分式方程(二)教案

合集下载

数学:《分式方程2》教案(人教版八年级下)

数学:《分式方程2》教案(人教版八年级下)

蒙阴三中集体备课教案课题:分式方程第2课时编号0 备课时间首备时间:2012.2.27 二备时间:三备时间:课型新授课主备人首次主备二次主备:三次主备:学习目标1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决工程方面实际问题. 张秀霞修改意见:复习工作量问题重点难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.教材分析与教法设想、课前准备本节的P29例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.板书设计分式方程第2课时工程问题:工作总量=工效×工作时间教学过程导学过程学习过程1:创设情境,列出方程教师:下面同学们先看一道题,自己独立思考根据题意把方程列出来(大屏幕投影)某运输公司需要装一批货物,由于机械设备没有即时到位,只好先用人工装运,6 h完成了一半任务;后来机械装运和人工装运同时进行,1 h 完成了后一半任务。

如果设单独采用机械装运x h 可以完成后一半任务,那么x满足怎样的方程?2:学习目标1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决工程方面实际问题.三、自主学习、P29例3四、合作研讨,展示交流:一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多请找出此题中存在的数量关系:(人工装运的工作效率+机械装运的工作效率)×1=12分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1独立思考解答应用题。

分式方程二教案

分式方程二教案

分式方程二教案分式方程二教案2篇分式方程二教案1一、教学目标1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.2.通过本节课的教学,向学生渗透转化的数学思想方法;3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.二、重点难点疑点及解决办法1.教学重点:可化为一元二次方程的分式方程的解法.2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.三、教学步骤(一)教学过程1.复习提问(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?(3)解方程,并由此方程说明解方程过程中产生增根的原因.通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对类比法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.2.例题讲解例1 解方程.分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.解:两边都乘以,得去括号,得整理,得解这个方程,得检验:把代入,所以是原方程的根.原方程的根是.虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.例2 解方程分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.解:方程两边都乘以,约去分母,得整理后,得解这个方程,得检验:把代入,它不等于0,所以是原方程的根,把代入它等于0,所以是增根.原方程的根是师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.例3 解方程.分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分和互为倒数,由此可设,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值.解:设,那么,于是原方程变形为两边都乘以y,得解得当时,,去分母,得解得;当时,,去分母整理,得检验:把分别代入原方程的分母,各分母均不等于0.原方程的根是此题在解题过程中,经过两次转化,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验.巩固练习:教材P49中1、2引导学笔答.(二)总结、扩展对于小结,教师应引导学生做出.本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行.本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了转化与换元的基本数学思想与基本数学方法.此小结的目的,使学生能利用类比的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握.四、布置作业1.教材P50中A1、2、3.2.教材P51中B1、2五、板书设计探究活动1解方程:分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次设,则原方程变为或无解经检验:是原方程的解探究活动2有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.解:设桶的容积为升,第一次用水补满后,浓度为,第二次倒出的农药数为4. 升,两次共倒出的农药总量(8+4 )占原来农药,故整理,(舍去)答:桶的容积为40升.分式方程二教案2教学目标:1、本节课使学生在学完了可化为一元二次方程的分式方程的解法后,解决实际问题应用之一.――行程问题,使学生正确理解行程问题的有关概念和规律,会列分式方程解有关行程问题的应用题.2、本节课通过列分式方程解有关行程问题的应用题,就是把实际问题转化为数学问题,这就要求学生能对实际问题分析、概括、总结、解,从而能进一步地提高学生分析问题和解决问题的能力.教学重点:列分式方程解有关行程问题.教学难点:如何分析和使用复杂的数量关系,找出相等关系,对于难点,解决的关键是抓住时间、路程、速度三者之间的关系,通过三者之间的关系的分析设出未知数和列出方程.3.疑点:对于列分式方程解应用题,学生往往考虑到所解出的答案是否和题意相吻合,而认为可以不需要检验.通过本节的学习,使学生清楚地懂得列分式方程解应用题应首先检验所求出的方程的解是否是所列分式方程的解,然后考虑所满足方程的解是否与题意相吻合.教学过程:在上一节课,我们已经学习了可化为一元二次方程的分式方程的解法,我们知道,我们现在所学习的理论是先人通过千百年的实践总结,概括出来的,我们学习理论是为了更好地解决实践当中所出现的问题.这一节课所学的内容就是运用上节课所学过的分式方程解法的知识去解决实际问题,关于本节内容,是学生在上节课所学过的分式方程的解法的基础上而学习的',所以点出由实践――理论――实践这一观点,能更加激发学生的求知欲,使得学生能充分地认识到学习理论知识和理论知识的运用同等重要,从而抓住学生的注意力,能使得学生充分地参与到教学活动中去.为了使学生能充分地利用所学过的理论知识来解决实际问题,首先应对上一节课所学过的分式方程的解法进行复习,同时让学生回忆行程问题中的三个量――速度、路程、时间三者之间的关系,从而将学生的思路调动到本节课的内容中来,这样对于面向全体学生,大面积地提高教学质量大有益处.一、新课引入:1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?3.以前所学过的列方程解应用题的步骤有哪些?通过对问题1的复习,使学生对前一节内容得到巩固,对问题2的复习给学生设定一种悬念,以抓住学生的注意力,对问题3的复习,使学生对于问题2的悬念有了一种初步的判断,以便于点题――本节课所学的内容.通过对前面三个复习问题的设计,学生能充分的认识到本节所要学习的内容,再加上适时点题,完全地将学生的注意力全部地集中到教师身上,充分发挥教师的指导作用,并调动起学生的积极性,发挥学生的主体作用.二、新课讲解:例1甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?分析:(1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.(2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙。

分式教案(2)

分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。

本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的运算方法,提高运算能力。

3. 学会解分式方程,提高解决问题的能力。

三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。

难点:分式方程的解法。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。

问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。

2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。

3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。

4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。

5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。

6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。

7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。

8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。

9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。

10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。

六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。

分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。

分式复习教案(二)

分式复习教案(二)
【例3】解下列方程组
题型三:求待定字母的值
【例4】若关于 的分式方程 有增根,求 的值.
【例5】若分式方程 的解是正数,求 的取值范围.
提示: 且 , 且 .
题型四:解含有字母系数的方程
【例6】解关于 的方程
提示:(1) 是已知数;(2) .
题型五:列分式方程解应用题
练习:
1.解下列方程:
(1) ;(2) ;
例2分式方程的特殊解法
例3
例4分式方程求待定字母值的方法
例5
教后反思
备课专用稿纸
课题
分式复习教案(二)
主备教师
张华伟
备课时间
2012.2.29
课型
新授课
授课教师
授课时间
授课班级
八年级
教学目标
1.复习分式方程的概念以及解法;
2.复习分式方程产生增根的原因
3.复习分式方程的应用题
重点难点
重点:分式方程的应用。
难点:分式方程的应用。
教法学法
引导启发、讲练结合、归纳总结
教具学具
例3.若关于 分式方程 有增根,求 的值。
例4.若关于 的方程 有增根 ,求 的值。
课堂小结:
1.分式方程主要是看分母是否有外未知数;
2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.
3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.
板书设计
分式复习教案(二)
例1例6
投影仪
教学过程
时间
批注
教学过程:
题型一:用常规方法解分式方程
【例1】解下列分式方程
(1) ;(2) ;(3) ;
提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验

北师大版数学初二下册《分式方程(二)》教案

北师大版数学初二下册《分式方程(二)》教案

北师大版数学初二下册《分式方程(二)》教案一. 教材分析北师大版数学初二下册《分式方程(二)》主要讲述了分式方程的解法与应用。

通过本节课的学习,使学生掌握分式方程的解法,提高学生解决实际问题的能力。

教材以实例引入,引导学生探究分式方程的解法,并总结出解题规律。

此外,教材还提供了丰富的练习题,帮助学生巩固所学知识。

二. 学情分析初二的学生已经学习了分式的相关知识,对分式有一定的理解。

但是,对于分式方程的解法,学生可能还存在一定的困难。

因此,在教学过程中,需要引导学生逐步理解分式方程的解法,并能够运用到实际问题中。

三. 教学目标1.理解分式方程的概念,掌握分式方程的解法。

2.能够运用分式方程解决实际问题。

3.培养学生的数学思维能力,提高学生的解决问题的能力。

四. 教学重难点1.分式方程的概念。

2.分式方程的解法。

3.分式方程在实际问题中的应用。

五. 教学方法1.实例导入:以实际问题引入分式方程的概念,激发学生的学习兴趣。

2.自主探究:引导学生通过小组合作,探讨分式方程的解法。

3.讲解示范:教师对分式方程的解法进行讲解,让学生明确解题思路。

4.练习巩固:学生独立完成练习题,巩固所学知识。

5.拓展应用:引导学生运用分式方程解决实际问题。

六. 教学准备1.教学课件:制作课件,展示分式方程的解法。

2.练习题:准备适量的练习题,巩固学生的学习效果。

3.教学素材:准备一些实际问题,作为拓展应用的素材。

七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,激发学生的学习兴趣。

2.呈现(10分钟)展示分式方程的解法,引导学生自主探究。

3.操练(10分钟)学生独立完成练习题,巩固所学知识。

4.巩固(5分钟)教师对学生的练习情况进行讲评,解答学生的疑问。

5.拓展(5分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。

6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的概念和解法。

7.家庭作业(5分钟)布置适量的家庭作业,巩固学生的学习效果。

人教版八年级上册数学《分式方程(二)》说课稿

人教版八年级上册数学《分式方程(二)》说课稿

人教版八年级上册数学《分式方程(二)》说课稿一. 教材分析人教版八年级上册数学《分式方程(二)》这一节的内容是在学生已经掌握了分式方程的基本概念、解法及应用的基础上进行进一步的深入学习。

本节课的主要内容是分式方程的解法及应用,重点是让学生掌握分式方程的解法,并能运用分式方程解决实际问题。

教材通过例题和练习题的形式,引导学生掌握解题方法,提高解题能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对分式方程有一定的了解。

但是,学生在解分式方程时,往往因为对概念理解不深、运算能力不足而导致解题错误。

因此,在教学过程中,教师需要帮助学生深化对分式方程概念的理解,提高运算能力,并培养学生的逻辑思维能力。

三. 说教学目标1.知识与技能目标:让学生掌握分式方程的解法,并能运用分式方程解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 说教学重难点1.教学重点:分式方程的解法及应用。

2.教学难点:对分式方程的理解和运用,特别是解题过程中的运算能力和逻辑思维能力。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习平台、网络资源等现代教育技术手段,提高教学效果。

六. 说教学过程1.导入新课:通过复习分式方程的基本概念,引导学生进入本节课的学习。

2.自主学习:让学生自主探究分式方程的解法,引导学生理解解题过程。

3.合作交流:学生分组讨论,分享解题心得,互相学习,提高解题能力。

4.课堂讲解:教师针对学生的解题过程中遇到的问题进行讲解,引导学生深化对分式方程的理解。

5.练习巩固:布置练习题,让学生及时巩固所学知识,提高解题能力。

6.课堂小结:教师引导学生总结本节课的学习内容,加深对分式方程解法的理解。

2022年人教版八年级数学上册第十五章分式教案 分式方程(第2课时)

2022年人教版八年级数学上册第十五章分式教案  分式方程(第2课时)

第十五章分式15.3 分式方程第2课时一、教学目标【知识与技能】能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理.【过程与方法】1. 以工程问题为例,能将此类实际问题中的相等关系用分式方程表示,提高运用方程思想解决问题的能力.2.培养学生分析问题、解决问题的能力.【情感、态度与价值观】鼓励学生进行探索和交流,培养他们的创新意识和合作精神.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】实际生活中相关工程问题类的分式方程应用题的分析应用.【教学难点】将实际问题中的等量关系用分式方程表示并且求得结果.五、课前准备教师:课件、直尺、分式方程的解法等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课利用分式方程可以解决生活中的实际问题吗?这节课我们来学习怎么用分式方程来解决现实生活中的问题。

(出示课件2)教师问:同学们能不能说一下解分式方程的一般步骤是什么?学生回答:解分式方程的一般步骤.(1) 在方程的两边都乘以最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3) 把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去.(4)写出原方程的根.(二)探索新知1.创设情境,探究列分式方程解答实际问题教师:请同学们完成下面的题目:(出示课件4)甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用的时间相等,求甲、乙每小时各做多少个零件?学生小组讨论后回答:(出示课件5)解:设甲每小时做x个零件,则乙每小时做(x–6)个零件,依题意得:解得:x=18.经检验,x=18是原分式方程的解,且符合题意.由x=18,得x–6=12答:甲每小时做18个,乙每小时做12个.教师问:请同学们说一说列分式方程解应用题的步骤:学生讨论后回答:读题,设未知数,列方程,解答.总结点拨:(出示课件6)列分式方程解应用题的一般步骤:1. 审:分析题意,找出数量关系和相等关系.2. 设:选择恰当的未知数,注意单位统一.3. 列:根据数量和相等关系,正确列出方程.4. 解:解这个分式方程.5. 验:检验.既要检验所求的解是不是分式方程的解,又要检验是否符合实际意义.6. 答:注意单位和语言完整.教师小结:客观世界中存在着大量的问题需要用分式方程去解决,当我们掌握好相关的知识和方法后,就可以运用它们分析和解决实际问题,这也恰恰体现了我们经常谈到的一个关键词:“学以致用”.例1:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?(出示课件7)师生共同解答如下:分析:本题没有具体的工作量,常常把工作量虚拟为1,工作时间的单位为“月”.甲队一个月完成总工程的13,设乙队如果单独施工1个月能完成总工程的1x ,那么甲队半个月完成总工程的16,乙队半个月完成总工程的12x,两队半个月完成总工程的16+12x.等量关系为:甲队单独做的工作量+两队共同做的工作量=总工程量1,则有13+16+12x=1. 解:设乙队如果单独施工1个月能完成总工程的1x,依题意得(出示课件8)方程两边同乘6x ,得2x+x+3=6x , 解得 x=1.检验:x=1时,6x≠0,x=1是原分式方程的解.答:由上可知,若乙队单独施工1个月可以完成全部任务, 而甲队1个月完成总工程的 13 ,可知乙队施工速度快.例2:某列车平均提速v km/h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?(出示课件11)解:设提速前列车的平均速度为x km/h ,则提速前列车行驶s km 所用的时间为s x h ;提速后列车的平均速度为(x+v )km/h ,提速后列车运行 (s+50)km ,所用时间为s+50x+v h. 根据行驶时间的等量关系可以列出方程:去分母得:s(x+v)=x (s+50) (出示课件12)去括号,得sx+sv=sx+50x.移项、合并同类项,得 50x=xv.解得x=sv 50.检验:由于v ,s 都是正数,x=sv 50时,x (x+v )≠0,x=sv 50是原分式方程的解. 答:提速前列车的平均速度为 sv 50km/h.例3:关于x 的方程 无解,求k 的值.(出示课件14) 解:方程的两边同时乘(x+3)(x –3)得x+3+kx –3k=k+3整理得:(k+1)x=4k ,因为方程无解,则x=3或x = –3当x=3时,(k+1) ·3=4k,k=3,当x= –3时,(k+1)(–3)=4k , k=-37所以当k=3或k=-37时,原分式方程无解.(三)课堂练习(出示课件17-23)1. 下列方程中属于分式方程的有( );属于一元分式方程的有( ). ① ②③④ x 2 +2x –1=02.解方程:3. 某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?4. 某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队单独做a天后,再由甲、乙两工程队合作____天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?参考答案:1. ①③;①2. 解:方程两边都乘以最简公分母(x+1)(x-1)得:(x–1)+2(x+1)=4∴x=1检验:当x=1时,(x+1)(x–1)=0,所以x=1不是原方程的根.∴原方程无解.3.解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x–9)元/条,根据题意得:3120x−9=4200x,解得:x=35,经检验,x=35是原方程的解,∴x–9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200–a)条B型芯片,根据题意得:26a+35(200–a)=6280,解得:a=80.答:购买了80条A型芯片.4. 解:(1)设乙单独做x天完成此项工程,则甲单独做(x+30)天完成此项工程.由题意得:20( )=1整理得x2–10x–600=0,解得x1=30,x2= –20.经检验:x1=30,x2=–20都是分式方程的解,但x2=–20不符合题意舍去.x+30=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天.(2)设甲单独做a天后,甲、乙再合作(20–)天,可以完成此项工程.(3)由题意得1×a+(1+2.5)(20–)≤64解得a≥36答:甲工程队至少要单独做36天后,再由甲、乙两队合作完成剩下的工程,才能使施工费不超过64万元.(四)课堂小结今天我们学了哪些内容:列分式方程解应用题的一般步骤:(1)审清题意,弄清题中涉及哪些量,已知量和未知量各有几个,量与量之间的基本关系是什么.(2)设未知数,找出尽可能多的相等关系,用含有未知数的代数式表示其他未知量.注意,所设未知量的单位要明确.(3)列方程,抓住题中含有相等关系的语句,将这些语句抽象为含有未知数的等式,这就是方程.(4)解方程,检验解的合理性(包括检验是否是方程的解,是否符合实际),写出答案.注意:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是所列方程是分式方程,最后进行检验,既要检验其是否为所列分式方程的解,又要检验是否符合实际意义.(五)课前预习预习下节课157页小结的相关内容。

5.4 分式方程(第2课时)北师大版数学八年级下册教案

5.4 分式方程(第2课时)北师大版数学八年级下册教案

5.4分式方程(第2课时分式方程的解法)教学目标1.引导学生掌握解分式方程的基本思路和方法.2.了解分式方程增根产生的原因并能解决与增根有关的问题.教学重点难点重点:解分式方程的基本方法和步骤.难点:检验分式方程的解.教学过程复习巩固1.方程的解:使方程左右两边相等的未知数的值叫方程的解.2.解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.导入新课【创设情境,课堂引入】有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量.如果设第一块试验田每公顷的产量为x kg,那么第二块试验田的产量是(x+3 000)kg.根据题意,可得方程=.探究新知【实践探究,交流新知】【教师提问】这个方程是我们学过的分式方程,这类方程该如何解呢?【学生活动】先独立完成,再与同伴交流,踊跃回答.【示例展示】解方程=.解:方程两边都乘x(x-2),得x=3(x-2).解这个方程,得x=3.检验:将x=3代入原方程,得左边=1,右边=1,左边=右边.所以,x=3是原方程的根.【师生总结】解分式方程.关键:将分式方程转化为整式方程.步骤:(1)去分母;(2)解整式方程;(3)检验;(4)写出方程的解.简记为:“一化、二解、三检验”.检验有两种方法:一是代入原方程,二是代入去分母时乘的最简公分母.一般是代入最简公分母检验.去分母的方法:⑴把各分母分解因式;⑵找出各分母的最简公分母;⑶方程两边各项乘最简公分母.【巩固练习】解分式方程:-=45.解:方程的两边同乘2x,得960-600=90x.解这个方程,得x=4.经检验,x=4是原方程的根.【合作探究,解决问题】【小组讨论,师生互学】在解方程=-2时,小亮的解法如下:解:方程的两边同乘x-2,得1-x=-1-2(x-2).解这个方程,得x=2.【教师提问】x=2是原方程的根吗?为什么?【学生活动】先独立思考,再与同伴交流,踊跃回答.答:在上面的方程中,x=2不是原方程的根,因为它使得原分式方程的分母为零.【师生总结】产生增根的原因:在方程的两边同乘了一个可能使分母为零的整式.注意:解分式方程一定要验根!【示例展示】当m为何值时,分式方程+ =4会产生增根?解:方程两边都乘x-3,得1-m=4(x-3),解这个方程,得x=.∵x=是原方程的增根,且原方程的增根是x=3,∴=3,解得m=1.【拓展延伸】【例1】若关于x的方程=1的解是正数,则a的取值范围是.【解析】去分母,得2x+a=x-1,解得x=-a-1.∵关于x的方程=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2.【答案】a<-1且a≠-2方法总结:求出方程的解(用未知字母表示),然后根据解的正负,列关于未知字母的不等式求解,特别注意分母不能为0.【例2】若关于x的分式方程无解,求m的值.【思考】无解说明什么?两种情况:一是所化成的整式方程无解;二是解得整式方程的解使最简公分母为0.解:方程两边都乘(x+2)(x-2),得2(x+2)+m x=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②原方程的解使最简公分母为0,则x=2或x=-2,当x=2时,代入(m-1)x=-10,得(m-1)×2=-10,解得m=-4;当x=-2时,代入(m-1)x=-10,得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.【总结】分式方程无解与分式方程有增根所表达的意义不一样:分式方程有增根仅仅是指求得的整式方程的解使最简公分母为0;分式方程无解不但包括求得的整式方程的解使最简公分母为0,而且还包括分式方程化为整式方程后无解.课堂练习1.以下是方程去分母后的结果,其中正确的是( )A. 2―1―x=1B. 2―1+x=1C. 2―1―x=2xD. 2―1+x=2x2.若方程3x-2=+4x￿x-2￿有增根,则增根为( )A.0B.2C.0或2D.13.解方程:(1);(2);(3).参考答案1.D2.A3.解:(1)x=1. (2)x=-32. (3)原分式方程无解.课堂小结1.解分式方程的一般步骤:(1)在方程的两边都乘最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3)把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去.(4)写出原方程的根.2.方程的增根:若求出的解使得原分式方程的分母为零,我们称它为原方程的增根.产生增根的原因:在方程的两边同乘了一个可能使分母为零的整式.注意:解分式方程一定要验根!布置作业请完成本课时对应练习!板书设计分式方程的解法1.解分式方程的基本思路2.解分式方程的一般步骤3.方程的增根若求出的解使得原分式方程的分母为零,我们称它为原方程的增根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.4.2 分式方程(二)
教学目标
(一)教学知识点
1.解分式方程的一般步骤.
2.了解解分式方程验根的必要性.
(二)能力训练要求
1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.
2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.
(三)情感与价值观要求
1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.
2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.教学重点
1.解分式方程的一般步骤,熟练掌握分式方程的解决.
2.明确解分式方程验根的必要性.
教学难点
明确分式方程验根的必要性.
教学方法
探索发现法,学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.
教学过程
一、提出问题,引入新课
[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程62
4x 232
5x 2
13x --=++-
[师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得
3(3x -1)+2(5x+2)=6×2-(4x -2).
(2)去括号,得9x -3+10x+4=12-4x+2,
(3)移项,得9x+10x+4x=12+2+3-4,
(4)合并同类项,得23x=13,
(5)使x 的系数化为1,两边同除以23,
2313
=x 二、讲解新课,探索分式方程的解法
[师]刚才我们一同回忆了一元一次方程的解法步骤.下面我们来看一个分式方程.
1、例1:解方程: x x 321=- (1)
[师]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢? [生]可以。

[师]同学们想一想,方程两边同乘以什么样的整式(或数),可以去掉分母呢? [生]乘以分式方程中所有分母的公分母.
[师]解一元一次方程,去分母时,方程两边同乘以各分母的最小公倍数,比较简单.解分式方程时,方程两边同乘以分母的最简公分母,去分母也比较简单.那么这个分式方程的最简公分母是什么呢?
[生]x (x -2).
[师生共析]方程两边同乘以x (x -2),得
x x x x x x 3)2(21)2(•-=-•- 化简,得x=3(x -2). (2)
我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程.
[生]再往下解,我们就可以像解一元一次方程一样,解出x.即x=3x -6(去括号)
2x=6(移项,合并同类项).
x=3(x的系数化为1).
[师]x=3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论.
(教师可参与到学生的讨论中,倾听学生的说法)
[生]x=3是由一元一次方程x=3(x-2)(2)解出来的,x=3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x=3代入方程(1)的左边=1,右边=1,左边=右边,所以x=3是方程(1)的解.
[师]同学们表现得都很棒!相信同学们也能用同样的方法解出例2.
2、例2解方程:
4
2
480 300
=
-
x
x
(由学生在练习本上试着完成,然后再共同解答)
解:方程两边同乘以2x,得 600-480=8x
解这个方程,得 x=15
检验:将x=15代入原方程,得左边=4,右边=4,左边=右边,所以x=15是原方程的根.
[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.
3、议一议
解方程
2
2
1
2
1
-
-
=
-
-
x
x
x
[师]我们来看小亮同学的解法:
方程两边同乘以x-2,得2-x=-1-2(x-2)
解这个方程,得 x=2.
[师]你认为 x=2是原方程的根吗?与同伴交流。

(教师可参与到学生的讨论中,倾听同学们的想法)
[师]在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了。

我们把这样的不适合原方程的整式方程的根,叫原方程的增根.
[师]在把分式方程转化为整式方程的过程中会产生增根.那么,是不是就不要这样解?或采用什么方法补救?
[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.
[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
[生]不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.
[师]在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误.
三、应用,升华
1 . 课本90页随堂练习
2.回顾,总结
课本90页想一想:解分式方程一般需要经过哪几个步骤?
解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;
(2)解这个整式方程;
(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.
四、课时小结
[师]同学们,通过学习这节课,你有什么收获呢?
教师引导学生总结。

五、课后作业
习题3.7第1题
板书设计
§3.4.2 分式方程(二)
一、
解方程62
4x 232
5x 21
3x --=++-
二、探求分式方程解法
[例1]解方程 x x 321=- [例2]解方程 42480300=-x x
三、议一议
小亮的解法对吗?
四、想一想
解分式方程一般步骤
1.去分母
2.解整式方程
3.检验
. .。

相关文档
最新文档