中考数学复习 第24课时 圆的基本性质测试

合集下载

九年级数学下册24.2圆的基本性质24.2.2圆的基本性质检测沪科版(2021年整理)

九年级数学下册24.2圆的基本性质24.2.2圆的基本性质检测沪科版(2021年整理)

上海市金山区山阳镇九年级数学下册24.2 圆的基本性质24.2.2 圆的基本性质同步检测(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(上海市金山区山阳镇九年级数学下册24.2 圆的基本性质24.2.2 圆的基本性质同步检测(新版)沪科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为上海市金山区山阳镇九年级数学下册24.2 圆的基本性质24.2.2 圆的基本性质同步检测(新版)沪科版的全部内容。

24。

2.2 圆的基本性质同步检测一、选择题:1。

圆是轴对称图形,它的对称轴有( ).A 。

一条B 。

两条C 。

三条D 。

无数条2.在⊙O 中,圆心角∠AOB=90°,点O 到弦AB 的距离为4,则⊙O 的直径的长为( )。

A.42 B.82 C 。

24 D 。

163。

下列命题中错误的命题有( )。

(1)弦的垂直平分线经过圆心;(2)平分弦的直径垂直于弦;(3)弦所对的两条弧的中点连线垂直平分弦;(4)圆的对称轴是直径.A .1个B .2个C .3个D .4个4。

如图24—2—4,过⊙O 内一点M 的最长弦长为10cm,最短弦长为8cm ,那么OM 长为( )。

A.3cmB.6cmC.8cm D 。

9cm二、填空题:5.已知⊙0的半径为13,一条弦的AB 的弦心距为5,则这条弦的弦长等于 .6。

已知⊙O•中,•弦AB•的长是8cm ,•圆心O•到AB•的距离为3cm,•则⊙O•的直径是_____cm .7。

已知⊙O 中,OC⊥弦AB 于C,AB=6,OC=3,则⊙O 的半径长等于________.图24-2-4图24-2-58。

人教版九年级数学上册24.1 圆的基本性质同步练习含答案【精】

人教版九年级数学上册24.1 圆的基本性质同步练习含答案【精】

第二十四章圆24.1 圆(第一课时)知识点1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫,线段OA 叫做。

⑵描述性定义:圆是到定点的距离等于的点的集合【特别注意】:1、在一个圆中,圆心决定圆的,半径决定圆的。

2、直径是圆中的弦,弦不一定是直径。

2、弦与弧:弦:连接圆上任意两点的叫做弦。

弧:圆上任意两点间的叫做弧,弧可分为、、三类。

3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴。

⑵中心对称性:圆是中心对称图形,对称中心是。

一、选择题1.下列命题正确的有()①弦是圆上任意两点之间的部分②半径是弦③直径是最长的弦④弧是半圆,半圆是弧A.1个B.2个C.3个D.4个2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C 的度数是()A.25°B.40°C.30°D.50°4.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cm或6.5 cmB.2.5cmC.6.5cmD.5cm或13cm5.如图,已知在⊙O中,AB、CD为直径,则AD与BC的关系是().B.AD∥BCC.AD∥BC且AD=BCD.不能确定BCDO6.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,则∠BOC 的度数为( )A .15°B . 30°C . 45°D .60°二、填空题1.⊙O 的半径为2cm ,则它的弦长d cm 的取值范围是.2.⊙O 中若弦AB 等于⊙O 的半径,则△AOB 的形状是 .3.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的中点,若AC =10cm ,则OD = cm.4.如图4,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB=2DE ,∠E=18°,∠C=______,∠AOC=________;5. P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最长弦长为_______,最短弦长为________;三、解答题1.在Rt △ABC 中,∠C=90°,BC=3cm,AC=4cm,D 为AB 的中点,E 为AC 的中点,以B 为圆心,BC 为半径作⊙B ,A 、C 、D 、E 与⊙B 的位置关系如何?DC BA2、如图, M,N 为线段AB 上的两个三等分点,点A 、B 在⊙O 上,BDO CAABCO求证:∠OMN=∠ONM。

九年级数学下册第24章圆集训课堂测素质圆及圆的基本性质习题新版沪科版

九年级数学下册第24章圆集训课堂测素质圆及圆的基本性质习题新版沪科版

19 (12分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C, OD交⊙O于点D,点E在⊙O上. (1)若∠AOD=54°,求∠DEB的度数; 解:∵OD⊥AB,∴A︵D=B︵D. ∴∠DEB=12∠AOD=12×54°=27°.
(2)若CD=2,AB=8,求⊙O的半径. 解:设⊙O 的半径为 r,则 OC=r-2. ∵OD⊥AB,∴AC=12AB=4,∠ACO=90°. 在 Rt△ AOC 中,AO2=AC2+OC2, ∴r2=42+(r-2)2,解得 r=5. ∴⊙O 的半径是 5.
20 (12分)【2021·荆门】如图,在△ABC中,∠BAC=
90°,点E在BC边上,过A,C,E三点的⊙O交AB边

于另一点F,且F是AE的中点,AD是⊙O的一条直径,
连接DE并延长交AB边于M点.
(1)求证:四边形CDMF为平行四边形;
证明:如图,连接DF.
∵∠BAC=90°,∴FC是⊙O的直径.
沪科版 九年级
第24章 圆
集训课堂
测素质
圆及圆的基本性质
习题链接
温馨提示:点击 进入讲评
1C 2A 3D 4B
5D 6A 7B 8A
答案呈现
9D
10 D 11 60° 12 50°
习题链接
温馨提示:点击 进入讲评
13 (0,8)
17
14 AC=AE
18
15 20°
19
16 4
20
答案呈现
1 如图,在以原点为圆心,2 为半径的⊙O 上有一点 C, ∠COA=45°,则点 C 的坐标为( C ) A.( 2, 2) B.( 2,- 2) C.(- 2, 2) D.(- 2,- 2)
11 已知⊙O中最长的弦是12 cm,弦AB=6 cm,则 ∠AOB=____6_0_°__.

初三数学中考复习圆的基本性质专项练习题含解析

初三数学中考复习圆的基本性质专项练习题含解析

初三数学中考复习圆的基本性质专项练习题含解析1. 正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( B ) A. 3 B .2 C .2 2 D .2 32.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB =CD =0.25米,BD =1.5米,且AB ,CD 与水平地面差不多上垂直的,依照以上数据,请你帮小红运算出这扇圆弧形门的最高点离地面的距离是( B )A .2米B .2.5米C .2.4米D .2.1米3.如图,将⊙O 沿弦AB 折叠,圆弧恰好通过圆心O ,点P 是优弧A MB 上一点,则∠APB 的度数为( D )A .45°B .30°C .75°D .60°4.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与点A ,C 重合),点D 在AC 的延长线上,连结BD 交⊙O 于点E.若∠AOB =3∠ADB ,则(D )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB5.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连结CO ,AD ,∠BAD =20°,则下列说法中正确的是( D )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠B AD6.如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN ︵上,且不与点M ,N 重合,当点P 在MN ︵上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( A )A .不变B .变小C .变大D .不能确定7.如图,四边形ABCD 为⊙O 内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连结BD ,∠GBC =50°,则∠DBC 的度数为(C )A .50°B .60°C .80°D .90°8.如图,已知四边形ABCD 内接于半径为4的⊙O 中,且∠C =2∠A ,则BD =__43.9.如图,点A ,B ,C 为⊙O 上的三个点,∠BOC =2∠AOB ,∠BAC =40°,则∠ACB =__20__度.10.如图,已知AM 为⊙O 的直径,直线BC 通过点M ,且AB =AC ,∠BAM =∠CAM ,线段AB 和AC 分别交⊙O 于点D ,E ,∠BMD =40°,则∠EOM =__80°__.11.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于点D.若AC =6,BD =52,则BC 的长为__8__.12.在半径为1的⊙O 中,弦AB ,AC 的长分别为1和2,则∠BAC 的度数为__15°或105°__.13.如图,一条公路的转弯处是一段圆弧(AB ︵).(1)用直尺和圆规作出AB ︵所在圆的圆心O ;(要求保留作图痕迹,不写作法)(2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.解:(1)作图如图所示:(2)连结AB ,OB ,OC.设OC 交AB 于点D ,∵AB =80 m ,C 为AB ︵的中点,∴OC ⊥AB.∴AD =BD =40 m ,CD =20 m .设OB =r m ,则OD =(r -20)m.在Rt △OBD 中,OB2=OD2+BD2,∴r2=(r -20)2+402,解得r=50,∴AB ︵所在圆的半径是50 m.14.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连结BD.(1)求证:点E 是BD ︵的中点;(2)当BC =12,且AD ∶CD =1∶2时,求⊙O 的半径.解:(1)证明:连结AE ,DE ,∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC.∵∠CDB =90°,DE 是斜边BC 的中线,∴DE =EB.∴ED ︵=EB ︵,即点E 是BD ︵的中点.(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∴BD2=(3x)2-x2=8x2.在Rt △CDB 中,(2x)2+8x2=122,∴x =23,∴OA =32x =33,即⊙O 的半径是3 3.15.如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.(1)求证:AO 平分∠BAC ;证明:连结OB. 在△AOB 与△AOC 中,⎩⎪⎨⎪⎧AB =AC ,OB =OC ,AO =AO ,∴△AOB ≌△AOC(SSS), ∴∠BAO =∠CAO ,∴AO 平分∠BAC.(2)若BC =6,sin ∠BAC =35,求AC 和CD 的长.解:过点C 作CE ⊥AB 于点E ,∴sin ∠BAC =CE AC =35.设AC =5m(m >0),则CE =3m ,∴AE =AC2-CE2=(5m )2-(3m )2=4m ,BE =AB -AE =AC -AE =5m -4m =m.在Rt △CBE 中,∠BEC =90°,BC =6,BE =m ,CE =3m ,∴m2+(3m)2=62. 解得m =3105,m =-3105(舍去). ∴AC =5m =5×3105=310.16.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ.(1)如图①,当PQ ∥AB 时,求PQ 的长度;(2)如图②,当点P 在BC 上移动时,求PQ 长的最大值.解:(1)连结OQ ,如图①,∵PQ ∥AB ,OP ⊥PQ ,∴OP ⊥AB.在Rt △OBP 中,∵tan ∠B =OP OB ,∴OP =3tan30°=3,在Rt △OPQ 中,∵OP =3,OQ =3,∴PQ =OQ2-OP2= 6.(2)连结OQ ,如图②,在Rt △OPQ 中,PQ =OQ2-OP2=9-OP2,当OP 的长最小时,PQ 的长最大,现在OP ⊥BC ,则OP =12OB =32,∴PQ长的最大值为9-(32)2=332.。

2022年沪科版九年级数学下册第24章圆专项测评练习题(含详解)

2022年沪科版九年级数学下册第24章圆专项测评练习题(含详解)

沪科版九年级数学下册第24章圆专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且3AB ,则光盘的直径是()A.6 B.C.3 D.2、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A B C .D 3、如图,AB 是O 的直径,弦CD 交AB 于点P ,3AP =,7BP =,30APC ∠=︒,则CD 的长为( )A .B .CD .84、已知⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .相交或相切5、如图,AB 是⊙O 的直径,点C 是⊙O 上一点,若∠BAC =30°,BC =2,则AB 的长为( )A .4B .6C .8D .106、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒7、如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若40P ∠=︒,则B 的度数为( ).A .20°B .25°C .30°D .40°8、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A .直径所对圆周角为90︒B .如果点A 在圆上,那么点A 到圆心的距离等于半径C .直径是最长的弦D .垂直于弦的直径平分这条弦9、如图,在Rt△ABC 中,90BAC ∠=︒,30B ∠=︒,3AB =,以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A ,D ,则阴影部分的面积为( )A 3πB 3π-C 23π-D .23π10、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )A .5厘米B .4厘米C .132厘米D .134厘米 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、AB 是O 的内接正六边形一边,点P 是优弧AB 上的一点(点P 不与点A ,B 重合)且BP OA ∥,AP 与OB 交于点C ,则OCP ∠的度数为_______.2、如果点()3,2A -与点B 关于原点对称,那么点B 的坐标是______.3、如图,在⊙O 中,A ,B ,C 是⊙O 上三点,如果∠AOB =70º,那么∠C 的度数为_______.4、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.5、如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OAB ∠=︒,3PA =,则AB 的长为______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,对于点P ,O ,Q 给出如下定义:若OQ <PO <PQ 且PO ≤2,我们称点P 是线段OQ 的“潜力点”已知点O (0,0),Q (1,0)(1)在P 1(0,-1),P 2(12,32),P 3(-1,1)中是线段OQ 的“潜力点”是_____________; (2)若点P 在直线y =x 上,且为线段OQ 的“潜力点”,求点P 横坐标的取值范围;(3)直线y =2x +b 与x 轴交于点M ,与y 轴交于点N ,当线段MN 上存在线段OQ 的“潜力点”时,直接写出b 的取值范围2、如图,已知等边ABC ∆内接于⊙O ,D 为BC 的中点,连接DB ,DC ,过点C 作AB 的平行线,交BD 的延长线于点E .(1)求证:CE 是⊙O 的切线;(2)若AB 的长为6,求CE 的长.3、如图,ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒,连接CD ,点M ,N ,P 分别是,,DE BC CD 的中点.(1)请你判断PMN 的形状,并证明你的结论.(2)将ADE 绕点A 旋转,若8,3AB AD ==,请直接写出MNP △周长的最大值与最小值.4、已知:如图,正方形的边长为1,在射线AB 上取一点E ,联结DE ,将ADE 绕点D 针旋转90°,E 点落在点F 处,联结EF ,与对角线BD 所在的直线交于点M ,与射线DC 交于点N .求证:(1)当13AE =时,求tan EDB ∠的值; (2)当点E 在线段AB 上,如果AE x =,FM y =,求y 关于x 的函数解析式,并写出定义域;(3)联结AM ,直线AM 与直线BC 交于点G ,当13BG =时,求AE 的值. 5、已知:Rt △ABC 中,∠ACB =90°,∠ABC =60°,将△ABC 绕点B 按顺时针方向旋转.(1)当C 转到AB 边上点C ′位置时,A 转到A ′,(如图1所示)直线CC ′和AA ′相交于点D ,试判断线段AD 和线段A ′D 之间的数量关系,并证明你的结论.(2)将Rt △ABC 继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt △ABC 旅转至A 、C ′、A ′三点在一条直线上时,请直接写出此时旋转角α的度数.-参考答案-一、单选题1、D【分析】如图所示,设圆的圆心为O ,连接OC ,OB ,由切线的性质可知∠OCA =∠OBA =90°,OC =OB ,即可证明Rt △OCA ≌Rt △OBA 得到∠OAC =∠OAB ,则()1==180=602OAC OAB DAC ︒-︒∠∠∠,∠AOB =30°,推出OA=2AB =6,利用勾股定理求出OB =O 的直径为【详解】解:如图所示,设圆的圆心为O ,连接OC ,OB ,∵AC ,AB 都是圆O 的切线,∴∠OCA =∠OBA =90°,OC =OB ,又∵OA =OA ,∴Rt △OCA ≌Rt △OBA (HL ),∴∠OAC =∠OAB ,∵∠DAC =60°, ∴()1==180=602OAC OAB DAC ︒-︒∠∠∠, ∴∠AOB =30°,∴OA =2AB =6,∴OB =∴圆O 的直径为故选D .【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.2、A【分析】如图,记过A ,G , H 三点的圆为,Q 则Q 是HG ,AG 的垂直平分线的交点,,QH QG QA 记,PM EF 的交点为,N ,HG PM 的交点为,M 延长AB 交QM 于,P PM 为HG 的垂直平分线,结合正方形的性质可得:,AP PM 再设,PQ x 利用勾股定理建立方程,再解方程即可得到答案.【详解】 解:如图,记过A ,G , H 三点的圆为,Q 则Q 是HG ,AG 的垂直平分线的交点,,QH QG QA 记,PM EF 的交点为,N ,HG PM 的交点为,M 延长AB 交QM 于,P PM 为HG 的垂直平分线,结合正方形的性质可得:,AP PM四边形HGFE 为正方形,则,HG EF ∥,,QM HG QM EF设,PQ x 而AB =2,CD =3,EF =5,结合正方形的性质可得: 5,NQ x而222,HM MQ HQ 115,5,5510,222HM HG EF MN EF MQ x x 222510,4HQ x 又222,AQ PQ AP 而51523,22AP 22215,2AQ x222522510,44x x 解得:5,2x 25225250510.4442AQ 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A ,G , H 三点的圆的圆心是解本题的关键.3、A【分析】过点O 作OE CD ⊥于点E ,连接OD ,根据已知条件即可求得,OD OP ,根据含30度角的直角三角形的性质即可求得OE ,根据勾股定理即可求得DE ,根据垂径定理即可求得CD 的长.【详解】解:如图,过点O 作OE CD ⊥于点E ,连接OD ,AB 是O 的直径,3AP =,7BP =,115,53222OD AB OP AB AP ∴===-=-= OE CD ⊥,30APC ∠=︒112OE OP ∴==在Rt ODE △中,DE =OE CD ⊥2CD DE ∴==故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.4、B【分析】圆的半径为,r 圆心O 到直线l 的距离为,d 当d r =时,直线与圆相切,当d r 时,直线与圆相离,当d r <时,直线与圆相交,根据原理直接作答即可.【详解】 解: ⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,∴ ⊙O 的半径等于圆心O 到直线l 的距离,∴ 直线l 与⊙O 的位置关系为相切, 故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.5、A【分析】根据直径所对的圆角为直角,可得90C ∠=︒ ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB 是⊙O 的直径,∴90C ∠=︒ ,∵∠BAC =30°,BC =2,∴24AB BC ==.故选:A本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6、B【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠.【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角, ∴3122A ADC OC ∠=︒∠=.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.7、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=12∠AOP=12×50°=25°.故选:B.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.8、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A 选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为90︒,A 选项符合要求;B 、C 选项,根据圆的定义可以得到;D 选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.9、A【分析】连结OC ,根据切线长性质DC =AC ,OC 平分∠ACD ,求出∠OCD =∠OCA =12ACD ∠=30°,利用在Rt△ABC中,AC =AB tan B =Rt△AOC 中,∠ACO =30°,AO =AC 1=,利用三角形面积公式求出12AOC S OA AC ∆=⋅=,12DOC S OD DC ∆=⋅=212011==3603OAD S ππ⨯扇形,利用割补法求即可. 【详解】解:连结OC ,∵以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A , D ,∴DC =AC ,OC 平分∠ACD ,∵90BAC ∠=︒,30B ∠=︒,∴∠ACD =90°-∠B =60°,∴∠OCD =∠OCA =12ACD ∠=30°,在Rt△ABC 中,AC =AB tan B =在Rt△AOC 中,∠ACO =30°,AO =AC 1=,∴OD =OA =1,DC =AC∴11122AOC S OA AC ∆=⋅=⨯=11122DOC S OD DC ∆=⋅=⨯= ∵∠DOC =360°-∠OAC -∠ACD -∠ODC =360°-90°-90°-60°=120°, ∴212011==3603OAD S ππ⨯扇形,S 阴影=1133AOC DOC OAD S S S ππ∆∆+-扇形. 故选择A .【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.10、D【分析】根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,∴AC=8-2=6厘米,过点O作OB⊥AC于点B,则AB=12AC=12×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=134厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题1、90°【分析】先根据AB 是O 的内接正六边形一边得60AOB ∠=︒,再根据圆周角性质得30APB ∠=︒,再根据平行线的性质得30OAP ∠=︒,最后由三角形外角性质可得结论.【详解】解:∵AB 是O 的内接正六边形一边∴60AOB ∠=︒∴30APB ∠=︒∵BP OA ∥∴=30OAP APB ∠∠=︒∴603090OCP AOC OAC ∠=∠+∠=︒+︒=︒故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键 2、()3,2-【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B 坐标.【详解】解:由题意知点B 横坐标为033-=-;纵坐标为()022--=;故答案为:()3,2-.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.3、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:AOB ∠与ACB ∠都对AB ,且70AOB ∠=︒,1352C AOB ∴∠=∠=︒, 故答案为:35︒.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.4、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.5、3【分析】由切线长定理和30OAB ∠=︒,可得PAB ∆为等边三角形,则AB PA =.【详解】解:连接,OA OP ,如下图:PA ,PB 分别为O 的切线,PA PB ∴=,PAB ∴为等腰三角形,30OAB ∠=︒,60PAB ∴∠=︒,PAB ∴∆为等边三角形,AB PA ∴=,3PA =,3AB ∴=.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.三、解答题1、(1)3P ;(2)p x ≤<(3)1b <≤或1 1.b -<<-【分析】(1)分别计算出OQ 、PO 和PQ 的长度,比较即可得出答案;(2)先判断点P 在以O 为圆心,1为半径的圆外且点P 在线段OQ 垂直平分线的左侧,结合PO ≤2,点P 在以O 为圆心,2为半径的圆上或圆内,可得点P 在如图所示的线段AB 上(不包含点B ),过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D 再根据图形的性质求解,,BC AD 从而可得答案;(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,再分两种情况讨论:当0b >时,当0b ≤时,分别画出两种情况下的临界直线2,y x b =+ 再根据临界直线经过的特殊点求解b 的值,再确定范围即可.【详解】解:(1) O (0,0),Q (1,0),1,OQP 1(0,-1),P 2(12,32),P 3(-1,1) 22111,112,OP PQ 不满足OQ <PO <PQ 且PO ≤2, 所以1P 不是线段OQ 的“潜力点”, 同理:22222213101310,10,222222OP P Q 所以不满足OQ <PO <PQ 且PO ≤2,所以2P 不是线段OQ 的“潜力点”, 同理:222233112,11105,OP PQ125,22,所以满足:OQ <PO <PQ 且PO ≤2,所以3P 是线段OQ 的“潜力点”,故答案为:P 3(2)∵点P 为线段OQ 的“潜力点”,∴OQ <PO <PQ 且PO ≤2,∵OQ <PO ,∴点P 在以O 为圆心,1为半径的圆外∵PO <PQ ,∴点P 在线段OQ 垂直平分线的左侧,而OQ 的垂直平分线为:1,2x = ∵PO ≤2,∴点P 在以O 为圆心,2为半径的圆上或圆内又∵点P 在直线y =x 上,∴点P 在如图所示的线段AB 上(不包含点B )过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D由题意可知△BOC 和 △AOD 是等腰三角形,1,2,OB OA∴2sin 45,sin 452,2BC OB AD OA∴x p <(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧当0b >时,2y x b =+过10,1N 时,1,b ∴= 即函数解析式为:21,y x =+ 此时11,0,2M 则111tan ,2M N O当2y x b =+与半径为2的圆相切于S 时,则90,NSO由11,MN M N ∥ 111tan tan ,2SO SNO M N OSN 而2,SO224,2425,SN ON125,b当0b ≤时,如图,同理可得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,同理:当2y x b =+过10,1,N 则1,b =- 直线为21,y x 11,0,2M 1M 在直线12x =上, 此时221115,2M K OK OM 当2y x b =+过115,22K 时, 则151+,2b 151,2b所以此时:1 1.b -<<-综上:b的范围为:1<b≤1-<b<-1【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.2、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;BC=3.(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=12【详解】解:(1)证明:如图连接OC、OB.∵ABC∆是等边三角形∴ 60∠=∠=A ABCAB CE∵//∴ 60∠=∠=BCE ABC︒=又∵OB OC∴30∠=∠=OBC OCB︒∴90∠=∠+∠=OCE OCB BCE︒⊥∴OC CE∴CE与⊙O相切;(2)∵四边形ABCD是⊙O的内接四边形,∴180∠+∠=A BCD︒∴120BDC ︒∠=∵D 为BC 的中点,∴30DBC BCD ∠=∠=︒∴90ABE ABC DBC ∠=∠+∠=︒∵//AB CE∴90E ∠=︒ ∴11322CE BC AB === 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.3、(1)MPN ∆是等腰直角三角形,证明见解析(2)MNP ∆ 【分析】(1)连接BD ,CE ,根据SAS 证明BAD CAE ∆≅∆得BD=CE ,根据三角形中位线性质可证明PM=PN ;90MPN ∠=︒,进而可得结论; (2)当BD 最小时即点D 在AB 上,此时MNP ∆周长最小,当点D 在BA 的延长线上时,BD 最大,此时MNP ∆周长最大,均为2)PN ,求出BD 的长即可解决问题.(1)连接BD ,CE ,如图,∵AB AC =,AD AE =,90BAC DAE ∠=∠=︒,∴90,90BAD CAD CAE CAD ∠+∠=︒∠+∠=︒∴BAD CAE ∠=∠∴BAD CAE ∆≅∆∴BD=CE,ABD ACE ∠=∠∵点M ,N ,P 分别是,,DE BC CD 的中点∴MP //EC ,12MP CE =,PN//BD ,PN=12BD∴PM=PN,,NPD DCE DPN PNC PCN ∠=∠∠=∠+∠∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90° ∴MP PN ⊥∴MPN ∆是等腰直角三角形;(2)由(1)知,MPN ∆是等腰直角三角形∴MN∴MPN ∆的周长为22)MN PN PM PN PN ++=+= ∵12PN BD =∴MPN ∆ 当BD 最小时即点D 在AB 上,此时MNP ∆周长最小,∵AB=8,AD=3∴BD 的最小值为AB-AD=8-3=5∴MNP ∆ 当点D 在BA 的延长线上时,BD 最大,此时MNP ∆周长最大,∴BD=AB+AD=8+3=11∴MNP ∆ 【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.4、(1)12;(2)(112y x =+(3)AE . 【分析】(1)过点E 作EH ⊥BD 与H ,根据正方形的边长为1,13AE =,求出EB =1-12133AE =-=,根据正方形性质可求∠ABD =45°,根据EH ⊥BD ,得出∠BEH =180°-∠EBH -∠EHB =180°-45°-90°=45°,求出EH =BH =BEsin45=23= DH =DB -BH= (2)解:根据AE =x ,求出BE =1-x ,根据旋转将△ADE 绕点D 针旋转90°,得到△DCF ,CF =AE =x ,根据勾股定理ED =FDEF=DEF 为等腰直角三角形,先证△BEM∽△FDM BM y =,再证△EMD ∽△BMF,得出=11x x -=+ (3)当点G 在BC 上,13BG =,先证△BGM ∽△DAM ,得出11313BG BM DA DM ===,由(2)知△BEM ∽△FDM ,得出BM BE MFDF =4y =(112y x =+y , 当点G 在CB 延长线上,13BG =,过M 作ML ⊥BC ,交直线BC 于L ,证明△BGM ∽△DAM ,得出12BM BD =,根据∠LBM =∠CBD =45°,ML ⊥BC ,证出△MLB 为等腰直角三角形,再证△MLB ∽△DCB ,12BM ML BD DC ==,CD =1,ML =12,ML∥BE ,结合△LMF ∽△BEF ,得出LM LF BE BF =即132211x x x+=-+解方程即可. (1)解:过点E 作EH ⊥BD 与H ,∵正方形的边长为1,13AE =, ∴EB =1-12133AE =-=,∵BD 为正方形对角线,∴BD 平分∠ABC ,∴∠ABD =45°,∵EH ⊥BD ,∴∠BEH =180°-∠EBH -∠EHB =180°-45°-90°=45°,∴EH =BH ,∴EH =BH =BEsin45=2323⨯=,AB =BD cos45°,∴1BD == ∴DH =DB -BH=1tan 2EH EDB HD ∠===; (2)解:如上图,∵AE =x ,∴BE =1-x ,∵将△ADE 绕点D 针旋转90°,得到△DCF , ∴CF =AE =x ,ED =FD=∴BF =BC +CF =1+x ,在Rt△EBF 中EF∵∠EDF =90°,ED =FD ,∴△DEF 为等腰直角三角形,∴∠DFE =∠DEF =45°,∴∠EBM =∠MFD =45°,∵∠EMB =∠DMF ,∴△BEM ∽△FDM , ∴BE BMDF FM =BM y =, ∵∠DEM =∠FBM =45°,∠EMD =∠BMF ,∴△EMD ∽△BMF ,∴ED EM BF BM ==BM y =,∴11x x -+,∴111x x x -+++即21x =+∴(112y x =+ (3)解:当点G 在BC 上,13BG =, ∵四边形ABCD 为正方形,∴AD∥BG ,∴∠DAM =∠BGM ,∠ADM =∠GBM ,∴△BGM ∽△DAM ,∴11313BG BM DA DM ===,∵由(2)知△BEM ∽△FDM , ∴BM BE MF DF=, ∵DB=∴13BM DM BM DM =+=,∴BM =∴4y = ∵(112y x =+∴(4112x =+2112x -=,解1x =22x =-舍去;当点G在CB延长线上,13BG=,过M作ML⊥BC,交直线BC于L,∵GB∥AD,∴∴∠DAM=∠BGM,∠ADM=∠GBM,∴△BGM∽△DAM,∴11313 BG BMDA DM===,∴13BM DM=,∴12BM BD=,∵∠LBM=∠CBD=45°,ML⊥BC,∴△MLB为等腰直角三角形,∵ML∥CD,∴∠LMB=∠CDB,∠L=∠DCB,∴△MLB∽△DCB,∴12BM MLBD DC==,CD=1,∴ML=12∵ML∥BE,∴∠L=∠FBE,∠LMF=∠BEF,∴△LMF∽△BEF,∴LM LF BE BF=,∵BE=AE-AB=x-1,LF=LB+BC+CF=13122x x++=+,BF=BC+CF=1+x,∴132211x x x+=-+,整理得:224x =,解得3x4x =∴AE【点睛】 本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.5、(1)AD A D '=,证明见解析(2)成立,证明见解析(3)120︒【分析】(1)设(0)BC a a =>,先根据直角三角形的性质可得2AB a =,再根据旋转的性质可得,2,60BC BC a A B AB a ABA ABC '''====∠=∠=︒,然后根据等边三角形的判定与性质可得BCC ',ABA '△,AC D '都是等边三角形,从而可得12AD AC a AA ''===,由此即可得出结论; (2)在CD 上截取CE C D '=,连接AE ,先根据旋转的性质可得,,90BC BC A C AC A C B ACB '''''==∠=∠=︒,从而可得A C D ACE ''∠=∠,再根据三角形全等的判定定理证出A C D ACE ''≅,根据全等三角形的性质可得A D AE '=,DA C EAC ''∠=∠,然后根据三角形的外角性质可得AED ADE ∠=∠,最后根据等腰三角形的判定可得AD AE =,由此即可得出结论;(3)如图(见解析),先根据旋转的性质可得,90BC BC A C B ACB '''=∠=∠=︒,再根据直角三角形全等的判定定理证出Rt ABC Rt ABC '≅,然后根据全等三角形的性质可得60ABC ABC '∠=∠=︒,最后根据旋转角CBC ABC ABC α''=∠=∠+∠即可得.(1)解:AD A D '=,证明如下:设(0)BC a a =>,在Rt ABC 中,90,60ACB ABC ∠=︒∠=︒,22AB BC a ∴==,由旋转的性质得:,2,60BC BC a A B AB a ABA ABC '''====∠=∠=︒,AC a '∴=,BCC '和ABA '△都是等边三角形,60,60,2BC C BAA AA AB a '''∴∠=︒∠=︒==,60AC D BC C ''∴∠=∠=︒,AC D '∴是等边三角形,12AD AC a AA ''∴===, AD A D '∴=;(2)解:成立,证明如下:如图,在CD 上截取CE C D '=,连接AE ,由旋转的性质得:,,90BC BC A C AC A C B ACB '''''==∠=∠=︒,90A C D BC C ACE BCC BC C BCC ''''∠+∠=︒=∠+∠⎧∴⎨∠='∠'⎩, A C D ACE ''∴∠=∠,在AC D ''和ACE 中,A C AC A C D ACE C D CE =⎧⎪∠=∠'''''⎨⎪=⎩, ()A C D ACE SAS ''∴≅,,A D AE DA C EAC '''∴=∠=∠,AED ACE EAC A C D DA C ADE ''''∴∠=∠+∠=∠+∠=∠,AD AE ∴=,AD A D '∴=;(3)解:如图,当点,,A C A ''三点在一条直线上时,由旋转的性质得:,90BC BC A C B ACB '''=∠=∠=︒,90AC B ∴'∠=︒,在Rt ABC '△和Rt ABC 中,BC BC AB AB='⎧⎨=⎩, ()Rt ABC Rt ABC HL '∴≅,60ABC ABC '∴∠=∠=︒,则旋转角120CBC ABC ABC α''=∠=∠+∠=︒.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

九年级数学上册第24章圆24.1圆的有关性质24.1.1圆测试题新人教版2

九年级数学上册第24章圆24.1圆的有关性质24.1.1圆测试题新人教版2

第二十四章圆24.1圆的相关性质24. 1.1圆1.以下说法中,结论错误的选项是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分红两条弧,这两条弧可能是等弧2.如图 24-1-5所示,⊙ O中的点A,O,D以及点B,O,C分别在同向来线上,图中弦的条数为 ()图 24-1-5A. 2B. 3C. 4D. 53.如图 24-1-6所示,点 P 是⊙ O内的一点,点P 到⊙ O的最小距离为4 cm,最大距离为 9 cm,则⊙O的直径为 ()图 24-1-6A. 6.5 cm B. 2.5 cmC. 13 cm D. 15 cm4.[2017 ·河北模拟 ] 如图 24-1-7 ,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在 OC双侧分别作矩形OGHI和正方形 ODEF,且点 I , F 在 OC上,点 H, E 在半圆上,可证:IG = . 小云发现连结图中已知点获得两条线段,即可证明= .FD IG FD1请回答:小云所作的两条线段分别是____和 ____;证明 IG= FD的依照是矩形的对角线相等,____和等量代换.5.如图 24-1-8 所示,以O为圆心的两个齐心圆,大圆O的半径OC,OD分别交小圆O于 A,B 两点.求证: AB∥ CD.图 24-1-86.如图 24-1-9所示,在⊙ O中,点D,E分别为半径OA, OB上的点,且AD= BE,点 C为弧 AB上一点,连结CD, CE,CO,∠ AOC=∠ BOC.图 24-1-9求证: CD= CE.27.如图 24-1-10 ,AB,CD为⊙O的两条直径,点E,F 在直径 CD上,且 CE= DF.求证:AF= BE.图 24-1-108.如图 24-1-11 所示,线段AD过圆心O交⊙O于D,C两点,∠EOD=78°,AE交⊙O 于点 B,且 AB= OC,求∠ A 的度数.图 24-1-11参照答案【分层作业】1.B 2.A 3.C 4.OH OE 同圆的半径相等5.略6.略7.略8.∠A= 26°.3。

初中数学九年级下册第24章圆24.2圆的基本性质作业设

初中数学九年级下册第24章圆24.2圆的基本性质作业设

24.2 圆的基本性质一.选择题(共15小题)1.如图,将大小两块量角器的零度线对齐,且小量角器的中心O2恰好在大量角器的圆周上.设它们圆周的交点为P,且点P在小量角器上对应的刻度为75°,那么点P在大量角器上对应的刻度为( )(第1题图)A.75° B.60° C.45° D.30°2.如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过点P且与AB垂直,点C为L与y轴的交点.若点A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为多少?( )(第2题图)A.﹣2 B.﹣2 C.﹣8 D.﹣73.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连结CD交AB 于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是( )(第3题图)A.一直减小 B.一直不变C.先变大后变小 D.先变小后变大4.如图,⊙O经过菱形ABCO的顶点A、B、C,若OP⊥AB交⊙O于点P,则∠PAB的大小为( )(第4题图)A.15° B.20° C.25° D.30°5.在半径为10cm的圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为( )A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm6.如图,在三个等圆上各自有一条劣弧、、,如果+=,那么AB+CD与EF的大小关系是( )(第6题图)A.AB+CD=EF B.AB+CD>EF C.AB+CD<EF D.不能确定7.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为( )(第7题图)A. B.1 C. D.a8.下列说法正确的个数共有( )(1)如果圆心角相等,那么它们所对的弦一定相等.(2)弦的中垂线一定是这条弦所在圆的对称轴.(3)平分弦的直径一定垂直于这条弦.(4)两条边相等的两个直角三角形一定全等.A.1个 B.2个C.3个 D.0或4个9.如图,等边三角形ABC的边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )(第9题图)A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值10.下列命题,真命题的个数是( )①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点的距离相等.A.4个B.3个C.2个 D.1个11.已知:点A(0,4),B(0,﹣6),C为x轴的正半轴上一点,且满足∠ACB=45°,则( )(第11题图)A.△ABC外接圆的圆心在OC上B.∠BAC=60°C.△ABC外接圆的半径等于5 D.OC=1212.如图所示,在边长为1的单位正方形组成的网格中,△ABC的顶点都在网格的交点上,则△ABC的外接圆的半径R为( )(第12题图)A.B. C. D.13.如图,等边三角形内接于⊙O,点P在弧BC上,PA与BC相交于点D,若PB=3,PC=6,则PD=( )(第13题图)A.1.5 B.C.2 D.14.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?( )(第14题图)A.一 B.二 C.三D.四15.下列给定的三点能确定一个圆的是( )A.线段AB的中点C及两个端点B.角的顶点及角的边上的两点C.三角形的三个顶点D.矩形的对角线交点及两个顶点二.填空题(共10小题)16.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010π cm后才停下来.则这只蚂蚁停在点 .(第16题图)17.如图,⊙M交x轴于B,C两点,交y轴于点A,弦CE⊥AB于点H,M的纵坐标为2,B(3,0),C(﹣,0),则圆心M的坐标为 ,线段AF的长为 .(第17题图)18.如图,直径AB、CD所夹的锐角为60°,P为上的一个动点(不与点B、C重合),PM、PN分别垂直于CD、AB,垂足分别为M、N.若⊙O的半径为2cm,则在点P移动过程中,MN的长是否有变化 (填“是”或“否”),若有变化,写出MN的长度范围;若无变化,写出MN的长度 cm.(第18题图)19.如图,在平面直角坐标系中,⊙O的半径为2,AC、BD是⊙O的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值与最小值的差为 .(第19题图)20.如图,正方形ABCD的顶点A、B和正方形EFGH的顶点G、H在一个半径为5cm的⊙O 上,点E、F在线段CD上,正方形ABCD的边长为6cm,则正方形EFGH的边长为 cm.(第20题图)21.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是 cm.(第21题图)22.如图,△ABC内接于⊙O,AB=BC,直径MN⊥BC于点D,与AC边相交于点E,若⊙O的半径为2,OE=2,则OD的长为 .(第22题图)23.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长是 .(第23题图)24.在平面直角坐标系中,已知A(3,0),B是以M(3,4)为圆心,1为半径的圆周上的一个动点,连结BO,设BO的中点为C,则线段AC的最小值为 .25.一个直角三角形的两条直角边长是方程x2﹣7x+12=0的两个根,那么这个直角三角形外接圆的半径等于 .三.解答题(共5小题)26.如图,已知OC是⊙O的半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,PA=6.求:(1)⊙O的半径;(2)求弦CD的长.(第26题图)27.如图,AB是⊙O的直径,延长BA到点D,使DA=AO,AE垂直于弦AC,垂足为A,点E 在DC上,求S△AEC:S△AOC.(第27题图)28.如图,⊙O的半径为10cm,G是直径AB上一点,弦CD经过点G,CD=16cm,AE⊥CD于点E,BF⊥CD于点F,求AE﹣BF的值.(第28题图)29.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,(1)求CD的长;(2)若直线CD绕点E顺时针旋转15°,交⊙O于点C、D,直接写出弦CD的长.(第29题图)参考答案一.1.D【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=75°,因而∠PAB=90°﹣75°=15°,在大量角器中弧PB所对的圆心角是30°,因而P在大量角器上对应的度数为30°.故选D.(第1题答图)【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.2.A【解析】连接AC,如答图.由题意,得BC=OB+OC=9.∵直线L通过点P且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9.在Rt△AOC中,AO==2.∵a<0,∴a=﹣2,故选A.(第2题答图)【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键. 3.C【解析】如答图,连接OC,OD,PD,CQ.设PC=x,OP=y.∵PC⊥AB,QD⊥AB,∴∠CPO=∠OQD=90°.∵PC=OQ,OC=OD,∴Rt△OPC≌Rt△DQO,∴OP=DQ=y,∴S阴=S四边形PCQD﹣S△PFD﹣S△CFQ=(x+y)2﹣y2﹣x2=xy,观察图象可知xy的值先变大后变小.故选C.(第3题答图)【点评】本题考查勾股定理、全等三角形的判定和性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分割法求面积,属于中考选择题中的压轴题. 4.A【解析】连接OB,如答图.∵四边形ABCO是菱形,∴OA=AB.∵OA=OB,∴△AOB为等边三角形,∴∠AOB=60°.∵OP⊥AB,∴∠BOP=∠AOB=30°.由圆周角定理得,∠PAB=∠BOP=15°.故选A.(第4题答图)【点评】本题考查的是菱形的性质、圆周角定理、垂径定理,掌握菱形的性质、圆周角定理、垂径定理是解题的关键.5.B【解析】有两种情况:①如图,当AB和CD在点O的两旁时.过点O作MN⊥AB于点M,交CD于点N,连接OB,OD.∵AB∥CD,∴MN⊥CD,由垂径定理,得BM=AB=8(cm),DN=CD=6(cm).∵OB=OD=10cm,由勾股定理,得OM==6(cm),同理ON=8cm,∴MN=8+6=14(cm).②当AB和CD在点O的同旁时,MN=8﹣6=2(cm).故选B.(第5题答图)【点评】本题考查了垂径定理和勾股定理的应用,关键是理解题意,能得出两种情况,题目比较典型,难度适中.注意要进行分类讨论. 6.B【解析】如图,在弧EF上取一点M使弧EM=弧CD,则弧FM=弧AB,∴AB=FM,CD=EM.在△MEF中,FM+EM>EF,∴AB+CD>EF.故选B.(第6题答图)【点评】本题主要考查对三角形的三边关系定理,圆心角、弧、弦的关系等知识点的理解和掌握,能正确作辅助线是解此题的关键.7.B【解析】∵△ABC是等边三角形,∴AB=BC=AC=BD=a,∠CAB=∠ACB=60°.∵AB=BD,∴,∴∠AED=∠AOB.∵BC=AB=BD,∴∠D=∠BCD.∵四边形EABD内接于⊙O,∴∠EAB+∠D=180°,即∠EAC+60°+∠D=180°.又∵∠ECA+60°+∠BCD=180°,∴∠ECA=∠EAC,即△EAC是等腰三角形.在等腰△EAC和等腰△OAB中,∠AEC=∠AOB.∵AC=AB,∴△EAC≌△OAB;∴AE=OA=1.故选B.(第7题答图)【点评】此题考查了圆心角、弧、弦的关系,等边三角形的性质,圆内接四边形的性质,全等三角形的判定和性质等知识,综合性强,难度较大;能够发现并证得△EAC≌△OAB是解答此题的关键. 8.解:(1)在同圆或等圆中,如果圆心角相等,所对的弦相等,故本选项错误;(2)根据垂径定理推出弦的中垂线是这条弦所在圆的对称轴,故本选项正确;(3)平分弦(弦不是直径)的直径垂直于这条弦,故本选项错误;(4)如果有一条直角边和斜边相等,则这两个直角三角形不全等,故本选项错误;∴正确的有1个.故选A.【点评】本题主要考查对圆心角、弧、弦的关系,全等三角形的判定,垂径定理等知识点的理解和掌握,能正确运用性质进行判断是解此题的关键.9. D【解析】A、连接OA、OC.∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O 到AB、AC的距离相等,由折叠,得DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠,得∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+△ADF=S四边OAF=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,过点O作OH⊥AC于点H,∴S△OFG=•FG•OH,形OFAD由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确.故选D.(第9题答图)【点评】本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形的面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,10.C【解析】经过不在同一条直线上的三点可以作一个圆,∴①错误;任意一个圆一定有内接三角形,并且有多个内接三角形,∴②错误;任意一个三角形一定有一个外接圆,并且只有一个外接圆,∴③正确;三角形的外心是三角形三边的垂直平分线的交点,到三角形的三个顶点距离相等,∴④正确.故选C.【点评】本题考查了确定圆的条件和三角形的外接圆与外心的应用,主要考查学生运用性质进行说理的能力,题目比较好,但是一道比较容易出错的题目.11.D【解析】设线段BA的中点为E,∵点A(0,4),B(0,﹣6),∴AB=10,E(0,﹣1).如答图,过点E在第四象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=5;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C.∵∠BCA为⊙P的圆周角,∴∠BCA=∠BPA=45°,即则点C即为所求.过点P 作PF⊥x轴于点F,则OF=PE=5,PF=OE=1,在Rt△PFC中,PF=1,PC=5,由勾股定理,得CF==7,∴OC=OF+CF=5+7=12.故选D.(第11题答图)【点评】本题主要考查了坐标与图形性质、圆周角定理、勾股定理等知识的综合应用,解决问题的关键是作辅助线构造圆周角以及直角三角形,由45°的圆周角联想到90°的圆心角是解题的突破口. 12.A【解析】作AC、AB的垂直平分线交于点O,则点O为△ABC的外接圆圆心,连接OA,则OA==,故选A.(第12题答图)【点评】本题考查的是三角形的外接圆与外心,掌握三角形的外心的定义、灵活运用勾股定理是解题的关键. 13.C【解析】在PA上截取PE=PB,连接BE.∵△ABC是等边三角形,∠ACB=APB,∴∠ACB=∠APB=60°,AB=BC;∴△BEP是等边三角形,BE=PE=PB;∴∠ACB﹣∠EBC=APB﹣∠EBC=60°﹣∠EBC;∴∠ABE=∠CBP;∵在△ABE与CBP 中,,∴△ABE≌△CBP;∴AE=CP;∴AP=AE+PE=PB+PC.∵PB=3,PC=6,∴PA=6+3=9.∵∠BAP=∠DAB(公共角),∠ABC=∠ACB=∠APB=60°,∴△ABD∽△APB,∴=,即=,∴AB=3BD.∵∠PBD=∠PAC,∠BPD=∠APC=60°,∴△BPD∽△APC,∴=,即PD=6×=2.故选C.(第13题答图)【点评】本题通过构造等边三角形,利用等边三角形的性质、全等三角形的判定和性质、求出某些线段的长度,再利用相似的判定定理和性质定理去求出未知线段的长度. 14.D【解析】∵∠BAC=95°,∴△ABC的外心在△ABC的外部,即在x轴的下方.∵外心在线段BC的垂直平分线上,即在直线x=上,∴△ABC的外心在第四象限.故选D.【点评】本题考查的是三角形的外心的确定,掌握外心的概念和外心与锐角、直角、钝角三角形的位置关系是解题的关键,锐角三角形的外心在三角形的内部,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部.15.C【解析】A、线段AB的端点A、B和线段AB的中点C不能确定一个圆,故本选项错误;B、当角的两边上的一个点或两个点和角的顶点重合时就不能确定一个圆,故本选项错误;C、经过三角形的三个顶点作圆,有且只有一个圆,故本选项正确;D、矩形的对角线的交点及两个顶点,如果这三个点在一条直线上,就不能确定一个圆,故本选项错误.故选C.【点评】本题考查了确定圆的条件的应用,注意:不在同一直线上的三个点确定一个圆.二.16.E【解析】从点A开始沿ABCDEFCGA的顺序转一周的路径长是8π+4π=12πcm,蚂蚁直到行走2010πcm所转的周数是2010π÷12π=167…6π.即转167周以后又走了6πcm.从点A到点B所得路径长是2π,再到C的路线长也是2π,从点C到点D,到点E的路线长是2π,则从点A行走6πcm到点E.【点评】本题主要考查了圆的周长的计算,正确而理解蚂蚁行走一周以后又回到A,是一个循环的过程,是解决本题的关键.17.(,2),4【解析】过点M作MN⊥BC于点N,连接CM.∵B(3,0),C(﹣,0),∴OB=3,OC=,∴BC=4.∵MN⊥BC,∴CN=BC=2,∴ON=,∴M(,2),Rt△CMN中,由勾股定理,得CM===4,∴∠MCN=30°,连接EB,∴∠CEB=∠CMN=60°,∴∠ABE=30°,连接AM、EM、AE,∴∠AME=2∠ABE=60°,∴△AME是等边三角形,∴AE=AM=4.∵∠EAB=∠ECB,∠AHE=∠AOC=90°,∴∠AEH=∠CFO.∵∠CFO=∠AFE,∴∠AFE=∠AEH,∴AF=AE=4.(第17题答图)【点评】本题考查的是垂径定理、圆周角定理、坐标与图形特点、勾股定理,根据题意作出辅助线是解答此题的关键.18.否,【解析】MN的长没有变化;理由如下,如答图,延长PN交圆于点E,延长PM 交圆于点F,连接EF、OE、OF,作OH⊥EF于点H.根据垂径定理,PN=NE,PM=MF,∴MN∥EF且MN=EF.∵∠MON=120°,∠PNO=∠PMO=90°,∴∠P=60°,∴弦EF的长为定值,MN的长也为定值.在Rt△EOH中,易知∠EOH=60°,∵OE=2,∴EH=OE•sin60°=,∴EF=2,∴MN=EF=.(第18题答图)19.1【解析】(1)如图,连接OA、OD,作OE⊥AC,OF⊥BD,垂足分别为E、F.(第19题答图)∵AC⊥BD,∴∠EMF=∠OFB=∠OEM=90°,∴四边形OEMF为矩形.∵OA=OC=2,OM=√3,设圆心O到AC、BD的距离分别为d、h,则d2+h2=OM2=3.四边形ABCD的面积为:s=|AC|•(|BM|+|MD|)=|AC|•|BD|,从而s=2≤8﹣(d2+h2)=5,当且仅当d=h时取等号,故四边形ABCD的面积最大值为5.(2)四边形ABCD的面积s=2=2=2,当dh=0即d=0或h=0时(一条弦过原点),s最小,最小值为4.∴四边形ABCD面积最大值与最小值的差5﹣4=1.【点评】本题考查了垂径定理以及坐标与图形的变换,当对角线互相垂直时,四边形的面积等于对角线乘积的一半,这一性质要好好记忆,同时还要注意极值图形的选取方法. 20.2.8【解析】作OM⊥AB于点M,ON⊥HG于点N,连接OA、OH.∵正方形ABCD和正方形EFGH,∴M、O、N在同一条直线上.∵OM⊥AB,∴AM=AB=3,∴OM==4.设正方形EFGH的边长为x,则ON=x+2.∵ON⊥HG,∴NH=HG=x,则(x+2)2+(x)2=25,解得x=2.8.(第20题答图)【点评】本题考查的是垂径定理、勾股定理和正方形的性质,掌握垂直于弦的直径平分这条弦是解题的关键.21.37.5【解析】如图,设点O为外圆的圆心,连接OA和OC.∵CD=15cm,AB=60cm,CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣15)cm.根据题意,得r2=(r﹣15)2+302,解得r=37.5.∴这个摆件的外圆半径长为37.5cm.(第21题答图)【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键. 22.2【解析】连接BO并延长交AC于点F,如图.∵BA=BC,∴=,∴BF⊥AC.∵直径MN⊥BC,∴BD=CD.∵∠BOD=∠EOF,∴Rt△BOD∽Rt△EOF,∴===.设OF=x,则OD=x,∵∠DBO=∠DEC,∴Rt△DBO∽Rt△DEC,∴=,即=,而BD=CD,∴DB2=x(x+2)=3x2+2x,在Rt△OBD中,3x2+2x+3x2=(2)2,解得x 1=,x2=﹣(舍去),∴OD=x=2.(第22题答图)【点评】本题考查了三角形外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理.熟练应用相似比是解决问题的关键.23.13【解析】连接OP,OQ.∵DE,FG,,的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=(AC+BC)=9.∵MH+NI=AC+BC=18,MP+NQ=14,∴PH+QI=18﹣14=4,∴AB=OP+OQ=OH+OI+PH+QI=9+4=13.(第23题答图)【点评】本题考查了中位线定理,解题的关键是正确的作出辅助线,题目中还考查了垂径定理的知识,难度不大. 24.2【解析】过B作BD∥AC交x轴于D.∵C是OB的中点,∴OA=AD,∴AC=BD,∴当BD取最小值时,AC最小,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值.∵A(3,0),∴D(6,0).∵M(3,4),∴DM==5,∴BD=5﹣1=4,∴AC=BD=2,即线段AC的最小值为2;(第24题答图)【点评】本题考查了点与圆的位置关系、三角形的中位线定理,确定线段长的最值问题,可以利用本身垂线段最短或两点之间线段最短来确定,也可以利用另一量来确定,本题是利用BD的长度来解决问题,是中考填空题的压轴题.25.2.5【解析】解可得方程x2﹣7x+12=0得,x1=3,x2=4,∴斜边边长为5,即直角三角形外接圆的直径是5,∴半径等于2.5.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆. 三.26.解:(1)设OC=x.∵弦CD垂直平分半径AO,∴OE=OA=x.∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=90°,∴∠P+∠COP=90°,∠ECO+∠COP=90°,∴∠P=∠ECO,∴△CEO∽△PCO,∴,∴=,x=6,则⊙O的半径为6;(2)由(1),得OC=6,OE=3,由勾股定理,得CE==3,∵CD⊥OA,∴CD=2CE=6.【点评】本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用. 27.解:作OF⊥AC于点F,延长OF交CD于点G,如答图.∵OA=OC,∴F是AC的中点.∵AE垂直于弦AC,∴AE∥OG,∴G是EC的中点,∴GF=AE.∵AE∥OG,DA=OA,∴E是DG的中点,∴AE是△ODG的中位线,∴AE=OG,∴AE=(OF+GF)=(OF+AE),∴=.∵△AEC的面积=AE•AC,△AOC的面积=AC•OF,∴S△AEC:S△AOC==.(第27题答图)【点评】本题考查了垂径定理、平行线的判定与性质、三角形中位线定理、三角形面积的计算等知识;本题综合性强,有一定的难度,需要通过作辅助线运用三角形中位线的定理才能得出结果. 28.解:如图,连接OC,延长AE交⊙O于点H,连接BH;过点O作ON⊥BH于点N,交CD于点M;则HN=BN,CM=DM=CD=8,∵AB为⊙O的直径,∴∠AHB=90°.∵AE⊥CD,∴CD∥BH.∵ON⊥BH,BF⊥CD,∴EH=MN=BF(设为x).∵AO=B0,HN=BN,∴ON为△ABH的中位线,∴AH=2ON,即AE+x=2(OM+x),AE﹣x=2OM;由勾股定理,得OM2=OC2﹣CG2=100﹣64=36,∴OM=6,2OM=12;∴AE﹣BF=12.(第28题答图)【点评】该命题以圆为载体,以垂径定理、勾股定理、三角形的中位线定理等几何知识点为考查的核心构造而成;对综合的分析问题、解决问题的能力提出了较高的要求. 29.解:(1)作OH⊥CD于点H,连接OD.∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=6cm,半径OD=3cm.∵在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=60°,∴OH=cm.在Rt△OHD中,由勾股定理,得HD=cm.∵OH⊥CD,∴由垂径定理,得DC=2DH=2cm;(2)作OH⊥CD于点H,连接OD.∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=cm6,半径OD=3cm.∵若直线CD绕点E顺时针旋转15°,∴∠OEH=60°﹣15°=45°.在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=45°,∴OH=cm,在Rt△OHD中,由勾股定理,得HD==(cm).∵OH⊥CD,∴由垂径定理,得DC=2DH=2cm,即CD=2cm.【点评】本题考查了垂径定理,勾股定理,含30度角的直角三角形的性质,等腰直角三角形性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.。

九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角检测(含解析)新人教版(2021年

九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角检测(含解析)新人教版(2021年

九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版的全部内容。

24.1.4 圆周角测试时间:30分钟一、选择题1。

(2017黑龙江哈尔滨中考)如图,☉O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B。

35°C。

34° D.44°2。

(2017贵州黔东南州中考)如图,☉O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A。

2 B.—1 C。

D。

43.(2017山东潍坊中考)如图,四边形ABCD为☉O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )A.50°B.60°C.80°D.90°4。

如图,AB是☉O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B方向运动(到点B终止运动),设运动时间为t(s),连接EF,当△BEF是直角三角形时,t=( )A。

1 s B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六单元 圆第二十四课时 圆的基本性质基础达标训练1. (xx 兰州)如图,在⊙O 中,AB ︵=BC ︵,点D 在⊙O 上,∠CDB =25°,则∠AOB =( )A. 45°B. 50°C. 55°D. 60°第1题图 第2题图2. (xx 长郡教育集团二模)如图,A 、D 是⊙O 上的两个点,BC 是直径.若∠D =32°,则∠OAC =( )A. 64°B. 55°C. 72°D. 58°3. (xx 泸州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是( ) A. 7 B. 27 C. 6 D. 8第3题图 第4题图4. (xx 周南中学一模)如图,⊙O 是△ABC 的外接圆,∠AOB =60°,AB =AC =2,则弦BC的长为( )A. 3B. 3C. 2 3D. 45. (xx 宜昌)如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A. AB =ADB. BC =CDC. AB ︵=AD ︵D. ∠BCA =∠DCA第5题图第6题图6. (xx广州)如图,在⊙O中,AB是直径,CD是弦,AB⊥C D,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )A. AD=2OBB. CE=EOC. ∠OCE=40°D. ∠BOC=2∠BAD7. (xx广安)如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=45,BD=5,则OH的长度为( )A. 23B.56C. 1D.76第7题图第8题图8. (xx金华)如图,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弓形弦AB的长为( )A. 10 cmB. 16 cmC. 24 cmD. 26 cm9. (xx重庆B卷)如图,OA,OC是⊙O的半径,点B在⊙O上,连接AB,BC. 若∠ABC =40°,则∠AOC=________度.第9题图第10题图10. (xx青竹湖湘一二模)如图,A,B,C三点都在⊙O上,点D是AB延长线上一点,∠AOC =140°,则∠CBD=________度.11. (xx大连)如图,在⊙O中,弦AB=8 cm,OC⊥AB,垂足为C,OC=3 cm,则⊙O的半径为________cm.第11题图第12题图12. (xx长沙中考模拟卷三)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC. 若∠BAC与∠BOC互补,则弦BC的长为________.13. (8分)(xx麓山国际实验学校一模)如图,在⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=42,ON=1,求⊙O的半径.第13题图能力提升训练1. (xx麓山国际实验学校三模)在半径等于5 cm的圆内有长为5 3 cm的弦,则此弦所对的圆周角为( )A. 120°B. 30°或120°C. 60°D. 60°或120°2. (xx长沙中考模拟卷四)如图,点D(0,3)、O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD的值为( )A. 12B.34C.45D.35第2题图第3题图3. (xx云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点,若∠BFC=20°,则∠DBC=( )A. 30°B. 29°C. 28°D. 20°4. (人教九上P122第(3)题改编)如图,PA、PB分别与⊙O相切于A、B两点,若∠P=80°,则∠C=( )A. 50°B. 60°C. 70°D. 80°第4题图第5题图5. (xx荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是________.6. (9分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过D点的直线交AC于E点,交AB于F点,且△AEF为等边三角形.(1)求证:△DFB是等腰三角形;(2)若DA=7AF,求证:CF⊥AB.第6题图拓展培优训练1. (10分)如图,已知AB 为⊙O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,垂足为E ,若CE =10,且AD 与DB 的长均为正整数,求线段AD 的长.第1题图答案 1. B 【解析】如解图,连接OC .∵∠BOC 和∠CDB 分别为BC ︵所对的圆心角和圆周角,∴∠BOC =2∠CDB =50°,∵AB ︵=BC ︵,∴∠AOB =∠BOC =50°.第1题解图2. D 【解析】∵BC 是直径,∠D =32°,∴∠B =∠D =32°,∠BAC =90°.∵OA =OB ,∴∠BAO =∠B =32°,∴∠OAC =∠BAC -∠BAO =90°-32°=58°.3.B 【解析】连接OC ,则OC =4,OE =3,在Rt △OCE 中,CE =OC 2-OE 2=42-32=7.∵AB ⊥CD ,∴CD =2CE =27.第3题解图4. C 【解析】根据圆周角定理可知:∠C =12∠AOB =30°,∴在等腰三角形ABC 中,12BC =AC ×cos30°=2×32=3,∴BC =2 3. 5. B 【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵∠BAC与∠CAD 分别为BC ︵与CD ︵所对的圆周角,∴BC ︵=CD ︵,∴BC =CD ;∵∠B 与∠D 不一定相等,∠B +∠BCA +∠BAC =180°,∠D+∠DCA +∠DAC =180°,∴∠BCA 与∠DCA 不一定相等,∴AB ︵与AD ︵不一定相等,∴AB 与AD 不一定相等.6. D 【解析】∵AB 是⊙O 的直径,AD 是⊙O 的非直径的弦,∴AD <AB =2OB ,故A 错误;如解图,连接OD ,∵AB ⊥CD ,∴∠CEO =90°,∠COE =∠BOD =2∠BAD = 40°,∴∠OCE=50°,∴∠COE ≠∠OCE ,∴CE ≠EO ,故B 错误;由选项B 知,∠OCE =50°≠40°,故C 错误;由选项B 知,∠BOC =2∠BAD ,故D 正确.7. D 【解析】如解图,连接OD ,∵AB 是⊙O 的直径,点H 是CD 的中点,∴由垂径定理可知:AB ⊥CD ,∵在Rt △BDH 中,cos ∠CDB =45,BD =5,∴DH =4,∴BH =BD 2-DH 2=52-42=3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,OD 2=OH 2+DH 2,∴(x+3)2=x 2+42,解得x =76,即OH =76.8. C 【解析】设弓形高为CD ,则DC 的延长线过点O ,且OC ⊥AB ,∵半径为13,∴OB =OD =13,∵弓形高为8,∴CD =8,在Rt △OBC 中,根据勾股定理得OC 2+BC 2=OB 2,∴BC =OB 2-OC 2=132-(13-8)2=12,由垂径定理得AB =2BC =24 cm .9. 8010. 70 【解析】设点E 是优弧AC ︵(不与A ,C 重合)上的一点,连接AE 、CE ,∵∠AOC =140°,∴∠AEC =70°,∴∠ABC =180°-∠AEC =110°,∴∠CBD =70°.11. 5 【解析】如解图,连接OA ,由垂径定理可知AC =BC =12AB =4,在Rt △AOC 中,AC =4,OC =3,则由勾股定理可得OA=5,即⊙O 的半径为5 cm.12. 4 3 【解析】如解图,作OD ⊥BC 于点D.由题意可得,根据“同弧所对的圆心角等于圆周角的两倍”可得∠BOC=2∠BAC ,又∵∠BAC 与∠BOC 互补,∴∠BAC +∠BOC =3∠BAC=180°,∴∠BAC =60°,∠BOC =120°,又∵OB =OC =4,∴∠OBC =∠OCB =180°-120°2=30°,∴BD =BO·cos30°=4×32=2 3.由垂径定理可得,BC =2BD =4 3. 13. (1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角,∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AMC =∠AED =∠AEN =90°,∵∠ANE =∠CNM ,∴∠BCD =∠BAM ,∴∠BAM =∠BAD ,在△ANE 与△ADE 中,⎩⎨⎧∠BAM =∠BADAE =AE∠AEN =∠AED, ∴△ANE ≌△ADE(ASA ),∴AD =AN ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,r =OD =OE +ED =2x -1,连接AO ,则AO =OD =2x -1,∵在Rt △AOE 中,AE 2+OE 2=AO 2,AE =22,OE =x -1,AO =2x -1, ∴(22)2+(x -1)2=(2x -1)2,解得x =2,∴r =2x -1=3,即⊙O 的半径为3.能力提升训练1. D 【解析】如解图,连接OA ,OB ,在优弧AB ︵上任取一点E ,连接AE ,BE ,在劣弧AB ︵上任取一点F ,连接AF ,BF ,过O 作OD ⊥AB ,则D 为AB的中点,∵AB =53,∴AD =BD =532,又∵OA =OB =5,OD⊥AB ,∴OD 平分∠AOB ,即∠AOD =∠BOD =12∠AOB ,∵在Rt △AOD 中,sin ∠AOD =AD OA =5325=32,∴∠AOD =60°,∴∠AOB =120°,又圆心角∠AOB 与圆周角∠AEB 所对的弧都为AB ︵,∴∠AEB =12∠AOB =60°,∵四边形AEBF 为⊙O 的内接四边形,∴∠AFB +∠AEB =180°,∴∠AFB =180°-∠AEB =120°,则此弦所对的圆周角为60°或120°.2. D 【解析】如解图,连接CD ,在Rt △OCD 中,OD =3,OC =4,根据勾股定理可得CD =OD 2+OC 2=32+42=5,∴在Rt △OCD 中,sin ∠OCD =OD DC =35.根据“同弧所对的圆周角相等”可得出∠OBD =∠OCD ,∴sin ∠OBD =s in ∠OCD =35.3. A 【解析】∵BC ︵所对的圆周角是∠BFC ,所对圆心角是∠A ,∠BFC =20°,∴∠A =2∠BFC =40°,∵EF 是AB 的垂直平分线,且点D 在EF 上,∴DB =DA ,∴∠ABD =∠A =40°,∵AB =AC ,∴∠ABC =∠ACB =180°-∠A 2=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.4. A 【解析】如解图,连接AO 、BO ,∵PA 、PB 分别与⊙O 相切于A 、B 两点,∴∠OAP =∠OBP =90°,又∵∠P =80°,∴∠AOB =360°-90°-90°-80°=100°,由圆周角定理得∠C =12∠AOB =50°. 5. 60°或120° 【解析】当D 为优弧AC ︵上一点时,∵∠ADC =12∠AOC =12∠ABC ,∠ABC +∠ADC =180°,∴∠ABC =120°,∠ADC =60°;当D 为劣弧AC ︵上一点时,∠ADC =∠ABC =120°.综上,∠ADC =60°或120°.6. 证明:(1)∵AB 为圆O 的直径,∴∠ACB =90°,∵△AEF 是等边三角形,∴∠EAF =∠EFA =60°,∴在Rt △ABC 中,∠ABC =30°,∴∠FDB =∠EFA -∠ABC =30°,∴∠FBD =∠FDB ,∴FB =FD ,∴△DFB 是等腰三角形;(2)设AF =a ,则AD =7a ,AE =EF =a ,如解图,连接OC ,则△AOC 是等边三角形,由题意得,DF =BF =2-a ,∴DE =DF -EF =2-a -a =2-2a ,CE =1-a ,∵在Rt △ADC 中,DC =AD 2-AC 2=7a 2-1, ∴在Rt △DCE 中,tan ∠CDE =tan30°=CE DC =1-a 7a 2-1=33,解得:a 1=-2(舍去),a 2=12, 在等边△AOC 中,OA =1,∴AF =12=12OA ,则根据等边三角形的性质可得CF ⊥OA ,即CF ⊥AB . 拓展培优训练1. 解:如解图,连接AC ,BC ,则∠ACB =90°,又∵CD ⊥AB ,DE ⊥CO ,∴Rt △CDE ∽Rt △COD ,Rt △ACD ∽Rt △CBD ,∴CE ·CO =CD 2,CD 2=AD ·BD ,∴CE ·CO =AD·BD ,设AD =a ,DB =b ,a ,b 为正整数,则CO =a +b 2, 又∵CE =10,∴10·a +b 2=ab , 整理得:(a -5)(b -5)=25,∵a >b ,∴a -5>b -5>0,得a -5=25,b -5=1;∴a =30,∴AD =30.感谢您的支持,我们会努力把内容做得更好!。

相关文档
最新文档