.分式方程
分式方程

分式方程分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
(验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
知识点一:解分式方程例1、解分式方程的一般步骤:1、回顾一元一次方程的解法:315242 +=2236 x x x-+--去分母:去括号:移项:合并同类项:系数化为一:2、类比一元一次方程的解法,解方程212 33xx x-=---去分母:去括号:移项:合并同类项:系数化为一:检验:一般地,解分式方程时,去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验.★关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并约去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根.注意:分式方程的解要检验!例1、解下列分式方程(1)114112=---+x x x ; (2)x x x x -+=++4535;(3)4441=+++x x x x ; (4)61244444402222y y y y y y y y +++---++-=2例2、(2011湖北襄阳)关于x 的分式方程1131=-+-x x m 的解为正数,则m 的取值范围是随堂练习1.(浙江嘉兴)解方程x x -=-22482的结果是( ) A .2-=x B .2=x C .4=x D .无解2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .53.一件工作,甲单独做a 天完成,乙单独做b 天完成,两人合作,共需( )A .a+b 天B .1a +1b 天C .1a b +天D .ab a b+天4.(四川宜宾)方程xx 527=+的解是 . 5.(浙江杭州)已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为______. 6.(浙江台州)在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .7、当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数.8、若分式方程122-=-+x a x 的解是正数,求a 的取值范围.知识点二:分式方程的增根解分式方程时,去掉分母后得到一个整式方程,若整式方程的解使得公分母的值为0,那么这个解就是方程的增根。
八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。
分式方程与分式不等式

分式方程与分式不等式通常情况下,分式方程与分式不等式是我们在初中数学学习过程中需要掌握的重要知识点。
本文将对分式方程与分式不等式进行详细介绍,包括定义、求解方法以及一些应用实例。
一、分式方程分式方程是指方程中含有分式的等式。
通常表现为分式中含有未知数,并且需要求解该未知数的值。
在解分式方程时,首先需要将方程中的分式转化为通分式,然后将等式两边进行化简,最后得到未知数的值。
举例说明:1. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{6}$首先,通分得到 $\frac{3}{6}x - \frac{9}{12} = \frac{2}{12}x$化简得到 $\frac{3}{6}x - \frac{2}{12}x = \frac{9}{12}$进一步计算得到 $\frac{1}{6}x = \frac{9}{12}$最后得到 $x = \frac{9}{12} \cdot \frac{6}{1} = \frac{3}{2}$因此,方程的解为 $x = \frac{3}{2}$2. 解方程:$\frac{1}{x} + \frac{3}{2} = \frac{5}{4}$首先,通分得到 $\frac{2}{2x} + \frac{3x}{2x} = \frac{5}{4}$化简得到 $\frac{2 + 3x}{2x} = \frac{5}{4}$进一步计算得到 $8 + 12x = 10x$移项得到 $12x - 10x = -8$最后得到 $x = -8$因此,方程的解为 $x = -8$二、分式不等式分式不等式是指方程中含有分式的不等式。
通常表现为分式中含有未知数,并且需要求解该未知数的取值范围。
在解分式不等式时,首先需要将不等式中的分式转化为通分式,然后将不等式两边进行化简,最后得到未知数的取值范围。
举例说明:1. 解不等式:$\frac{2}{3}x + \frac{1}{2} < \frac{5}{4}$首先,通分得到 $\frac{8}{12}x + \frac{6}{12} < \frac{15}{12}$化简得到 $\frac{8x + 6}{12} < \frac{15}{12}$进一步计算得到 $8x + 6 < 15$移项得到 $8x < 9$最后得到 $x < \frac{9}{8}$因此,不等式的解为 $x < \frac{9}{8}$2. 解不等式:$\frac{x}{4} - \frac{1}{3} \geq \frac{5}{6}$首先,通分得到 $\frac{3x}{12} - \frac{4}{12} \geq \frac{10}{12}$化简得到 $\frac{3x - 4}{12} \geq \frac{10}{12}$进一步计算得到 $3x - 4 \geq 10$移项得到 $3x \geq 14$最后得到 $x \geq \frac{14}{3}$因此,不等式的解为 $x \geq \frac{14}{3}$三、分式方程与分式不等式的应用实例1. 实例一:某公司的总资产为450万元,其中固定资产占总资产的四分之一,流动资产为总资产的三分之一。
分式方程

分式方程考点一:分式方程的概念:分母中含有未知数的方程叫做分式方程。
如71=x,452600480=-xx 都是分式方程。
注:一个式子是分式方程必须满足:①是方程;②分式的分母中含有未知数例一、下列哪些是分式方程?(1)032=-y x (2)72321x x =-+ (3)xx 523=-(4)321+-+x x (5)161222-=-+x x x考点二:分式方程的解法:(重点)1、解分式方程的基本思想:将分式方程转化为整式方程,方法是方程两边都乘最简公分母,去掉分母。
2、解分式方程的一般步骤:(1)去分母:在分式方程的两边都乘最简公分母,把分式方程转化为整式方程。
{注意:一定是化为一元一次方程,否则就是出错了} (2)解这个整式方程,求出整式方程的根。
(3)检验。
有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,那么这个根是原来方程的增根;如果最简公分母不等于0,那么这个根是原方程的根。
从而得出原方程的解。
②直接代入原方程中,看其是否成立。
例二:解方程:1、215x x =+2、111=+-x x x3、11122--=-x x4、1262=++-x x x5、2213211x x x x --=--对应练习:1、6352-=-x x2、625--=-x x x x3、225122+=++x x x x 4、3323-+=-x x x 5、 1416222=--+-x x x 6、2221422--+=-x x x x 7、01722=-++x x x x 8、125552=-+-x x x9、32121--+=-x x x 10、87178=----xx x11、2163524245--+=--x x x x 12、()16141022-=--x x x x13、211222++=+x x x x 14、x x x -=---91891015、x x x x x -=----+119132222 16、xx x x x ---+-=-+41341216965217、2244168222-=+-+-x xx x x x 18、41312111---=---x x x x考点三:增根的应用(难点)如果由变形后的方程求得的根不适合原方程,那么这种根叫做原方程的增根。
分式方程

分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.注: 解分式方程必须检验,验根时把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
步骤:(1)去分母(两边同时乘以最简公分母)(2)去括号(3)移项(一般般含未知数的项移到左边,常数项移到右边) (4)合并同类项(5)系数化一(两边同时除以未知数的系数) (6)检验(将所求的未知数的值代入最简公分母) (7)做结论3.确定最简公分母的方法(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母因式的最高次幂的积. 4.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.例题讲解:1. 已知关于x 的方程81=+x mx 的解为41=x ,则m =_________ 2. 已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围为___________3. 若分式 的值为零,则 的值为________.4. 某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天.5. 若方程322x mx x-=--无解,则m =______. 解下列分式方程:14143=-+--x x x 212423=---x x xa a 1+222334a a a a ----144222=-++-x x x . 013132=--+--xx x.231-=x xx()()31112x x x x -=--+已知:关于x 的方程xx x a --=-+3431无解,求a 的值。
分式方程

1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.【例1】在3253x +=;11(1)(1)432x x ++-=;21x-=;2371x x x ++=-;1(37)x x -中,分式方程有( ).A .1个B .2个C .3个D .4个【例2】分式方程2227381x x x x x +=+--的最简公分母是____________. 【例3】直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________; (3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【例4】用换元法解方程221165380x x x x ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,设1y x x =+,则方程变为( )A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【例5】解方程: (1)3363142x x -=-+;(2)43252x xx x =++; (3)23312222x x x x x ++=--+-.【例6】解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【例7】已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【例8】已知关于x 的方程7155x m xx x--=---无解,求m 的值.【例9】已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【例10】解方程:(1)2220383x x x x+-=+;(2)2191502x x x x ⎛⎫⎛⎫+-++= ⎪ ⎪⎝⎭⎝⎭.【例11】解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【例12】解方程组:(1)413538x y x y x y x y ⎧+=⎪+-⎪⎨⎪-=⎪+-⎩;(2)132013251x y x y ⎧+=⎪-⎪⎨⎪-=-⎪-⎩.【例13】解方程组:(1)253489156x x x x +=+++++; (2)11212736x x x x x x ++-=-++++.【例14】解方程:226205x x +-=+.【例15】a 为何值时,关于x 的方程211a a x +=+无解?【例16】已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【例17】解关于x 的方程:22112()3()1x x x x+-+=【例18】解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【例19】已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.【例20】要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【例21】某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【例22】甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【例23】登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【例24】甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【例25】甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【例26】某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【习题1】已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x ⎛⎫-= ⎪⎝⎭;(43x -=,其中是分式方程的有_____________.【习题2】当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【习题3】分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【习题4】解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【习题5】解方程:221313x x x x ++=+.【习题6】解方程组311332412463324x y x y x y y x⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【习题7】若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【习题8】甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米, 因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【习题9】某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市 政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年 完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩, 求原计划平均每年的绿化面积.【习题10】解方程:221114(4)12()12433x x x -=-++.【习题11】解方程:596841922119968x x x x x x x x ----+=+----.【习题12】已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【习题13】已知:关于x 的方程227()72120a ax x a x x+--++=只有一个实数根,求a .【作业1】下列哪个分式方程( )的根是2x =.A .2321x x -=+ B .3221x x-=+ C .3101x -=+ D .222x x x =--【作业2】用换元法解方程组56111211x y xy ⎧-=⎪+⎪⎨⎪=-⎪+⎩时,如果设___________=u ,___________=v ,那 么原方程组可以化为二元一次方程组____________________.【作业3】已知方程22113()()40x x x x +++-=,若设1x y x +=,则原方程化为( ). A .23540y y +-=B .23100y y +-=;C .23520y y -+=D .23520y y ++= 【作业4】如果24410x x -+=,那么2x 的值是 .【作业5】解方程:(1)21421242x x x x++=+--; (2)2154111x x x x --=+--.【作业6】解方程: (1)223121x x x x +-=+; (2)2322x x x x --=-.【作业7】解下列方程组: (1)22125134x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩; (2)53327235572x y y x ⎧+=⎪+-⎪⎨⎪+=⎪-+⎩.【作业8】当m 为何值时,关于x 的方程22111x m x x x x --=+--无实根?【作业9】甲、乙两艘旅游客轮同时从台湾某港出发来厦门.甲沿直线航行180海里到达厦门,乙沿原来航线绕道香港后来厦门共航行720海里,结果比甲晚20小时到达厦门,已知乙速比甲速每小时快6海里,求甲客轮的速度.(其中两客轮的速度都大于16海里 /小时)【作业10】如图所示,A B 、两港中间有C D 、两岛,AB AC AD 、、的距离分别为72海里,18海里,27海里,有甲、乙两艘军舰分别从A B 、两港同时出发,水流由A 流到B ,流速为2海里/时,第一次任务是到达C 岛,甲比乙早到2小时;第二次任务是到达D 岛, 甲又比乙早到1小时.求甲、乙在静水中的速度.【作业11】解方程:11111726x x x x +=+----.【作业12】若关于x 的方程22111x m x x x x --=+--无实数根,求m 的取值.。
分式方程概念

分式方程概念
分式方程是一种特殊的方程,它是由两个或多个分式组成的方程。
分式方程可以概括为:将两个或多个分式组合起来,进行等式比较,以找出解(未知数)的方程。
分式方程的解可以是一个或多个未知数的实数值或复数值。
分式方程的形式可以是整体对整体的比较、单个分式对整体的比较、单个分式对单个分式的比较。
分式方程可以用来解决许多物理问题,例如考虑地球和月球之间的引力问题,考虑在两个刚性物体之间发生碰撞时的动量守恒定律,还有分析元宝石或金属中的晶体结构等。
通过解决这些问题,我们可以得出一些结论,并从中学习物理规律。
此外,分式方程在许多其他领域中都有广泛应用,例如在金融领域可以用来模拟市场,求解资产定价问题;在管理科学领域可以用来求解资源分配问题;在运筹学领域可以用来求解最优解等。
八年级100道分式方程

题目1:解方程 $\frac{5}{6}x + \frac{1}{2} = \frac{4}{3}x - \frac{3}{4}$。
解法:首先将方程的两边都乘以12,得到$10x+6=16x-9$。
将变量的项移到一边,得到$16x-10x=6+9$。
继续计算,得到$6x=15$。
最后解得 $x=\frac{15}{6}$。
题目2:解方程 $2y - 1 = \frac{3}{4}y + \frac{5}{8}$。
解法:首先将方程的两边都乘以8,得到$16y-8=6y+5$。
将变量的项移到一边,得到$16y-6y=5+8$。
继续计算,得到$10y=13$。
最后解得 $y=\frac{13}{10}$。
题目3:解方程 $\frac{4}{5}x + \frac{2}{3} = \frac{3}{10} - \frac{1}{6}x$。
解法:首先将方程的两边都乘以30,得到$24x+20=9-5x$。
将变量的项移到一边,得到$24x+5x=9-20$。
继续计算,得到$29x=-11$。
最后解得 $x=\frac{-11}{29}$。
题目4:解方程 $\frac{1}{3}x + \frac{1}{2} = \frac{2}{5} - \frac{4}{15}x$。
解法:首先将方程的两边都乘以30,得到$10x+15=12-8x$。
将变量的项移到一边,得到$10x+8x=12-15$。
继续计算,得到$18x=-3$。
最后解得 $x=\frac{-1}{6}$。
题目5:解方程 $\frac{2}{7}x - \frac{3}{5} = \frac{1}{3}x + \frac{1}{2}$。
解法:首先将方程的两边都乘以70,得到$20x-42=35x+35$。
将变量的项移到一边,得到$35x-20x=35+42$。
继续计算,得到$15x=77$。
最后解得 $x=\frac{77}{15}$。
题目6:解方程 $\frac{3}{x} - 4 = \frac{5}{x} - 2$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.分式方程一.选择题1. (2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-3【关键词】分式方程【答案】方程两边同乘()()31x x --,得()()()113x x x x -=+-,解得3x =-,经检验3x =-是原分式方程的解,故选D 。
2.(2009年上海市)用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=【关键词】换元法【答案】A 3.(2009年广东佛山)6.方程121x x=-的解是( ) A .0 B .1 C .2 D .3【关键词】分式方程的解法【答案】C4.(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解 【关键词】分式方程及增根;用去分母法或换元法求分式方程的解【答案】D5.(2009年安徽)4.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D .5【关键词】分式方程【答案】B6.(2009年怀化)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x 【关键词】用去分母法或换元法求分式方程的解【答案】A7. (2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三的工日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ).A .8B .7C .6D .5【关键词】分式分程【答案】A8.(2009年漳州)分式方程211x x =+的解是( ) A .1 B .-1 C .13 D .13- 【关键词】用去分母法求分式方程的解【答案】A9.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5【关键词】分式方程及增根【答案】A10.(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为A .18%)201(400160=++x x B .18%)201(160400160=+-+xx C.18%20160400160=-+x x D.18%)201(160400400=+-+x x 【关键词】分式方程【答案】B11. (2009年嘉兴市)解方程xx -=-22482的结果是( ) A .2-=x B .2=x C .4=x D .无解【关键词】分式方程有解无解【答案】 D12.(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 A .a >-1 B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2【关键词】字母方程【答案】D 13.(2009柳州)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x【关键词】分式方程【答案】B二.填空题 1.(2009年重庆市江津区)分式方程121+=x x 的解是 . 【关键词】分式方程的解法【答案】1x =2.(2009山西省太原市)方程2512x x =-的解是 . 解析:本题考查分式方程的解法,方程两边同乘()21x x -,得455x x =-,解得5x =(或5)【关键词】分式方程的解法 【答案】5x =3.(2009成都)分式方程2131x x =+的解是_________ 【关键词】分式方程 【答案】24.(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。
【关键词】用去分母法或换元法求分式方程的解【答案】35.(09湖南邵阳)请你给x 选择一个合适的值,使方程2112x x =--成立,你选择的x =____________.【关键词】用去分母法或换元法求分式方程的解【答案】36.(2009年咸宁市)分式方程1223x x =+的解是_____________. 【关键词】分工方程【答案】1x =7.(2009年重庆市江津区)分式方程121+=x x 的解是 . 【关键词】分式方程的解法【答案】1x =8.(2009年牡丹江)若关于x 的分式方程311x a x x --=-无解,则a = . 【关键词】分式方程及增根【答案】1或-29.(2009年重庆)分式方程1211x x =+-的解为 . 【关键词】用去分母法或换元法求分式方程的解【答案】-3.10. (2009年宜宾)方程xx 527=+的解是 . 【关键词】用去分母法解分式方程【答案】5.11.(2009年牡丹江市)若关于x 的分式方程311x a x x --=-无解,则a = . 【关键词】分式方程的增根【答案】1或-212.(2009年杭州市)已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为_____________.【关键词】分式方程及增根【答案】46-≠->m m 或13.(2009年台州市)在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .【关键词】分式方程的应用【答案】xx 9020120=+(其他答案正确也给分 14.(2009年吉林省)方程312x =-的解是 【关键词】分式方程【答案】x =515.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 【关键词】分式方程.【答案】2 y -y3=2 16. (2009仙桃)分式方程11x x 1x 2--=+的解为________________. 【关键词】分式方程.【答案】3x =三.解答题1.(2009年北京市)解分式方程:6122x x x +=-+ 【关键词】分式方程解法【答案】解:去分母,得(2)6(2)(2)(2)x x x x x ++-=-+解得1x =经检验1x =是原方程的解所以原方程的解是1x =.2.(2009年安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下:依据上列图表,回答下列问题:(1) 其中观看足球比赛的门票有_____张;观看乒乓球比赛的门票占全部门票的_____%;(2) 公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是_____;(3)若购买乒乓球门票的总款数占全部门票总款数的18,求每张乒乓球门票的价格。
【关键词】频率估计概率,直方图,分式方程【答案】(1)50,20(2)103 (3)依题意,有= 18. 解得x ≈530 . 经检验,x =530是原方程的解.答:每张乒乓球门票的价格约为530元.3.(2009年陕西省)解方程:431222-=-+-x x x . 【关键词】分式方程及增根【答案】解: (x -2)2-(x 2-4)=3.-4x =-5.x =45. 经检验,x =45是原方程的解. (2009年常德市)解方程:121-=x x 【关键词】分式方程【答案】原方程变形得12-=x x ∴1-=x经检验1-=x 是原方程的根4.(2009年桂林市、百色市)(本题满分8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?x x20 30 800 50 1000 20 + ⨯ + ⨯关键词】分式方程【答案】解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯= 解这个方程,得x =90经检验,x =90是原方程的解 ∴乙队单独完成需90天(2)设甲、乙合作完成需y 天,则有11()16090y += 解得36y =(天)甲单独完成需付工程款为60×3.5=210(万元)乙单独完成超过计划天数不符题意(若不写此行不扣分).甲、乙合作完成需付工程款为36(3.5+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.5.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?【关键词】分式方程、一次函数与一元一次不等式(组)【答案】解:(1)设今年三月份甲种电脑每台售价x 元xx 800001000100000=+ 解得: 4000=x经检验: 4000=x 是原方程的根,所以甲种电脑今年三月份每台售价4000元.(2)设购进甲种电脑x 台,50000)15(3000350048000≤-+≤x x解得 106≤≤x因为x 的正整数解为6,7,8,9,10, 所以共有5种进货方案(3) 设总获利为W 元,ax a x a x W 1512000)300()15)(30003800()35004000(-+-=---+-= 当300=a 时, (2)中所有方案获利相同.此时, 购买甲种电脑6台,乙种电脑9台时对公司更有利.6.(2009年广东省)解方程22111x x =---. 【关键词】用去分母法或换元法求分式方程的解【答案】方程两边同时乘以()()11x x +-,2=()1x -+,3x =-,经检验:3x =-是方程的解.7.(2009年达州)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.(1)求改进设备后平均每天耗煤多少吨?(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).【关键词】分式方程的应用【答案】21.解:(1) 设改进设备后平均每天耗煤x 吨,根据题意,得:45x+10=45-10xx+5解得x=1 5经检验,x=15符合题意且使分式方程有意义答:改进设备后平均每天耗煤15吨(2)略(只要所编应用题的方程与原题的方程相同或相似均可得分)8.(2009年湖北十堰市)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2 (2)a 2+b 2【关键词】因式分解、简单的二元二次方程组的解法【答案】解法①:(1)632)(22=⨯=+=+b a ab ab b a(2) ∵2222)(b ab a b a ++=+∴52232)(2222=⨯-=-+=+ab b a b a解法②:由题意得 ⎩⎨⎧==+23ab b a 解得:⎩⎨⎧==1211b a ⎩⎨⎧==2122b a 当1,2==b a 时,514,6242222=+=+=+=+b a ab b a当2,1==b a 时,541,6422222=+=+=+=+b a ab b a说明:(1)第二种解法只求出一种情形的给4分;(2)其它解法请参照上述评分说明给分.9.(2009年湖北十堰市)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件? 【关键词】分式方程及增根【答案】解:设该厂原来每天加工x 个零件, 由题意得:72500100=+xx 解得 x =50经检验:x =50是原分式方程的解答:该厂原来每天加工50个零件。