内积,所以f(t)和tj eω求内积的时候,只有f(t)中频率为ω的分量才会有内积的结果,其余分量的内积为0。

可以理解为f(t)在tj eω上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在ω的分量叠加起来,可以理解为f(t)在tj e ω上的投影的叠加,叠加的结果就是频率为ω的分量,也就形成了频谱。

傅里叶逆变换的公式为ωωπωd e F t f tj ⎰+∞∞-=)(21)( 下面从公式分析下傅里叶逆变换的意义傅里叶逆变换就是傅里叶变换的逆过程,在)(ωF 和tj eω-求内积的时候,)(ωF 只有t 时刻的分量内积才会有结果,其余时间分量内积结果为0,同样积分值是频率从负无穷到正无穷的积分,就是把信号在每个频率在t 时刻上的分量叠加起来,叠加的结果就是f(t)在t 时刻的值,这就回到了我们观察信号最初的时域。

对一个信号做傅里叶变换,然后直接做逆变换,这样做是没有意义的,在傅里叶变换和傅里叶逆变换之间有一个滤波的过程。

将不要的频率分量给滤除掉,然后再做逆变换,就得到了想要的信号。

比如信号中掺杂着噪声信号,可以通过滤波器将噪声信号的频率给去除,再做傅里叶逆变换,就得到了没有噪声的信号。

优点:频率的定位很好,通过对信号的频率分辨率很好,可以清晰的得到信号所包含的频率成分,也就是频谱。

缺点:因为频谱是时间从负无穷到正无穷的叠加,所以,知道某一频率,不能判断,该频率的时间定位。

详解傅里叶变换公式

详解傅里叶变换公式

详解傅里叶变换公式傅里叶变换(Fourier Transform)是一种将时域信号转换到频域信号的数学方法。

它可以将一个信号分解为不同频率的正弦波之和,从而揭示信号的频率结构。

傅里叶变换在信号处理、图像处理、通信、物理学等领域具有广泛的应用。

首先,我们要理解时域(Time Domain)和频域(Frequency Domain)的概念。

1. 时域:在时域中,信号表示为时间轴上的函数,例如:```f(t) = A * cos(2 * π* t) + B * sin(2 * π* t)```在这个例子中,f(t) 是一个正弦波函数,t 是时间。

2. 频域:在频域中,信号表示为频率轴上的函数,例如:```F(ω) = A * cos(2 * π* ω) + B * sin(2 * π* ω)```在这个例子中,F(ω) 是一个正弦波函数,ω是频率。

傅里叶变换可以将时域信号转换为频域信号,公式如下:```F(ω) = ∫_{-∞}^{∞} f(t) e^(-jωt) dt```其中,F(ω) 是频域信号,ω是频率,t 是时间,j 是虚数单位,e 是自然对数的底数。

傅里叶变换的逆变换公式如下:```f(t) = ∫_{-∞}^{∞} F(ω) e^(jωt) dω```现在,我们来通过一个简单的例子来说明傅里叶变换。

假设我们有一个正弦波信号,如下所示:f(t) = A * sin(2 * π* t) + B * sin(2 * π* t + π/4)```我们可以使用傅里叶变换将其转换为频域信号,如下所示:```F(ω) = A * cos(2 * π* ω) + B * cos(2 * π* ω+ π/2)```通过傅里叶变换,我们可以看到信号中包含的主要频率成分。

例如,在这个例子中,我们可以看到信号主要包含两个频率成分:一个是A = 1,ω= π/2 的正弦波,另一个是B = 1,ω= π/4 的正弦波。

傅里叶变换知识点总结

傅里叶变换知识点总结

傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。

一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。

它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。

2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。

(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。

(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。

二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。

对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。

2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。

(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。

(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。

3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。

三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。

2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。

傅里叶变换原理

傅里叶变换原理

傅里叶变换原理傅里叶变换是一种将信号从时域转换到频域的数学工具。

它的原理是将一个信号分解成不同频率的正弦和余弦波的叠加,从而得到信号在频域上的表示。

这种变换在信号处理、图像处理、通信系统等领域中得到广泛应用。

在傅里叶变换中,信号可以表示为一个连续的函数,通常用f(t)表示。

这个函数可以是任何类型的信号,例如音频信号、图像信号、电信号等。

傅里叶变换将这个函数分解成不同频率的正弦和余弦波的叠加,这些波的频率从0开始,一直到无穷大。

傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示信号在频域上的表示,ω表示频率,e^(-iωt)表示一个复数,它的实部是cos(ωt),虚部是sin(ωt)。

这个公式可以理解为将信号f(t)与一个复数e^(-iωt)相乘,然后对整个信号进行积分。

这个积分的结果就是信号在频域上的表示。

傅里叶变换的一个重要应用是信号滤波。

在信号处理中,我们经常需要去除一些噪声或者干扰信号。

这时候可以使用傅里叶变换将信号转换到频域上,然后通过滤波器去除不需要的频率成分,最后再将信号转换回时域。

这个过程被称为频域滤波。

傅里叶变换还可以用于信号压缩。

在图像处理中,我们经常需要将一张高分辨率的图像压缩成低分辨率的图像,以便在网络传输或者存储时节省带宽和存储空间。

这时候可以使用傅里叶变换将图像转换到频域上,然后去除高频成分,最后再将图像转换回时域。

这个过程被称为频域压缩。

傅里叶变换是一种非常重要的数学工具,它可以将信号从时域转换到频域,从而方便我们进行信号处理、图像处理、通信系统等领域的研究和应用。

傅里叶变换结果解释

傅里叶变换结果解释

傅里叶变换结果解释傅里叶变换(Fourier Transform)是一种数学方法,用于将时域信号转换为频域信号。

它是数学家约瑟夫·傅里叶(Jean-Baptiste Joseph Fourier)在19世纪提出的,是信号处理领域中非常重要的基本工具。

傅里叶变换不仅可以将信号分解成一系列正弦和余弦函数的叠加,还可以在频域中对信号进行分析和处理。

傅里叶变换的数学表示为:F(ω) = ∫f(t)·e^(-iωt) dt其中,F(ω)表示频域中的复数表示,f(t)表示时域中的函数,ω是角频率,e是自然对数的底数。

傅里叶变换将f(t)从时域映射到频域,得到的结果可以反映信号在不同频率上的能量分布情况。

傅里叶变换的结果可以通过频谱图来表示,频谱图是将频率和幅度绘制在坐标轴上的图形。

频谱图可以提供关于信号频率成分的重要信息。

傅里叶变换的结果解释如下:1. 频率分量分析:傅里叶变换将信号分解为一系列不同频率的正弦和余弦波。

通过分析变换结果中的频率分量,可以了解信号中不同频率成分的贡献程度。

频率分量越高,代表信号中包含的高频信号越多。

2. 能量分布:傅里叶变换的结果反映了信号在不同频率上的能量分布情况。

在频谱图上,幅度越大代表该频率上的能量越强。

可以通过观察傅里叶变换结果的幅度谱,在频域中找到信号的主要频率成分。

3. 频域滤波:傅里叶变换可以用于频域滤波,即通过在频谱图上调整幅度谱,实现对信号中特定频率的滤波操作。

通过抑制或增强特定频率成分,可以对信号进行去噪、降噪、增强等操作。

4. 逆变换:傅里叶变换之后,可以进行逆变换将信号从频域回变为时域。

逆变换结果与原始信号相同,但可能存在微小的误差。

逆变换使得我们可以在频域对信号进行处理后,再将其还原到时域进行进一步的分析或应用。

总结起来,傅里叶变换是一种将信号从时域转换到频域的数学方法,其结果可以通过频谱图来表示。

通过观察傅里叶变换的频率分量、能量分布以及进行频域滤波和逆变换等操作,我们可以深入理解信号的特性和结构,为信号处理、图像处理、通信等领域提供基础工具和方法。

傅里叶变换的意义和理解(通俗易懂)

傅里叶变换的意义和理解(通俗易懂)

傅里叶变换是数学中的一种重要概念,广泛应用于信号处理、图像处理、物理学和工程学等领域。

它的理论和应用领域非常广泛,对傅里叶变换的理解对于加深我们对数学和科学的理解有着重要的意义。

下面将从通俗易懂的角度来解释傅里叶变换的意义和理解。

一、什么是傅里叶变换?1.1 傅里叶变换的概念傅里叶变换是一种将时域信号转换到频域的方法,它可以将一个时域信号表示为一系列不同频率的正弦和余弦波的叠加。

傅里叶变换通过分解信号的频谱,可以帮助我们理解信号的频率和振幅等信息。

1.2 傅里叶级数和傅里叶变换傅里叶变换是从傅里叶级数推广而来的,傅里叶级数可以将周期信号表示为一系列正弦和余弦函数的线性组合。

傅里叶变换则是将非周期信号进行频域分析的工具,可以用于处理任意时域信号。

二、傅里叶变换的意义2.1 时域和频域的转换傅里叶变换的最大意义在于将时域信号转换到频域,这样我们就能够从频域的角度来理解信号的性质。

通过傅里叶变换,我们可以分析音频信号中不同频率的成分,帮助我们理解音乐和语音信号的特性。

2.2 信号的滤波和处理傅里叶变换也提供了一种方便的工具来对信号进行滤波和处理。

在频域中,我们可以通过去除特定频率的成分来实现信号的滤波,也可以通过增强特定频率的成分来实现信号的增强。

2.3 解决微积分和偏微分方程傅里叶变换在解决微积分和偏微分方程中也有重要意义。

通过傅里叶变换,我们可以将微分方程转换为代数方程,从而简化求解过程。

2.4 图像处理和通信在图像处理和通信领域,傅里叶变换也有着重要的应用。

通过傅里叶变换,可以将图像信号转换到频域,方便我们对图像进行处理和分析;在通信中,傅里叶变换可以帮助我们理解信号的频谱,实现信号的调制和解调。

三、傅里叶变换的理解3.1 傅里叶变换的几何意义从几何角度来理解,傅里叶变换可以将信号表示为不同频率和振幅的正弦和余弦函数的叠加。

这种表示方式可以帮助我们理解信号中包含的频率成分和它们的相对重要性。

3.2 采样定理和频谱泄漏在理解傅里叶变换时,采样定理和频谱泄漏是两个重要的概念。

傅里叶变换分析

傅里叶变换分析

第一章 信号与系统的基本概念1.信号、信息与消息的差别?信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。

2.什么是奇异信号?函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。

例如:单边指数信号 (在t =0点时,不连续),单边正弦信号 (在t =0时的一阶导函数不连续)。

较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。

3.单位冲激信号的物理意义及其取样性质?冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。

它表达的是一类幅度很强,但作用时间很短的物理现象。

其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 4.什么是单位阶跃信号?单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。

5.线性时不变系统的意义同时满足叠加性和均匀性以及时不变特性的系统,称为线性时不变系统。

即:如果一个系统,当输入信号分别为1()x t 和2()x t 时,输出信号分别是1()y t 和2()y t 。

当输入信号()x t 是1()x t 和2()x t 的线性叠加,即:12()()()x t ax t bx t =+,其中a 和b 是任意常数时,输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+;且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。

其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性;如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期 t =1
频率 f0 =1
t t

2
t
2 2
g ( x)dx 2
4 1 4
1
dx 1
4 1 4 1
t t

2
t
2 2
g ( x) cos(2nx)dx 2
2 2
sin(2nx) 1 / 4 n cos(2nx)dx sinc 1/ 4 n 2
思考题
利用欧拉公式,证明指数傅里叶系数与三角傅里叶系数之间 的关系:
a0 c0 , 2
an jbn cn , 2
c n
an jbn 2
a0 g ( x) (an cos 2nf0 x bn sin 2nf0 x), 2 n1
§1-2 二维傅里叶变换 2-D Fourier Transform
从傅里叶级数到傅里叶变换
函数 (满足狄氏条件) 具有有限周期t,可以展为傅里叶级数:

g ( x) Cn 1
n
C
t 2 2
n
exp( j 2 n x)
1
t
n级谐波频率:n/t
t t
g ( x) exp( j 2 n x)dx
1
相邻频率间隔: 1/t
tLeabharlann 1 1 1 t 2 g ( x) t g ( x) exp( j 2 n x)dx exp( j 2 n x) t t 2 n t
bn
t t

2
t
g ( x) sin(2nf0 x)dx 0
采用指数傅里叶级数展开,可以使展开系数的表达式统一而简洁。
三角傅里叶展开的例子
周期为t =1的方波函数
1.2
0 0 -1.2 1 2 3 4 5
1 2
2

cos( 2 x )

2 cos( 6 x) 3
前3项的和
1/2
an
(n 0, 1, 2... ),
f0
1
t
展开系数
a0
t
2
t
0
g ( x)dx
an
t
2
t
0
g ( x) cos( 2nf 0 x)dx bn
t
2
t
0
g ( x) sin( 2nf 0 x)dx
a0
t
2
t
0
g ( x)dx
an
t
2
t
0
g ( x) cos( 2nf 0 x)dx bn
§1-2 二维傅里叶变换 2-D Fourier Transform
从傅里叶级数到傅里叶变换
写成两部分对称的形式:
G( f ) g ( x) exp( j 2 fx)dx


g ( x) G( f ) exp( j 2 fx)df


这就是傅里叶变换和傅里叶逆变换
§1-2 二维傅里叶变换 2-D Fourier Transform
0.5
-1.5
Analysis of 2-Dimensional Linear System §1-2 二维傅里叶变换 三角傅里叶级数
• 恩格斯(Engels) 把傅里叶的数学成就 与他所推崇的哲学家黑格尔(Hegel) 的 辩证法相提并论. • 他写道:傅里叶是一首数学的诗,黑 格尔是一首辩证法的诗.
2/ 频谱图
1 2 2 f ( x) cos( 2x) cos( 6x) ...... 2 3

fn
0
1
3
-2/3
§1-2 二维傅里叶变换
指数傅里叶级数
满足狄氏条件的函数 g(x) 具有有限周期t,可以在(-,+ )展为 指数傅里叶级数:
g ( x)
n
t
2
t
0
g ( x) sin( 2nf 0 x)dx
三角傅里叶展开的例子
1.2
0 0 -1.2 1 2 3 4 5
g(x)=rect(2x)*comb(x)
三角傅里叶展开的例子
练习 0-15:求函数 g(x)=rect(2x)*comb(x) 的傅里叶级数展开系数
a0
an
宽度 =1/2
c

n
exp( j 2nf0 x), (n 0,1,2... ),
f0
1
t
展开系数
cn
t
1
t
0
g ( x) exp( j 2nf 0 x)dx
指数傅里叶级数和三角傅里叶级数是同一种级数的两种表 示方式,一种系数可由另一种系数导出。
§1-2 二维傅里叶变换
指数傅里叶级数
sinc(x)d (x-1) = 0 sinc(x) d (x-1) = sinc(x-1)
1 2 1 0 1
0.5
*
x
tri(x)d (x + 0.5) = 0.5 d (x + 0.5) tri(x) * d (x + 0.5) = tri(x + 0.5)
x
1
-1
-0.5 0
1 -0.5 0
x
展开系数Cn 频率为n/t的分量

§1-2 二维傅里叶变换 2-D Fourier Transform
从傅里叶级数到傅里叶变换
非周期函数可以看作周期为无限大的周期函数:
1 1 1 t 2 g ( x) lim t g ( x) exp( j 2 n x)dx exp( j 2 n x) t t t 2 n t
一、定义及存在条件
函数f(x,y)在整个x-y平面上绝对可积且满足狄氏条件(有 有限个间断点和极值点,没有无穷大间断点), 定义函数
F ( f x , f y ) f ( x, y) exp[ j 2 ( f x x f y y)dxdy


为函数f(x,y)的傅里叶变换, 记作: F(fx,fy)= {f(x,y)}=F.T.[f(x,y)], 或 f(x,y) F.T. F(fx,fy)
g ( x) df g ( x) exp( j 2 fx)dx exp( j 2 fx)

展开系数,或频率f分量的权重, G(f), 相当于分立情形的Cn
由于t ∞ 分立的n级谐波频率 n/t f, f: 连续的频率变量 相邻频率间隔: 1/t 0, 写作df, 求和 积分
第一章 二维线性系统分析
Analysis of 2-Dimensional Linear System §1-2 二维傅里叶变换 三角傅里叶级数
满足狄氏条件的函数 g(x) 具有有限周期t,可以在(-,+ )展为 三角傅里叶级数:
a0 g ( x) (an cos 2nf0 x bn sin 2nf0 x), 2 n1
相关文档
最新文档