中考数学压轴题题新

合集下载

(完整)中考数学压轴题精选及答案

(完整)中考数学压轴题精选及答案

一、解答题1.在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点C ,顶点D 的坐标为(1,4)-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足,求点P 的坐标; (3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标2.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.3.在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B ,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A ,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A (0,t ),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.综合与探究如图,在平面直角坐标系中,点()0,10A ,点B 是x 轴的正半轴上的一个动点,连接AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(),0t(1)当6t =时,点M 的坐标是 ;(2)用含t 的代数式表示点C 的坐标;(3)是否存在点B ,使四边形AOBD 为矩形?若存在,请求出点B 的坐标;若不存在,请说明理由;(4)在点B 的运动过程中,平面内是否存在一点N ,使得以A 、B 、N 、D 为顶点的四边形是菱形?若存在,请直接写出点N 的纵坐标(不必要写横坐标);若不存在,请说明理由.5.如图(1),在菱形ABCD 中,∠ABC =60°,点E 在边CD 上(不与点C ,D 重合),连结AE ,交BD 于点F .(1)如图(2),若点M 在BC 边上,且DE =CM ,连结AM ,EM .求证:三角形AEM 为等边三角形;(2)设DF x BF=,求tan ∠AFB 的值(用x 的代数式表示); (3)如图(3),若点G 在线段BF 上,且FG =2BG ,连结AG 、CG ,DF x BF =,四边形AGCE 的面积为S 1,ABG 的面积为S 2,求12S S 的最大值.6.如图,在平面直角坐标系中,ABC 的边AB 在x 轴上,且OB OA >,以AB 为直径的圆过点C .若点C 的坐标为()0,4,10AB =,(1)求抛物线的解析式;(2)点P 为该函数在第一象限内的图象上一点(不与BC 重合),过点P 作PQ BC ⊥,垂足为点Q ,连接PC .若以点P 、C 、Q 为顶点的三角形与COA 相似,求点P 的坐标;(3)若ACB ∠平分线所在的直线l 交x 轴与点E ,过点E 任作一直线l '分别交射线CA ,CB (点C 除外)于点M ,N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.7.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点Q 称为⊙I 关于直线a 的“近点”,点P 称为⊙I 关于直线a 的“远点”把PQ ·QH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,3).半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“近点”“远点”分别是点_____和_____(填“A ”、“B ”、“C ”或“D ”),⊙O 关于直线m 的“特征数”为_____;②若直线n 的函数表达式为33y x =-+.求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,2),点F 是坐标平面内一点,以F 5为半径作⊙F .若⊙F 与直线l 相离,点N (1-,0)是⊙F 关于直线l 的“近点”.且⊙F 关于直线l 的“特征数”是6,求直线l 的函数表达式.8.如图,抛物线y=-x2+bx+c与x轴交于A,B两点,其中A(3,0),B(-1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A、C,连接CD.(1)分别求抛物线和直线AC的解析式;(2)在直线AC下方的抛物线上,是否存在一点P,使得△ACP的面积是△ACD面积的2倍,若存在,请求出点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且点A1恰好落在该抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.9.已知:如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,以OA,OC为边作矩形ABCO,矩形ABCO的面积是36.(1)求直线AC的解析式.(2)点P为线段AB上一点,点Q为第一象限内一点,连接PO,PQ,∠OPQ=90°,且OP=PQ,设AP的长为t,点Q的横坐标为d,求d与t的函数关系式.(不要求写出自变量t的取值范围)(3)在(2)的条件下,过点Q作QE∥PO交AB的延长线于点E,作∠POC的平分线OF 交PE于点F,交PQ于点K,若KQ=2EF,求点Q的坐标.10.如图,平面直角坐标系中,点O为原点,抛物线交x轴于()2,05,0B两点,交y轴于点C.A-、()(1)求抛物线解析式;(2)点P在第一象限内的抛物线上,过点P作x轴的垂线,垂足为点H,连AP交y轴于点E,设P点横坐标为t,线段EC长为d,求d与t的函数解析式;(3)在(2)条件下,点M在CE上,点Q在第三象限内抛物线上,连接PC、PQ、PM,PQ与y轴交于W,若,,,求点Q的坐标.11.已知:如图1,点A(a,b),AB x⊥轴于点B2++-+=.a b a b24(8)0(1)试判断△AOB的形状,并说明理由;(2)如图2,若点C为线段AB的中点,连OC并作OD OC⊥,且OD OC=,连AD交x轴于点E,试求点E的坐标;(3)如图3,若点M为点B的左边x轴负半轴上一动点,以AM为一边作45∠=︒交MANy轴负半轴于点N,连MN,在点M运动过程中,试猜想式子OM MN ON+-的值是否发生变化?若不变,求这个不变的值;若发生变化,试求它变化的范围.12.直角三角板ABC的斜边AB的两个端点在⊙O上,已知∠BAC=30°,直角边AC与⊙O 相交于点D,且点D是劣弧AB的中点.(1)如图1,判断直角边BC所在直线与⊙O的位置关系,并说明理由;(2)如图2,点P是斜边AB上的一个动点(与A、B不重合),DP的延长线交⊙O于点Q,连接QA、QB.①AD=6,PD=4,则AB= ;PQ= ;②当点P在斜边AB上运动时,求证:QA+QB=3QD.13.如图,已知四边形ABCD内接于⊙O,直径DF交BC于点G.(1)如图1,求证:∠BAD-∠BCF=90°;(2)如图2,连接AC,当∠BAC=∠CFD+∠ACD时,求证:CA=CB;(3)如图3,在(2)的条件下,AC交DF于点H,∠BAC=∠DGB,45CGBG,AC=9,求△CDH的面积.14.同学们学过正方形与等腰三角形发现它们都是轴对称图形,它们之间有很多相似,在正边形ABCD中,E是对角线AC上一点(不与点A、C重合),以AD、AE为邻边作平行四边形AEGD,GE交CD于点M,连接CG.(1)如图1,当12AE AC<时,过点E作EF BE⊥交CD于点F,连接GF并延长交AC于点H.求证:EB EF=;(2)在ABC中,AB AC=,90BAC∠=︒.过点A作直线AP,点C关于直线AP的对称点为点D,连接BD,CD直线BD交直线AP于点E.如图2,①依题意补全图形;②请用等式表示线段EB,ED,BC之间的数量关系,并予以证明.15.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式.(2)若点P为第三象限内抛物线上一动点,作PD⊥x轴于点D,交AC于点E,过点E作AC 的垂线与抛物线的对称轴和y轴分别交于点F、G,设点P的横坐标为m.①求PE2的最大值;②连接DF、DG,若∠FDG=45°,求m的值.16.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD 到点E ,使DE =AD ,再连结BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.由此得出中线AD 的取值范围是__________【应用】如图②,如图,在△ABC 中,D 为边BC 的中点、已知AB =10,AC =6,AD =4,求BC 的长.【拓展】如图③,在△ABC 中,∠A =90°,点D 是边BC 的中点,点E 在边AB 上,过点D 作D F⊥DE 交边AC 于点F ,连结EF .已知BE =5,CF =6,则EF 的长为__________.17.已知二次函数()20y x bx c a =++≠的图象与x 轴的交于A 、B (1,0)两点,与y 轴交于点()03C -,.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,若点D 的横坐标为m ,ACD △的面积为S ,求S 与m 之间的函数关系式,并写出ACD △的面积取得最大值时点D 的坐标;(3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).18.如图,在平面直角坐标系中,已知二次函数图像222(1)2y x a x a a =-+++的顶点为P ,点B 39(2,)16- 是一次函数5119216y x =+上一点.(1)当a =0时,求顶点P 坐标;(2)若a >0,且一次函数2y x b =-+的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程);(3)作直线OC :12y x =与一次函数5119216y x =+交于点C .连结OB ,当抛物线与△OBC 的边有两个交点时,求a 的取值范围.19.已知O 为ABC ∆的外接圆,AC BC =,点D 是劣弧AB 上一点(不与点A ,B 重合),连接DA ,DB ,DC .(1)如图1,若AB 是直径,将ACD ∆绕点C 逆时针旋转得到BCE ∆.若4CD =,求四边形ADBC 的面积;(2)如图2,若AB AC =,半径为2,设线段DC 的长为x .四边形ADBC 的面积为S . ①求S 与x 的函数关系式;②若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置.DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化.求所有t 值中的最大值,并求此时四边形ADBC 的面积S .20.如图,在ABCD 中,90ABD ∠=︒,5cm AD =,8cm BD =.点P 从点A 出发,沿折线AB BC -向终点C 运动,点P 在AB 边、BC 边上的运动速度分别为1cm/s 、5cm /s .在点P 的运动过程中,过点P 作AB 所在直线的垂线,交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且2QM PQ =,MN 与BD 在PQ 的同侧.设点P 的运动时间为t (秒),矩形PQMN 与ABCD 重叠部分的面积为()2cm S .(1)求边AB 的长.(2)当04t <<时,PQ = ,当48t <<时,PQ = .(用含t 的代数式表示)(3)当点M 落在BD 上时,求t 的值.(4)当矩形PQMN 与ABCD 重叠部分图形为四边形时,求S 与t 的函数关系式.【参考答案】参考答案**科目模拟测试一、解答题1.(1)223y x x =--;(2),; (3),;,;,;,; ,;,. 【解析】【分析】(1)根据顶点的坐标,设抛物线的解析式为y =a (x ﹣1)2﹣4,将点A (﹣1,0)代入,求出a 即可得出答案;(2)利用待定系数法求出直线BD 解析式为y =2x ﹣6,过点C 作CP 1∥BD ,交抛物线于点P 1,再运用待定系数法求出直线CP 1的解析式为y =2x ﹣3,联立方程组即可求出P 1(4,5),过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,证明△OCE ≌△GCF(ASA),运用待定系数法求出直线CF解析式为y=12x﹣3,即可求出P2(52,﹣74);(3)利用待定系数法求出直线AC解析式为y=﹣3x﹣3,直线BC解析式为y=x﹣3,再分以下三种情况:①当△QMN是以NQ为斜边的等腰直角三角形时,②当△QMN是以MQ为斜边的等腰直角三角形时,③当△QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可.(1)解:∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)解:∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴,解得:,∴直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,得﹣3=2×0+d,解得:d=﹣3,∴直线CP1的解析式为y=2x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,解得:x1=0(舍),x2=4,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,∵OB=OC,∠BOC=∠OBG=∠OCG=90°,∴四边形OBGC是正方形,设CP1与x轴交于点E,则2x﹣3=0,解得:x=32,∴E(32,0),在x轴下方作∠BCF=∠BCE交BG于点F,∵四边形OBGC是正方形,∴OC=CG=BG=3,∠COE=∠G=90°,∠OCB=∠GCB=45°,∴∠OCB﹣∠BCE=∠GCB﹣∠BCF,即∠OCE=∠GCF,∴△OCE≌△GCF(ASA),∴FG=OE=32,∴BF=BG﹣FG=3﹣32=32,∴F(3,﹣32),设直线CF解析式为y=k1x+e1,∵C(0,﹣3),F(3,﹣32),∴,解得:,∴直线CF解析式为y=12x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=12x﹣3,解得:x1=0(舍),x2=52,∴P2(52,﹣74),综上所述,符合条件的P点坐标为:(4,5)或(52,﹣74);(3)解:(3)设直线AC解析式为y=m1x+n1,直线BC解析式为y=m2x+n2,∵A(﹣1,0),C(0,﹣3),∴,解得:,∴直线AC解析式为y=﹣3x﹣3,∵B(3,0),C(0,﹣3),∴,解得:,∴直线BC解析式为y=x﹣3,设M(t,t﹣3),则N(t,t2﹣2t﹣3),∴MN=|t2﹣2t﹣3﹣(t﹣3)|=|t2﹣3t|,①当△QMN是以NQ为斜边的等腰直角三角形时,此时∠NMQ=90°,MN=MQ,如图2,∵MQ∥x轴,∴Q(﹣13t,t﹣3),∴|t2﹣3t|=|t﹣(﹣13t)|,∴t2﹣3t=±43t,解得:t=0(舍)或t=53或t=133,∴,;,;②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,∵NQ∥x轴,∴Q(,t2﹣2t﹣3),∴NQ=|t﹣|=13|t2+t|,∴|t2﹣3t|=13|t2+t|,解得:t=0(舍)或t=5或t=2,∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);③当△QMN是以MN为斜边的等腰直角三角形时,此时∠MQN=90°,MQ=NQ,如图4,过点Q作QH⊥MN于H,则MH=HN,∴H(t,),∴Q(,),∴QH=|t﹣|=16|t2+5t|,∵MQ=NQ,∴MN=2QH,∴|t2﹣3t|=2×16|t2+5t|,解得:t=7或1,∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);综上所述,点M及其对应点Q的坐标为:,;,;M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).【点睛】本题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键.2.(1)224233y x x =--+;(2)35(,)22P -(3)存在,12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【解析】【分析】(1)根据待定系数法求抛物线解析式;(2)设224(,)33P t t --根据(1)的结论求得C 的坐标,进而求得AC 的解析式,过P 作PD ⊥x 轴交AC 于点D ,进而求得PD 的长,根据12APC C A S PD x x =⋅⋅-△求得APC S 的表达式,进而根据二次函数的性质求得取得最大值时,t 的值,进而求得P 点的坐标;(3)分情况讨论,①//CM AQ ,②//AC MQ ,根据抛物线的性质以及平行四边形的性质先求得M 的坐标进而求得Q 点的坐标.【详解】(1)二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,则093202a b a b =-+⎧⎨=++⎩解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为224233y x x =--+ (2)抛物线224233y x x =--+与y 轴交于点C ,令0x =,则2y = (0,2)C ∴设直线AC 的解析式为y kx b =+,由(3,0)A -,(0,2)C ,则302k b b -+=⎧⎨=⎩解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的解析式为223y x =+, 如图,过P 作PD ⊥x 轴交AC 于点D ,设224(,)33P t t --,则2(,2)3D t t +, 2224222223333PD t t t t t ⎛⎫∴=--+-+=-- ⎪⎝⎭∴12APC C A S PD x x =⋅⋅-△212(2)323t t =⨯--⨯2239324t t t ⎛⎫=--=-++ ⎪⎝⎭ ∴当32t =-时,APC S 取得最大值,此时222423435223332322t t ⎛⎫⎛⎫--+=-⨯--⨯-+= ⎪ ⎪⎝⎭⎝⎭ ∴35(,)22P - (3)存在,理由如下抛物线解析式为224233y x x =--+()228133x =-++ ∴抛物线的对称轴为直线1x =①如图,当//CM AQ 时,Q 点在x 轴上,//CM x 轴∴,M C 关于抛物线的对称轴直线1x =对称,(0,2)C(2,2)M ∴-2CM ∴=122AQ AQ ∴==(3,0)A -12(1,0),(5,0)Q Q ∴--②当//AC MQ 时,如图,设M 的纵坐标为n ,四边形ACQM 是平行四边形,点A ,Q 在x 轴上,则,AQ MC 的交点也在x 轴上, 202n +∴= 解得2n =-设(,2)M m -,2242233x x ∴-=--+ 解得17x =-(17,2)M ∴--A 点到C 点是横坐标加3,纵坐标加2∴M 点到Q 点也是横坐标加3,纵坐标加2 即(173,0)Q -±34(27,0),(27,0)Q Q ∴综上所述,存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【点睛】本题考查了二次函数综合,待定系数法,二次函数最值,二次函数的图象与性质,平行四边形的性质,综合运用以上知识是解题的关键.3.(1)B 2C 2;(233-3)OA 最小值为1,相应的3BC =OA 最大值为2,相应的6BC =【解析】【分析】(1)结合题意,根据旋转和圆的性质分析,即可得到答案;(2)根据题意,分B C ''在x 轴上方和x 轴上方两种情况;根据等边三角形、勾股定理、全等三角形的性质,得32AD OD ==,从而完成求解; (3)结合题意,得当AC '为⊙O 的直径时,OA 取最小值;当A 、B '、O 三点共线时,OA 取最大值;根据勾股定理、等腰三角形的性质计算,即可得到答案.【详解】(1)线段B 1C 1绕点A 旋转得到的11B C '',均不能成为⊙O 的弦∴线段B 1C 1不是⊙O 的以点A 为中心的“关联线段”;线段B 2C 2绕点A 旋转得到的22B C '',如下图:∴线段B 2C 2是⊙O 的以点A 为中心的“关联线段”;线段B 3C 3绕点A 旋转得到的33B C '',均不能成为⊙O 的弦∴线段B 3C 3不是⊙O 的以点A 为中心的“关联线段”;故答案为:B 2C 2;(2)∵△ABC 是边长为1的等边三角形,点A (0,t ),⊙O 的半径为1 ∴//B C x ''轴分B C ''在x 轴上方和x 轴上方两种情况:当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:∵1OB OC ''==∴1122B D B C '''== ∴2232OD OB B D ''=-=∵△ABC 是边长为1的等边三角形,即△AB C ''是边长为1的等边三角形, ∴AC D OC D ''∠=∠,AD B C ''⊥ ∴AC D OC D ''△≌△∴32AD OD == ∴3AO AD OD =+=∴3t =;当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:同理,3AO AD OD =+=∴()0,3A -;∴t 3=-;∴3t =或3-;(3)当AC '为⊙O 的直径时,OA 取最小值,如下图:∴OA 最小值为1,90AB C ''∠=︒ ∴223BC B C AC AB ''''==-=;当A 、B '、O 三点共线时,OA 取最大值,2OA AC '== ,如下图:作AE OC '⊥交OC '于点E ,作C F AO '⊥交AO 于点F ,如下图∵2OA AC '==∴1122OE OC '==∴2215AE AO OE - ∵11222AE OC OB C F '''⨯=⨯⨯ ∴1152C F AE '==∴2214OF OC C F ''=-=∴34B F OB OF ''=-=∴262BC B C C F B F ''''==+=∴OA 最小值为1,相应的3BC =;OA 最大值为2,相应的62BC =. 【点睛】本题考查了旋转、圆、等边三角形、勾股定理、全等三角形、等腰三角形的知识;解题的关键是熟练掌握旋转、圆周角、等腰三角形三线合一、勾股定理的性质,从而完成求解.4.(1)(3,5)M ,(2)1(5,)2C t t +;(3)(20,0)B ;(4)154或10. 【解析】 【分析】(1)利用中点坐标公式计算即可.(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .证明()MEB BFC AAS ∆≅∆,利用全等三角形的性质即可解决问题.(3)如图2中,存在.由题意当CF OA =时,可证四边形AOBD 是矩形,构建方程即可解决问题.(4)分三种情形:①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为6.③因为BD AB ≠,所以不存在以AD 为对角线的菱形. 【详解】解:(1)如图1中,(0,10)A ,(6,0)B ,AM BM =, (3,5)M ∴,(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .//ME OA ,AM BM =, 12OE EB t ∴==,152ME OA ==,90MEB CFB CBM ∠=∠=∠=︒,90MBE CBF ∴∠+∠=︒,90MBE BME ∠+∠=︒, BME CBF ∴∠=∠,()MEB BFC AAS ∴∆≅∆,5BF ME ∴==,12CF BE t ==,5OF OB BF t ∴=+=+, 1(5,)2C t t ∴+.(3)存在.如图2中,作ME OB ⊥于E ,CF x ⊥轴于F .理由:由题意当=10CF OA =时,//OA CF , ∴四边形AOFC 是平行四边形,90AOF ∠=︒,∴四边形AOFC 是矩形,90DAO AOB DBO ∴∠=∠=∠=︒,∴四边形AOBD 是矩形,又∵由(2)得12CF BE t ==, 即:1102t =,解得:20t =.(20,0)B ∴.(4)①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.AD BD =, BAD ABD ∴∠=∠,OAB ABD ∴∠=∠,OAB BAD ∴∠=∠. tan tan OAB BAD ∴∠=∠, ∴12OB BC OA BA ==,即1102t =,5t ∴=,5OB ∴=,设AN NB m ==,在Rt OBN △中,则有2225(10)m m =+-, 解得254m =, 25151044ON OA AN ∴=-=-=, ∴点N 的纵坐标为154. ②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为10.③BD AB ≠,∴不存在以AD 为对角线的菱形. 综上所述,满足条件的点N 的纵坐标为154或10. 【点睛】本题属于四边形综合题,考查了矩形的判定和性质,菱形的判定和性质,翻折变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.5.(1)证明见解析;(23333xx;(3)194【解析】 【分析】(1)如图,连接,AC 证明,ACB ACD 都为等边三角形,可得,AC AD = 再证明,ACM ADE ≌从而可得答案;(2)如图,记,AC BD 交于点,O 设,,DFa OFb 四边形ABCD 为菱形,60,ABC ∠=︒表示33,33OA OB a b 利用,2DF ax BF a b则2,1a xb x再利用三角函数的定义可得答案;(3)如图,设,DFESn 证明,DFE BFA ∽ 2,BFAnSx 再表示2222,,33ABGAGFn nSS S x x 结合菱形的轴对称的性质可得:2=,3CBG nS x 表示,AFDn S x可得2=,BCD ABDn n S Sxx 可得2212243334,3nn n S x x x x n S x 再利用二次函数的性质可得答案.【详解】证明:(1)如图,连接,AC 菱形ABCD 中,∠ABC =60°,,60,120,60,AB BC CDAD ABC ADC BAD BCD BAC CAD ACB,ACB ACD 都为等边三角形,,AC AD ∴=,60,DE CM ACM ADE,ACM ADE ≌ ,,AMAE MAC EAD 60,MACCAECAEEADAME ∴是等边三角形(2)如图,记,AC BD 交于点,O设,,DF a OF b 四边形ABCD 为菱形,60,ABC ∠=︒,,30,ACBD OB OD a b ABO33,33OAOB a b ,2DF a x BFa b1221,a b bx a a 11,22b ax 则2,1ax bx333tan 13a b OAa AFBOFbb32331,3133xxxx(3)如图,设,DFESn四边形ABCD 是平行四边形,,DFE BFA ∽22=,BFAn DF x S BF2,BFAn SxFG =2BG , 2222,,33ABGAGFn n SS S xx根据菱形的轴对称的性质可得:2=,3CBG n S x ,AFD ABFS DF x SBF2,AFDn n S x x x 2=,BCDABD n n SSxx1222224=333n n n n n nS nn x x x x x x, 2212243334,3n n n S x x x x n S x 30,a所以12S S 有最大值, 当31232x时,最大值为:1119334.424【点睛】本题考查的是菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,相似三角形的判定与性质,列二次函数关系式,二次函数的性质,锐角三角函数的应用,灵活运用以上知识解题是解本题的关键.6.(1)213442y xx =-++;(2)点P 的坐标为:(6,41,2);(3)11NC MC +=【解析】 【分析】(1)根据题意,先证明AOC ∆∽COB ∆,得到AO OCCO OB=,求出点A 、B 的坐标,然后利用待定系数法,即可求出抛物线解析式;(2)根据题意,可分为两种情况:AOC ∆∽PQC ∆或AOC ∆∽CQP ∆,结合解一元二次方程,相似三角形的判定和性质,分别求出点P 的坐标,即可得到答案;(3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,然后由角平分线的性质定理,得到EI =EJ ,再证明△MEI ∽△MNC ,△NEJ ∽△NMC ,得到111NC MC EI+=,然后求出EI 一个定值,即可进行判断. 【详解】解:(1)∵以AB 为直径的圆过点C , ∴∠ACB =90°, ∵点C 的坐标为()0,4, ∴CO ⊥AB ,∴∠AOC =∠COB =90°,∴∠ACO +∠OCB =∠ACO +∠OAC =90°, ∴∠OCB =∠OAC , ∴AOC ∆∽COB ∆,∴AO OCCO OB=, ∵4CO =,10AO BO AB +==, ∴10AO OB =-, ∴1044OB OB-=, 解得:2OB =或8OB =, 经检验,满足题意, ∵OB OA >, ∴8OB =,∴点A 为(2-,0),点B 为(8,0).设抛物线的解析式为2y ax bx c =++,把点A 、B 、C 三点的坐标代入,有44206480c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得:14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为213442y x x =-++;(2)根据题意,如图:当AOC ∆∽PQC ∆时, ∴ACO PCQ ∠=∠, ∵90ACO OCB ∠+∠=︒, ∴90PCQ OCB ∠+∠=︒, ∴PC ⊥OC , ∴点P 的纵坐标为4,当4y =时,有2134442x x -++=,解得:16x =或20x =(舍去); ∴点P 的坐标为(6,4);当AOC ∆∽CQP ∆时,则此时BC 垂直平分OP ,作PG ⊥y 轴,垂足为G ,如上图, ∴90CQP AOC ∠=∠=︒,∴AC ∥OP , ∴∠ACO =∠POG , ∵90PGO AOC ∠=∠=︒, ∴AOC ∆∽PGO ∆, ∴AO OCPG GO=, 设点P 为(x ,213442x x -++), ∴PG x =,213442GO x x =-++,∴22413442x x x =-++, 解得:171x =±-, ∵点P 在第一象限, ∴171x =-,∴2134217242x x -++=-,∴点P 的坐标为(171-,2172-);综合上述,点P 的坐标为:(6,4)或(171-,2172-); (3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,如图:∵CE 是∠ACB 的角平分线, ∴EI =EJ ,∵EI ∥CN ,EJ ∥CM ,∴△MEI ∽△MNC ,△NEJ ∽△NMC , ∴EI ME NC MN =,EJ NE MC MN =, ∴1EI EJ ME NENC MC MN MN +=+=, ∴1EI EI NC MC +=, ∴111NC MC EI+=, ∵△ACO ∽△AEI ,∴12AI AO EI CO ==,∵AC = ∵AC AI IC AI EI =+=+,12=,解得:EI =∴111NC MC EI +==∴11NC MC+是一个定值. 【点睛】本题考查了二次函数的综合应用,求二次函数的解析式,二次函数的性质,相似三角形的判定和性质,解一元二次方程,角平分线的性质定理等知识,解题的关键是熟练掌握题意,正确的作出辅助线,运用数形结合的思想进行解题.7.(1)①B ;D ;4;②1;(2)1522y x =-+或24y x =-+【解析】 【分析】(1)①根据“近点”、“远点”以及“ 特征数”的定义判断即可;②过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P .先分别求得点E 、F 的坐标,进而可求得EF 的长,再利用等积法求得OH 的长,进而即可解决问题;(2)如图,先求得“近点”N 到直线l 的距离NH AOB AHN △∽△即可求得答案. 【详解】解:(1)①由题意,点B 是O 关于直线m 的“近点”, 点D 是O 关于直线m 的“远点”, ∵点E 的坐标为(0,3).⊙O 的半径为1, ∴OE =3,OB =OD =1,∴BE =OE -OB =2,DB =OB +OD =2,O 关于直线m 的特征数224DB BE =⋅=⨯=, 故答案为:B ;D ;4;②如图,过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P ,设直线33y x =-+交x 轴于点F ,交y 轴于点E , 令y =0,则x =3;令x =0,则y =3, ∴(3F ,0),(0,3)E ,3OE ∴=,3OF =,22223(3)23EF OE OF ∴=+=+=,∵1122EOF S OE OF EF OH =⋅=⋅△, ∴11332322OH ⨯⨯=⨯⋅, 解得:32OH =, 12QH OH OQ ∴=-=, 又∵2PQ OQ OP =+=,O ∴关于直线n 的“特征数” 1212PQ QH =⋅=⨯=;(2)如图,设直线l 交x 轴于点A ,交y 轴于点B ,过点F 作FH ⊥直线l ,垂足为点H ,交⊙F 于N ,G ,∵⊙F 5,∴FN =FG 5,∴GN =FN +FG 5∵⊙F 关于直线l 的“特征数”是6, ∴GN·NH =6,NH =6, 解得:NH设直线l 的解析式是y kx b =+, ∵直线l 经过点M (1,2),∴将(1,2)代入y kx b =+,得:2k b +=, 2b k ∴=-,(2)y kx k ∴=+-,∴当0x =时,2y k =-,∴点B 坐标为(0,2-k ),|2|OB k ∴=-,当0y =时,(2)0kx k +-=, 解得:2k x k-=, ∴点A 坐标为(2k k-,0), 2||k OA k -∴=,22|(1)||1|k k AN k k--=--=+,AB ∴2||k k-= BAO NAH ∠=∠,90AOB AHN ∠=∠=︒, AOB AHN ∴△∽△,∴NH ANOB AB=,∴|2|522|1|||k k k k k-=--+, 整理,得:22520k k ++=,解得:12k =-或2k =-,∴直线l 的解析式为1522y x =-+或24y x =-+.【点睛】本题属于圆综合题,考查了一次函数的性质,相似三角形的判定和性质运用以及勾股定理的运用,远点,近点,特征数等新定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.8.(1)y =-x 2+2x +3,y =-x +3;(2)存在,(-1,0)或(4,-5);(3)存在,(1,2)或(1,-3) 【解析】 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD AD =,进而判断出ABC 的面积和ACP △的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】(1)把(30)A ,、(10)B -,代入2y x bx c =-++, 解得2b =、3c =∴抛物线的解析式为2y x 2x 3=-++则C 点为(0,3),又(30)A ,,代入1y kx b =+, 得1k =-,13b =, ∴直线AC 的解析式为3y x =-+, (2)如图,连接BC ,∵点D 是抛物线的对称轴与x 轴的交点, ∴AD BD =, ∴2ABCACDSS=,∵2ACP ACD S S =△△,∴ACP ABC S S =△△,此时,点P 与点B 重合, 即:(10)P -,, 过B 点作PB AC ∥交抛物线于点P ,则直线BP 的解析式为1y x =--①, ∵抛物线的解析式为2y x 2x 3=-++②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5); (3)由(1)可知,抛物线解析式为()214y x =--+ 把1x =代入直线AC 解析式3y x =-+得AC 与抛物线对称轴的交点(1,2)M ,如下图所示:22222BM AM ==+,4AB =即222BM AM AB +=则MAB △是等腰直角三角形,符合题意,M 点即为所求Q 点的一种情况,当Q 点在x 轴下方时,设Q 为(1,)m ,0m <, 因为线段AQ 绕Q 点顺时针旋转90°得到线段1QA 过A1作直线DQ 的垂线于E 点,则1ADQ QEA ≌ ∴2AD QE ==,1DQ EA m ==- ∴12(1)A m m --,∵点A1恰好落在抛物线2y x 2x 3=-++上, 代入,解得m=-3或2m = (舍去) ∴Q (1,-3)综上,Q 点坐标为(1,2)或(1,-3), 【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,全等三角形的判定与性质,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.9.(1)直线AC 的解析式为y =﹣x +6;(2)d =4-t ;(3)Q (212,1). 【解析】 【分析】(1)先由解析式求出得A 、C 点的坐标,得OA =OC ,得四边形ABCO 为正方形,再根据正方形的面积求得边长,便可得b 的值;(2)过点Q 作QG ⊥AB 交AB 延长沿于点G ,证明Rt △AOP ≌Rt △GPQ (AAS ),得到AP =GQ ,进而求得结论便可;(3)过点P 作PH ⊥OF 于点H ,延长PH 交EQ 的延长线于点R ,EQ 的延长线与x 轴交于点N ,过Q 作QM ⊥x 轴于点M .证明Rt △AOP ≌Rt △GPQ (CCS ),得PK =QR ,∠R=∠OKP,再证明∠R=∠FPR,得EP=ER,再证FE=NR,设FE=NR=k,NQ=m,在Rt△PQE中,由勾股定理列出方程,得到k与m的关系,解Rt△PQE得tan∠PEQ,进而把这个函数值运用到△OAP中,求得t的值,再运用(2)中结论得Q的纵坐标d的值,再运用到△QNM中求得NM,NQ的值,进而求得ON,便可得Q的横坐标的值.【详解】解:(1)∵直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,A b C b,∴(,0),(0,)∴OA=OC=b,∴矩形ABCO为正方形,∵矩形ABCO的面积是36.∴b=6,即直线AC的解析式为y=﹣x+6;(2)如图,过点Q作QG⊥AB交AB延长沿于点G,∵∠OPQ=90°,∴∠APO+∠GPQ=90°,∵∠APO+∠AOP=90°,∴∠AOP=∠GPQ,∵在矩形ABCO,∠OAP=90°,QG⊥AB,∴∠QGP=∠OAP=90°,∵PQ=OP,∴Rt△AOP≌Rt△GPQ(AAS),∴AP=GQ,∵AP=t,∴GQ=t,∴d=4-t;(2)过点P作PH⊥OF于点H,延长PH交EQ的延长线于点R,EQ的延长线与y轴交于点N,过Q作QM⊥y轴于点M.则AP=t,QM=d,且d=6-t.∵OF 平分∠POC , ∴∠POF =∠COF =∠PFO , ∴PF =PO ,∵PH ⊥OF ,∠OPQ =90°, ∴∠OPH =∠FPH ,∠KPH =∠POH , 在△OPK 和△PQR 中, 90OPK PQR PO QP POK QPR ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△OPK ≌△PQR (ASA ), ∴PK =QR ,∠R =∠OKP ,∵∠OKP +∠POK =∠POK +∠OPH =90°, ∴∠OKP =∠OPH , ∴∠R =∠OPH , ∵PO =PF ,PH ⊥OF , ∴∠OPH =∠FPH , ∴∠R =∠FPR , ∴EP =ER ,∵PE ∥ON ,OP ∥EN , ∴四边形OPEN 是平行四边形, ∴EN =PO =PF , ∴PE -PF =ER -EN , ∴FE =NR ,设FE =NR =k ,则KQ =2FE =2k , 又设NQ =m ,∴PK=QR=m+k,∴PQ=m+3k,∴PO=EN=PF=m+3k,∴QE=EN-QR=m+3k-m=3k,PE=PF+FE=4k+m,在Rt△PQE中,∵PE2=PQ2+QE2,∴(4k+m)2=(3k+m)2+(3k)2,∴k1=0(舍去),k2=m,∴PQ=4m,QE=3m,∴tan∠PEN=43 PQQE=,∵OP∥EN,∴∠OPA=∠PEN,∴tan∠APO=43,∵AO=6,∴AP=4.5,∴t=4.5,∴QM=d=6-t=1.5,∵PE∥OC,∴∠QNM=∠PEN,∴tan∠QNM=tan∠PEN=43,∴NM=9 tan8QMQNM=∠,∴m=NQ158 =,∴PE=ON=4k+m=5m=758,∴OM=ON+NM=212,∴Q(212,1).【点睛】本题是一次函数与四边形的综合题,主要考查了一次函数的图象与性质,全等三角形的性质与判定,正方形的性质,旋转的性质,解直角三角形的应用,等腰三角形的性质与判定,平行四边形的性质与判定,是一道综合性极强的题目,解决这类问题常用到数形结合、方程和转化等数学思想方法.构造全等三角形是解题的关键,也是问题的突破口.10.(1);(2);(3)【解析】 【分析】(1)由抛物线的二次项系数 再根据交点式可得抛物线为从而可得答案;(2)先画好图形,证明利用相似三角形的性质求解从而可得答案;(3)如图,过P 作轴于,K 过M 作于,N 证明即再求解则,再解方程可得 4,t = 再求解的解析式,再联立解析式解方程可得答案. 【详解】 解:(1) 抛物线交x 轴于()2,0A -、()5,0B 两点,所以可得抛物线为:(2)如图,过P 作于,H 连AP 交OC 于则,x 则令0,(3)如图,过P作轴于,K过M作于,N 由(2)得:,,轴,则轴,,即结合(1)可得:四边形为矩形,。

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(学生版)

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(学生版)

2023年中考数学压轴题专项训练--填空压轴题(几何篇)一、压轴题速练1一.填空题(共40小题)1(2023•龙湾区二模)如图,在△ABC中,AB=13,BC=14,AC=15,点D是线段AC上任意一点,分别过点A、C作直线BD的垂线,垂足为E、F,AE=m,CF=n,则n+m的最大值是,最小值是.2(2023•湖北模拟)如图,正方形ABCD的对角线交于点O,AB=22,现有半径足够大的扇形OEF,∠EOF=90°,当扇形OEF绕点O转动时,扇形OEF和正方形ABCD重叠部分的面积为.3(2023•榆树市二模)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交BC于点M.若AB=13,EF=1,则GM的长为.4(2023•道外区二模)如图,在四边形ABCD中,AB=BC,∠A=∠ABC=90°,以CD为斜边作等腰直角△ECD,连接BE,若CD=213,BE=2,则AB=.5(2023•包河区二模)Rt△ABC中,点D是斜边AB的中点.(1)如图1,若DE ⊥BC 与E ,DF ⊥AC 于F ,DE =3,DF =4,则AB =;(2)如图2,若点P 是CD 的中点,且CP =52,则PA 2+PB 2=.6(2023•庐江县三模)如图,四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,连接MN ,若∠DAM =105°,∠BAN =75°,若AM AN=3+12,则∠ANM =°.7(2023•中山市二模)如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =4,BE =10.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为.8(2023•新都区模拟)青朱出入图,是魏晋时期数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”,若图中DF =1,CF =2,则AE 的长为.9(2023•黄埔区一模)△ABC为等腰直角三角形,AB=AC=6,∠BAC=90°,动点D在边BC上运动.以A为直角顶点,在AD右侧作等腰直角三角形△ADE(如图).M为DE中点,N为BC三等分点,CN=13BC,连接MN,则线段MN的最小值为.10(2023•雁塔区校级模拟)如图,菱形ABCD的边长为5,将一个直角的顶点放置在菱形的中心O 处,此时直角的两边分别交边AD,CD于点E,F,当OE⊥AD时,OE的长为2,则EF的长是.​11(2023•奉贤区二模)如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是 2 .12(2023•吕梁一模)如图,在正方形ABCD中,点P在对角线BD上,点E,F分别在边AB和BC 上,且∠EPF=45°,若CF=2DP=4,AE=12,则AB的长度为.13(2023•蚌埠二模)如图,点E为正方形ABCD的边CD上一点,以点A为圆心,AE长为半径画弧EF,交边BC于点F,已知正方形边长为1.(1)若∠DAE=15°,则DE的长为;(2)△AEF的面积为S的最大值是.14(2023•兰考县一模)如图,方形ABCD中,AB=8,点P为射线BC上任意一点(与点B、C不重合),连接AP,在AP的右侧作正方形APGH,连接AG,交射线CD于E,当ED长为2时,点BP的长为.15(2023•本溪一模)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C,D都在格点上,∠A=60°,则cos∠CDB的值为.16(2023•沂南县校级一模)如图,矩形ABCD中,AC、BD相交于点O,过点B作BF⊥AC交CD 于点F,交AC与点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN、EM,则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是.17(2023•琼海一模)如图,菱形ABCD,AE⊥BC,点E为垂足,点F为AE的中点,连接BF并延长交AD于点G,连接CG,CE=2,CG=211,则DG=,AG=,AF=.18(2023•镇江一模)如图,在矩形ABCD中,AB=6,BC=8,△BEF的顶点E在对角线AC上运动,且∠BFE=90°,∠EBF=∠BAC,连接AF,则AF的最小值为.19(2023•泉州模拟)如图,在菱形ABCD 中,∠A =60°,点E 在边AD 上,以BE 为边在菱形ABCD 的内部作等边三角形BEF ,若∠DEF =α,∠EBD =β,则α与β之间的数量关系可用等式表示为.20(2023•市南区一模)如图,正方形ABCD 中,E 、F 分别为BC 、CD 边上的点,∠EAF =45°,则下列结论中正确的有.(填序号)①BE +DF =EF ;②tan ∠AMD =CD DF; ③BM 2+DN 2=MN 2;④若EF =1.5,S △AEF =3,则.S 正方形ABCD =4.21(2023•大连一模)学习菱形时,我们从它的边、角和对角线等方面进行研究,可以发现并证明:菱形的每一条对角线平分一组对角.小明参考平行四边形、矩形判定方法的研究过程,得出下面的猜想:①一条对角线平分一组对角的四边形是菱形;②每一条对角线平分一组对角的四边形是菱形;③一条对角线平分一组对角的平行四边形是菱形.其中正确的是(填序号,填写一个即可).22(2023•石景山区一模)如图,在菱形ABCD 中,点E ,F 分别在BC ,AD 上,BE =DF .只需添加一个条件即可证明四边形AECF 是矩形,这个条件可以是(写出一个即可).23(2023•河东区一模)已知,如图,已知菱形ABCD 的边长为6,∠ABC =60°,点E ,F 分别在AB ,CB 的延长线上,且BE =BF =13AB ,G 是DF 的中点,连接GE ,则GE 的长是.24(2023•合肥模拟)如图,点P在正方形ABCD内,∠BPC=135°,连接PA、PB、PC、PD.(1)若PA=AB,则∠CPD=;(2)若PB=2,PC=3,则PD的长为.25(2023•鄞州区一模)如图,Rt△ABC中,∠C=90°,AC=BC=8,作正方形CDEF,其中顶点E 在边AB上.(1)若正方形CDEF的边长为26,则线段AE的长是;(2)若点D到AB的距离是2,则正方形CDEF的边长是.26(2023•郓城县校级模拟)如图,在平行四边形ABCD中,对角线AC、BD交于点O.点M是BC 边的中点,连接AM、OM,作CF∥AM.已知OC平分∠BCF,OB平分∠AOM,若BD=32,则sin∠BAM的值为.27(2023•三原县二模)如图,点M是▱ABCD内一点,连接MA,MB,MC,MD,过点A作AP∥BM,过点D作DP∥CM,AP与DP交于点P,若四边形AMDP的面积为6,则▱ABCD的面积为.28(2023•和平区二模)如图,已知正方形ABCD的边长为4,点E为边BC上一点,BE=3,在AE的右侧,以AE为边作正方形AEFG,H为BG的中点,则AH的长等于.29(2023•鼓楼区校级模拟)如图,在矩形ABCD中,AD=3,AB=4,B是边AB上一点,△BCE与△FCE关于直线CE对称,连接BF并延长交AD于点G,过点F作FH⊥AD,垂足为点H,设BE=a,若点H为AG的中点,则BE的长为.30(2023•呼和浩特一模)如图在菱形ABCD中,O为对角线AC与BD的交点,点P为边AB上的任一点(不与A、B重合),过点P分别作PM⊥AC,PN⊥BD,M、N为垂足,则可以判断四边形MPNO 的形状为.若菱形的边长为a,∠ADC=120°,则MN的最小值为.(用含a的式子表示)31(2023•洛阳一模)在扇形OAB中,∠AOB=60°,点C是半径OA上一点,且OC=6,将线段OC 沿OB方向平移,当平移距离是6时,点C的对应点C'恰好落在弧AB上,则图中阴影部分的面积为.32(2023•临渭区二模)如图,正六边形纸片ABCDEF的边长为6cm,从这个正六边形纸片上剪出一个扇形(图中阴影部分),则这个扇形的面积为cm2.(结果保留π)33(2023•桂林二模)如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,半径为1的⊙O在Rt△ABC内移动,当⊙O与∠A的两边都相切时,圆心O到点B的距离为2 .34(2023•万州区模拟)如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,以点B为圆心,AB为半径作圆弧交CB的延长线于点D,以点A为圆心,AC为半径作圆弧交AD于点E.则图中阴影部分的面积为.35(2023•九龙坡区校级模拟)如图,AC、AD是⊙O中关于直径AB对称的两条弦,以弦AC、AD 为折线将弧AC、弧AD折叠后过圆心O,若⊙O的半径r=4,则圆中阴影部分的面积为.36(2023•烟台一模)如图,GC,GB是⊙O的切线,AB是⊙O的直径,延长GC,与BA的延长线交于点E,过点C作弦CD∥AB,连接DO并延长与圆交于点F,连接CF,若AE=2,CE=4,则CD的长度为.37(2023•历下区二模)如图,已知扇形AOB的半径OA=2,∠AOB=120°将扇形AOB绕点A顺时针旋转30°得到扇形AO′B′,则图中阴影部分的面积是.38(2023•邓州市一模)如图,在扇形AOB中,∠AOB=60°,OA=3,半径OC平分AB,点D为半径OA中点,点E为半径OC上一动点,当AE+DE取得最小值时,由AC,AE,CE围成的阴影部分的面积为.39(2023•龙口市二模)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB 为直径的圆经过点C,D,则cos∠ADC的值为.40(2023•渝中区校级二模)如图,扇形纸片AOB的半径为2,沿AB折叠扇形纸片,点O恰好落在AB上的点C处,图中阴影部分的面积为.​。

全国各地中考数学压轴题精选(含详细答案)

全国各地中考数学压轴题精选(含详细答案)
一.解答题(共30小题) 1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2: 相交于点P(﹣1,0). (1)求直线l1、l2的解析式; (2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上 的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向 运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后 ,仍沿平行于x轴的方向运动,… 照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,Bn,An,… ①求点B1,B2,A1,A2的坐标; ②请你通过归纳得出点An、Bn的坐标;并求当动点C到达An处时,运动的总路径的长?
12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系 ,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点, 动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒. (1)求直线BC的解析式; (2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的 ; (3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S 与t的函数关系式,并指出自变量t的取值范围;
8
点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐 标原点O.(如图2) ①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时, S的值恰好等于梯形OEFG面积的 ;
②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM 是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在, 请说明理由.(利用图3进行探索)

中考数学压轴题100题精选及答案(全)

中考数学压轴题100题精选及答案(全)
【002】 如图16,在Rt△ABC中,∠C=90°,AC= 3,AB= 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(3)第(2)问中的一次函数的图象与 轴、 轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积 与四边形OABD的面积S满足: ?若存在,求点E的坐标;
若不存在,请说明理由.
【017】如图,已知抛物线 经过 , 两点,顶点为 .
【012】如图,在平面直角坐标系 中,半径为1的圆的圆心 在坐标原点,且与两坐标轴分别交于 四点.抛物线 与 轴交于点 ,与直线 交于点 ,且 分别与圆 相切于点 和点 .
(1)求抛物线的解析式;
(2)抛物线的对称轴交 轴于点 ,连结 ,并延长 交圆 于 ,求 的长.
(3)过点 作圆 的切线交 的延长线于点 ,判断点 是否在抛物线上,说明理由.
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
请直接写出相应的t值。
【004】如图,已知直线 与直线 相交于点 分别交 轴于 两点.矩形 的顶点 分别在直线 上,顶点 都在 轴上,且点 与点 重合.

最新九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)

最新九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)

2023年九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x ∥轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++沿射线AC 方向平移M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.3.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标.4.如图1,在平面直角坐标系中,点O 为坐标原点,抛物线24y ax bx =++与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,直线4y x =-+经过B 、C 两点,4OB OA =.(1)求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,过点P 作PD x ⊥轴交BC 于点D ,垂足为N ,连接PC 交x 轴于点E ,设点P 的横坐标为t ,PCD 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,如图3,过点P 作PF PC ⊥交y 轴于点F ,PF PE =.点G 在抛物线上,连接PG ,45CPG ∠=︒,连接BG ,求直线BG 的解析式.5.如图1,已知二次函数2y ax bx c =++的图象的顶点为()0,1D ,且经过点()2,2A .(1)求二次函数的解析式;(2)过点A 的直线与二次函数图象的另一交点为B ,与y 轴交于点C ,若BDC 的面积是ADC △的两倍,求直线AB 的解析式;(3)如图2,已知(),0E m ,是x 轴上一动点(E ,O 不重合),过E 的两条直线1l ,2l 与二次函数均只有一个交点,且直线1l ,2l 与y 轴分别交于点M 、N .对于任意的点E ,在y 轴上(点M 、N 上方)是否存在一点()0,F t ,使N FEM F E △∽△恒成立.若存在,求出t 的值;若不存在,请说明理由.6.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.7.如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,3).(1)求抛物线解析式;(2)抛物线上是否存在点P,使得△CBP=△ACO,若存在,求出点P的坐标,若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求DQ EQ QFAD BE CF++的值.8.如图所示,平面直角坐标系中,二次函数y=a(x+2k)(x﹣k)图象与x轴交于A、B两点,抛物线对称轴为直线x=﹣2;(1)求k 的值;(2)点C 为抛物线上一点,连接BC 、AC ,作CD △x 轴于D ,当△BCA =90°时,设CD 长度为d ,求d 与a 的函数关系式;(3)抛物线顶点为S ,作S T 垂直AB 于T ,点Q 为第一象限抛物线上一点,连接AQ 交S T 于点P ,过B 作x 轴的垂线交AQ 延长线于点E ,连接OE 交BQ 于点G ,过O 作OE 的垂线交AQ 于点F ,若OF =OG ,tan△ABQ =2时,连接S Q ,求证:S Q =S P .9.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线=1x -.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE CE 、,当ACE △的面积最大时,求点D 的坐标; (3)当m 为何值时,ADF △与CDE 相似.10.如图,抛物线28y ax bx =++与x 轴交于()2,0A -和点()8,0B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求该抛物线的函数表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,设四边形PBOC 和AOC 的面积分别为PBOC S 四边形和AOCS,记AOC PBOC S S S =-△四边形,求S 最大值点P 的坐标及S 的最大值;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与BOC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =+-经过点()1,0C -,点()4,0B ,交y 轴于点A ,点H 是该抛物线上第四象限内的一个动点,HE △x 轴于点E ,交线段AB 于点D ,HQ △y 轴,交y 轴于点Q .(1)求抛物线的函数解析式.(2)若四边形HQOE 是正方形,求该正方形的面积.(3)连接OD 、AC ,抛物线上是否存在点H ,使得以点O 、A 、D 为顶点的三角形与△ABC 相似,若存在,请直接写出点H 的坐标,若不存在,请说明理由.12.如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为()10A -,,顶点为B .点()5C m ,在抛物线上,直线BC 交x 轴于点E .(1)求抛物线的表达式及点E 的坐标; (2)连接AB ,求△B 的余切值;(3)点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.13.如图所示,抛物线2=23y x x --与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点N 是第四象限内抛物线上的一个动点,连接BN 、CN ,求BCN △面积的最大值. (3)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.14.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.15.综合与探究如图,抛物线212y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B ,C 的坐标分别为(2,0),(0,3),点D 与点C 关于x 轴对称,P 是直线AC 上方抛物线上一动点,连接PD 、交AC 于点Q .(1)求抛物线的函数表达式及点A 的坐标; (2)在点P 运动的过程中,求PQ :DQ 的最大值;(3)在y 轴上是不存在点M ,使45AMB ∠=︒?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得△CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.17.如图(1),直线y =-x +3与x 轴、y 轴分别交于点B (3,0)、点C (0,3),经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式与点P 的坐标;(2)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值; (3)连接AC ,点N 在x 轴上,点M 在对称轴上,△是否存在使以B 、P 、N 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由;△是否存在点M ,N ,使以C 、P 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由. (图(2)、图(3)供画图探究)18.如图,已知抛物线213222y x x =-++与x 轴交于点A 、B ,与y 轴交于点C .(1)则点A 的坐标为_________,点B 的坐标为_________,点C 的坐标为_________;(2)设点11(,)P x y ,22(,)Q x y (其中12x x >)都在抛物线213222y x x =-++上,若121x x =+,请证明:12y y >;(3)已知点M 是线段BC 上的动点,点N 是线段BC 上方抛物线上的动点,若90CNM ∠=︒,且CMN 与OBC △相似,试求此时点N 的坐标.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4-(3)存在,(0,9)P -或9(0,)5P -2.(1)10;(2)最大值为4,()2,6P ; (3)N 点坐标为113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭.3.(1)243y x x =-+,()21-,(2)⎝⎭或⎝⎭(3)207,99⎛⎫ ⎪⎝⎭4.(1)254y x x =-+ (2)32122S t t =-+ (3)416y x =-5.(1)2114y x =+ (2)312y x =-或132y x =-+ (3)存在,=2t6.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 7.(1)223y x x =-++(2)存在,1217(,),(1,4)24P P - (3)DQ EQ QF AD BE CF ++的值为18.(1)k =4 (2)1d a=-9.(1)4(2)(32-,32-) (3)当2m =-或1m =-时ADF △与CDE 相似10.(1)21382y x x =-++ (2)()4,12P ,最大值为56(3)存在,()3,8,(3,5,()3,1111.(1)234y x x =--(2)6+(3)存在,点H 的坐标为1684,525⎛⎫- ⎪⎝⎭或521,24⎛⎫- ⎪⎝⎭12.(1)21322y x x =--;E (2,0) (2)3(3)M 点的坐标为(5,0)或(7,0)13.(1)C 点坐标为(0,-3),顶点M 的坐标为(1,-4);(2)278(3)P 点的坐标为39(,)44--或(-1,-2).14.(1)抛物线L 1:2=23y x x --,抛物线L 2:223y x x =-++; (2)435(,)39M 或(4,5)M -.15.(1)211322y x x =--+,A (-3,0); (2)316; (3)存在,M (0,6)或(0,-6)16.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)17.(1)243y x x =-+,顶点坐标为P (2,-1) (2)33,24E ⎛⎫- ⎪⎝⎭(3)△存在,()10,0N 或27,03N ⎛⎫ ⎪⎝⎭;△存在,点M 的坐标为(2,2);(2,-4);(2,4)18.(1)(-1,0),(4,0),(0,2);(3)点N 的坐标为(32,258)或(3,2).。

压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

2023年中考数学压轴题专项训练压轴题27选择压轴题(几何篇)一.选择题(共40小题)1.(2023•朝阳区校级三模)如图,AB是⊙O的直径,将OB绕着点O逆时针旋转40°得到OC,P是⊙O 上一点,且与点C在AB的异侧,连结P A、PC、AC,若P A=PC,则∠P AB的大小是()A.20°B.35°C.40°D.70°2.(2023•河北区二模)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,且∠COA=45°,OA =4,则点B的坐标为()A.(4+2√2,2√2)B.(2√2,2√2)C.(2+2√2,2)D.(√2,2)3.(2023•奉贤区二模)如图,矩形ABCD中,AB=1,∠ABD=60°,点O在对角线BD上,圆O经过点C.如果矩形ABCD有2个顶点在圆O内,那么圆O的半径长r的取值范围是()A.0<r≤1B.1<r≤√3C.1<r≤2D.√3<r≤24.(2023•广灵县模拟)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点O,D,E是AB边上的点,以点O为圆心,DE长为直径的半圆O与AC相切于点M,与BC相切于点N,则图中阴影部分的面积为()A .5B .9﹣2πC .9﹣πD .5﹣π5.(2023•普陀区二模)如图,△ABC 中,∠BAC =60°,BO 、CO 分别平分∠ABC 、∠ACB ,AO =2,下面结论中不一定正确的是( )A .∠BOC =120°B .∠BAO =30°C .OB =3D .点O 到直线BC 的距离是16.(2023•瓯海区模拟)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH ,连结DH 并延长交AB 于点K ,若DF 平分∠CDK ,则DH HK =( )A .2√33B .65C .√5−1D .4√577.(2023•花溪区模拟)勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题的最重要工具也是数形结合的组带之一,如图,秋千静止时,踏板离地的垂直高度BE =1m ,将它往前推6m 至C 处时(即水平距离CD =6m ),踏板离地的垂直高度CF =4m ,它的绳索始终拉直,则绳索AC 的长是( )A .152mB .92mC .6mD .212m8.(2023•承德一模)如图,在菱形ABCD 中,AC 、BD (AC >BD )相交于点O ,E 、F 分别为OA 和OC 上的点(不与点A 、O 、C 重合).其中AE =OF .过点E 作GH ⊥AC ,分别交AD 、AB 于点G 、H ;过点F 作IJ ⊥AC 分别交CD 、CB 于点J 、I ;连接GJ 、HI ,甲、乙、丙三个同学给出了三个结论:甲:随着AE 长度的变化,GH +IJ =BD 始终成立.乙:随着AE 长度的变化,四边形GHIJ 可能为正方形.丙:随着AE 长度的变化,四边形GHIJ 的面积始终不变,都是菱形ABCD 面积的一半.下列选项正确的是( )A .甲、乙、丙都对B .甲、乙对,丙不对C .甲、丙对,乙不对D .甲不对,乙、丙对 9.(2023•石家庄二模)如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是OB 与OD 的中点,依连接点A ,E ,C ,F ,A ,当四边形AECF 是矩形时,与线段BE 相等的线段有( )A .4条B .5条C .6条D .7条10.(2023•青山区二模)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O ,E 是BC 边上一点,F 是BD 上一点,连接DE ,EF .若△DEF 与△DEC 关于直线DE 对称,则OF 的长为( )A .√22B .2√2−2C .2−√2D .√2−111.(2023•柳城县一模)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.(清)陆以活《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图,是一个用七巧板拼成的装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则BF BE 的值为( )A .1+√22B .√22C .2+√24D .2+√2212.(2023•泉州模拟)如图,在矩形ABCD 中,AB =2,BC =4,将△ABC 沿BC 的方向平移至△A 'B 'C ',使得A ′E =A ′F ,其中E 是A ′B ′与AC 的交点,F 是A ′C ′与CD 的交点,则CC ′的长为( )A .52−√52B .112−√5C .5−√5D .92−√5 13.(2023•定远县二模)如图,在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .3B .2.5C .2.4D .214.(2023•烟台一模)如图,在矩形ABCD 中,AB =12,AD =10,点E 在AD 上,点F 在BC 上,且AE =CF ,连结CE ,DF ,则CE +DF 的最小值为( )A .26B .25C .24D .2215.(2023•郯城县一模)如图,在Rt △ABC 中,∠BAC =90°,AB =6,BC =10,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .4.8B .5C .2.4D .416.(2023•白云区一模)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则下列结论错误的是( )A .FD =√2MNB .△DEF 是等腰直角三角形C .BN =1D .tan ∠FBE =√317.(2023•九龙坡区校级模拟)如图,在正方形ABCD 中,O 为AC 、BD 的交点,△DCE 为直角三角形,∠CED =90°,OE =3√2,若CE •DE =6,则正方形的面积为( )A .20B .22C .24D .2618.(2023•杭州一模)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且B 点D 与点G 重合,当两张纸片交叉所成的角α最小时,tan α等于( )A .14B .815C .12D .81719.(2023•高明区二模)矩形ABCD 和直角三角形EFG 的位置如图所示,点A 在EG 上,点D 在EF 上,若∠2=55°,则∠1等于( )A.155°B.135°C.125°D.105°20.(2023•余姚市一模)如图,由两个正三角形组成的菱形内放入标记为①,②,③,④的四种不同大小的小正三角形5个,其中编号①的有2个.设未被覆盖的浅色阴影部分的周长为C1,深色阴影部分的周长为C2,若要求出C1﹣C2的值,只需知道其中两个小正三角形的边长,则这两个小三角形的编号为()A.①②B.②③C.①③D.②④21.(2023•衡水二模)如图,点P是正方形ABCD的边BC上一点,点M是对角线BD上一点,连接PM 并延长交BA的延长线于点Q,交AD于点G,取PQ的中点N.连接AN.若AQ=PC,有下面两个结论:①DM=DG,②AN⊥BD,则这两个结论中,正确的是()A.①对B.②对C.①②都对D.①②都不对22.(2023•新乡二模)如图,在矩形ABCD中,点B(0,4),点C(2,0),BC=2CD,先将矩形ABCD 沿y轴向下平移至点B与点O重合,再将平移后的矩形ABCD绕点O逆时针旋转90°得到矩形EOMN,则点D的对应点N的坐标为()A.(3,3)B.(4,4)C.(3,4)D.(4,3)23.(2023•荆门一模)如图,菱形ABCD各边的中点分别是E、F、G、H,若EH=2EF,则下列结论错误的是()A.EH⊥EF B.EH=AC C.∠B=60°D.AB=√5EF24.(2023•中原区校级二模)如图,在Rt△ABO中,AB=OB,顶点A的坐标为(2,0),以AB为边向△ABO的外侧作正方形ABCD,将组成的图形绕点O逆时针旋转,每次旋转45°,则第98次旋转结束时,点D的坐标为()A.(1,﹣3)B.(﹣1,3)C.(﹣1,2+√2)D.(1,3)25.(2023•中原区模拟)如图,▱ABCD的边BC在x轴的负半轴上,点B与原点O重合,DE⊥AB,交BA 的延长线于点E,已知∠ABC=60°,AB=4,BC=6,则点E的坐标为()A.(﹣2,﹣,2√3)B.(﹣3,3√3)C.(−72,72√3)D.(−52√3,52)26.(2023•武邑县二模)如图,N是正六边形ABCDEF对角线CF上一点,延长FE,CD相交于点M,若S△ABN=2,则S五边形ABCMF=()A.10B.12C.14D.1627.(2023•承德一模)如图,正六边形的两条对角线AE、BE把它分成Ⅰ、Ⅱ、Ⅲ三部分,则该三部分的面积比为()A.1:2:3B.2:2:4C.1:2:4D.2:3:528.(2023•罗湖区二模)如图,AB为圆O的直径,C为圆O上一点,过点C作圆O的切线交AB的延长线于点D,DB=13AD,连接AC,若AB=8,则AC的长度为()A.2√3B.2√5C.4√3D.4√529.(2023•杭州一模)如图,过⊙O外一点A作⊙O的切线AD,点D是切点,连结OA交⊙O于点B,点C是⊙O上不与点B,D重合的点.若∠A=α°,则∠C的度数为()A.(45−12α)°B.12α°C.2α°D.(45+12α)°30.(2023•西宁一模)如图,扇形纸片AOB的半径为3,沿AB所在直线折叠扇形纸片,圆心D恰好落在AB̂上的点C处,则阴影部分的面积是()A.3π−9√32B.3π−3√32C.2π−3√32D.2π−9√3231.(2023•太原一模)如图,在扇形纸片OAB 中,∠AOB =105°,OA =6、点C 是半径OA 上的点、沿直线BC 折叠△OBC 得到△DBC ,点O 的对应点D 落在AB̂上,图中阴影部分的面积为( )A .9π−92B .9π−182C .9π﹣18D .12π﹣1832.(2023•西山区校级模拟)如图,分别以等边△ABC 的三个顶点为圆心,边长为半径画弧,得到的封闭图形是莱洛三角形,若AB 为6,则图中阴影部分的面积为( )A .18π−27√3B .6π−9√3C .12π−9√3D .18π−18√333.(2023•莆田模拟)如图,在⊙O 中,∠AOB =120°,点C 在AB̂上,连接AC ,BC ,过点B 作BD ⊥AC 的延长线于点D ,当点C 从点A 运动到点B 的过程中,∠CBD 的度数( )A .先增大后减小B .先减小后增大C .保持不变D .一直减小 34.(2023•蚌埠二模)如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆O 中的阴影部分是一个正六边形,其中心与圆心O 重合,且AB =BC ,则阴影部分面积与圆的面积之比为( )A .3√38πB .√32πC .√3πD .2√39π35.(2023•鄞州区校级模拟)如图,AB 为⊙O 的直径,将弧BC 沿BC 翻折,翻折后的弧交AB 于D .若BC =4√5,sin ∠ABC =√55,则图中阴影部分的面积为( )A .256πB .253πC .8D .1036.(2023•九龙坡区模拟)如图,在⊙O 中,AB 是圆的直径,过点B 作⊙O 的切线BC ,连接AC 交⊙O 于点D ,点E 为弧AD 中点,连接AE ,若AE =AO ,AB =6,则CD 的长为( )A .2B .3√32C .√3D .3√337.(2023•宁德模拟)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”.若等边三角形ABC 的边长为2,则该“莱洛三角形”的周长等于( )A .2πB .2π−√3C .23πD .2π+√338.(2023•虹口区二模)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AB =5,BC =12.分别以点O 、D 为圆心画圆,如果⊙O 与直线AD 相交、与直线CD 相离,且⊙D 与⊙O 内切,那么⊙D 的半径长r 的取值范围是( )A .12<r <4B .52<r <6C .9<r <252D .9<r <1339.(2023•苏州一模)东南环立交是苏州中心城区城市快速内环道路系统的重要节点,也是江苏省最大规模的城市立交.左图是该立交桥的部分道路示意图(道路宽度忽略不计),A 为立交桥入口,D 、G 为出口,其中直行道为AB 、CD 、FG ,且AB =CD =FG ;弯道是以点O 为圆心的一段弧,且BC 、CE 、EF 所在的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以16m /s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如右图所示.结合题目信息,下列说法错误的是( )A .该段立交桥总长为672mB .从G 口出比从D 口出多行驶192mC .甲车在立交桥上共行驶22sD .甲车从G 口出,乙车从D 口出40.(2023•滨城区一模)如图,点A ,B 是半径为2的⊙O 上的两点,且AB =2√3,则下列说法正确的是( )A .圆心O 到AB 的距离为√3B .在圆上取异于A ,B 的一点C ,则△ABC 面积的最大值为3√3C .以AB 为边向上作正方形,与⊙O 的公共部分的面积为3+√34πD .取AB 的中点C ,当AB 绕点O 旋转一周时,点C 运动的路线长为3π。

中考数学总复习《几何压轴题》专项提升练习题(附答案)

中考数学总复习《几何压轴题》专项提升练习题(附答案)

中考数学总复习《几何压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________专题02三角形之直角、等腰问题 题型训练训练题01【2023·内蒙古·中考真题】如图,在Rt ABC △中90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC 的值为 .训练题02【2023·山东菏泽·中考真题】无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)训练题03【2023·广东·中考真题】2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=︒时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin500.766︒≈ cos500.643︒≈ tan50 1.192︒≈)训练题04【2023·湖北黄冈·中考真题】综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD 的中点A 处竖直上升30米到达B 处,测得博雅楼顶部E 的俯角为45︒,尚美楼顶部F 的俯角为30︒,已知博雅楼高度CE 为15米,则尚美楼高度DF 为 米.(结果保留根号)训练题05【2023·河北沧州·模拟预测】如图1,嘉淇在量角器的圆心O 处下挂一铅锤,制作了一个简易测角仪.将此测角仪拿到眼前,使视线沿着仪器的直径刚好到达树的最高点M .(1)在图1中,过点A 画出水平线,并标记观测M 的仰角α.若铅垂线在量角器上的读数为53︒,求α的值;(2)如图2,已知嘉淇眼睛离地1.5米,站在B 处观测M 的仰角为(1)中的α,向前走1.25米到达D 处,此时观测点M 的仰角为45︒,求树MN 的高度.(注:3tan 374︒≈ 3sin 375︒≈ 4cos375≈︒) 训练题06【2023·四川成都·八年级期末联考】如图 在等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥于点G 点M N 分别是DE DG 上的动点 且DN EM = 则FM FN +的最小值为 .训练题07【2022·陕西西安·滨河期末】如图 直线y =x ﹣3分别交x 轴 y 轴于B A 两点 点C (0 1)在y 轴上 点P 在x 轴上运动 则2PC +PB 的最小值为 .训练题08【2021·四川甘孜·中考真题】如图 腰长为22+2的等腰ABC 中 顶角∠A =45° D 为腰AB 上的一个动点将ACD 沿CD 折叠 点A 落在点E 处 当CE 与ABC 的某一条腰垂直时 BD 的长为 .训练题09【2022·福建泉州·九年级联考】如图 ABC 和AGF 是等腰直角三角形 90BAC G ∠=∠=︒ AGF 的边AF AG 交边BC 于点D E .若4=AD 3AE = 则BEDC 的值是 .训练题10【2021·宁夏固元·联考一模】如图在直角△BAD中延长斜边BD到点C 使得BD=2DC 连接AC 如果则的值是()A.B.C.D.答案&解析5 tanB3=tan CAD∠3 3351315训练题01【2023·内蒙古·中考真题】【答案】5【简证】因为tan 311tan 4522ABC CD ABD α∠=⎧⇒=⇒=⎨∠=︒⎩ 故5AD DC =【常规法】解:过点D 作DF AB ⊥于点F∵90ACB ∠=︒ 3AC = 1BC =∴223110AB =+=∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△∴==10AB AB ' 90BAB '∠=︒∴ABB '是等腰直角三角形∴45ABB '∠=︒又∵DF AB ⊥∴45FDB ∠=︒∴DFB △是等腰直角三角形∴DF BF =∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ∵ 90C AFD ∠=∠=︒ CAB FAD ∠=∠∴AFDACB ∴DF AF BC AC= 即3AF DF = 又∵=10AF DF -45°α∴10=4 DF∴105=10=42AD⨯51=3=22CD-∴52==512ADCD故答案为:5.训练题02【2023·山东菏泽·中考真题】【答案】大楼的高度BC 为303m .【分析】如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥ 则四边形CQHB 是矩形 可得QH BC = BH CQ = 求解3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= 可得704030CQ BH ==-= tan 30103PQ CQ =︒= 可得403103303BC QH ==-=.【详解】解:如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥则四边形CQHB 是矩形 ∴QH BC = BH CQ =由题意可得:80AP = 60PAH ∠=︒ 30PCQ ∠=︒ 70AB = ∴3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= ∴704030CQ BH ==-= ∴tan 30103PQ CQ =︒=∴403103303BC QH ==-= ∴大楼的高度BC 为303m .训练题03【2023·广东·中考真题】【答案】15.3m【分析】连接AB 作作CD AB ⊥于D 由等腰三角形“三线合一”性质可知2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中利用sin AD ACD AC∠=求出AD 继而求出AB 即可.【详解】解:连接AB 作CD AB ⊥于D∵AC BC = CD AB ⊥∴CD 是边AB 边上的中线 也是ACB ∠的角平分线∴2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中 10m AC = 50ACD ∠=︒ sin AD ACD AC ∠= ∴sin 5010AD ︒= ∴10sin50100.7667.66AD =︒≈⨯=∴()227.6615.3215.3m AB AD =≈⨯=≈答:A B 两点间的距离为15.3m .训练题04【2023·湖北黄冈·中考真题】【答案】3053-/5330-+【分析】过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N 首先证明出四边形ECAM 是矩形 得到15AM CE == 然后根据等腰直角三角形的性质得到15AC EM BM === 进而得到15==AD AC 然后利用30︒角直角三角形的性质和勾股定理求出53BN = 即可求解.【详解】如图所示 过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N由题意可得 四边形ECAM 是矩形 ∴15AM CE == ∵30AB = ∴15BM AB AM =-= ∵博雅楼顶部E 的俯角为45︒ ∴45EBM ∠=︒ ∴45BEM ∠=︒ ∴15AC EM BM ===∵点A 是CD 的中点 ∴15==AD AC 由题意可得四边形AMFN 是矩形 ∴15NF AD == ∵尚美楼顶部F 的俯角为30︒ ∴60NBF ∠=︒ ∴30BFN ∠=︒ ∴2BF BN =∴在Rt BNF △中 222BNNF BF += ∴()222152BN BN +=∴解得53BN =∴3053FD AN AB BN ==-=-.故答案为:3053-.训练题05【2023·河北沧州·模拟预测】【答案】(1)37︒(2)树MN 的高度为5.25米【分析】(1)根据互余的性质计算即可.(2) 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米.解直角三角形求解即可.【详解】(1)如图1;905337α=︒-︒=︒;(2)如图 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米. 在Rt APM △中 4( 1.5)tan 373MP AP x ==-︒(米) 在Rt MCP 中 1.5CP MP x ==-(米) 4( 1.5)( 1.5) 1.253AC AP CP x x ∴=-=---=(米) 解得 5.25x =. 答:树MN 的高度为5.25米.训练题06【2023·四川成都·八年级期末联考】【答案】23【分析】过点E 作AE EF ⊥ 使得2AE DF == 证得AEM FDN ≅ 利用全等三角形的性质证得FN AM = 求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长 在Rt AEF 中利用勾股定理即可求解.【详解】解:过点E 作AE EF ⊥ 使得2AE DF == 如图所示∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF ==∴45DEF ∠=︒ 222222EF =+=∴9045AEM DEF ∠=︒-∠=︒∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥∴45FDN ∠=︒∴FDN AEM ∠=∠在AEM △和FDN 中AE DF AEM FDN EM DN =⎧⎪∠=∠⎨⎪=⎩∴AEM FDN≅()SAS ∴FN AM =∴求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长∴在Rt AEF 中()222222223AF AE EF =+=+=的最小值为23即FM FN故答案为:23训练题07【2022·陕西西安·滨河期末】【答案】4【分析】过P作PD⊥AB于D依据△AOB是等腰直角三角形可得∠BAO=∠ABO=45°=∠BPD进而得到△BDP是等腰直角三角形故PD22=PB当C P D在同一直线上时CD⊥AB PC+PD的最小值等于垂线段CD的长求得CD的长即可得出结论.【详解】如图所示过P作PD⊥AB于D∵直线y=x﹣3分别交x轴y轴于B A两点令x=0 则y=﹣3;令y=0 则x=3∴A(0 ﹣3)B(3 0)∴AO=BO=3又∵∠AOB=90°∴△AOB是等腰直角三角形∴∠BAO=∠ABO=45°=∠BPD∴△BDP是等腰直角三角形∴PD22=PB∴2PC+PB2=(PC22+PB)2=(PC+PD)当C P D在同一直线上即CD⊥AB时PC+PD的值最小最小值等于垂线段CD 的长此时△ACD是等腰直角三角形又∵点C(0 1)在y轴上∴AC=1+3=4∴CD22=AC=22即PC+PD的最小值为22∴2PC+PB的最小值为222⨯=4 故答案为:4.训练题08【2021·四川甘孜·中考真题】【答案】2或22【分析】分两种情况:当CE ⊥AB 时 设垂足为M 在Rt △AMC 中 ∠A =45° 由折叠得:∠ACD =∠DCE =22.5° 证明△BCM ≌△DCM 得到BM =DM 证明△MDE 是等腰直角三角形 即可得解;当CE ⊥AC 时 根据折叠的性质 等腰直角三角形的判定与性质计算即可;【详解】当CE ⊥AB 时 如图设垂足为M 在Rt △AMC 中 ∠A =45°由折叠得:∠ACD =∠DCE =22.5°∵等腰△ABC 中 顶角∠A =45°∴∠B =∠ACB =67.5°∴∠BCM =22.5°∴∠BCM =∠DCM在△BCM 和△DCM 中90BMC DMC CM CM BCM DCM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△BCM ≌△DCM (ASA )∴BM =DM由折叠得:∠E =∠A =45° AD =DE∴△MDE 是等腰直角三角形∴DM =EM设DM =x 则BM =x DE 2=x∴AD 2=x .∵AB=22+2∴2x2x=22+2 解得:x2=∴BD=2x=22;当CE⊥AC时如图∴∠ACE=90°由折叠得:∠ACD=∠DCE=45°∵等腰△ABC中顶角∠A=45°∴∠E=∠A=45°AD=DE∴∠ADC=∠EDC=90°即点D E都在直线AB上且△ADC△DEC△ACE都是等腰直角三角形∵AB=AC==22+2∴AD22=AC=22BD=AB﹣AD=(22+2)﹣(22)2=综上BD的长为2或22.故答案为:2或22.训练题09【2022·福建泉州·九年级联考】【答案】916【分析】利用等腰直角三角形的性质先证明AED BEA ∽ 可得34BE AE AB AD ==,设3BE x = 则4AB x AC ==,再证明ADE CDA △∽△ 可得34AC AE CD AD == 可得163CD x = 从而可得结论. 【详解】解:∵ABC 和AGF 是等腰直角三角形 ∴45,B F FAG AB AC ∠=∠=∠=︒=∵AEB AED ∠=∠∴AED BEA ∽∴AD AE DE AB BE AE ==,而4=AD 3AE = ∴34BE AE AB AD == 设3BE x = 则4AB x AC ==同理可得:ADE CDA △∽△∴AD AE DE CD AC AD == ∴34AC AE CD AD == ∴BE AC AB CD = ∴344x x x CD =,即163CD x = ∴3916163BE x CD x ==.训练题10【2021·宁夏固元·联考一模】【答案】D【详解】解:如图 延长AD 过点C 作CE ⊥AD 垂足为E∵ 即∴设AD =5x 则AB =3x∵∠CDE =∠BDA ∠CED =∠BAD∴△CDE ∽△BDA∴∴CE = DE =∴AE = ∴tan ∠CAD =.5tanB 3=53AD AB =12CE DE CD AB AD BD ===32x 52x 152x 15CE AE =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我选的中考数学压轴题100题精选【001】如图,已知抛物线2y a x=-+a≠0)经过点(2)(1)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【中,∠C=90°,AC = 3,AB = 5.点P从点CA匀速运动,到达点A后立刻以原A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C为直角梯形?若能,求t(4)当DE经过点C?时,请直接..【0034,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值。

【004】如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.【005】如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.【006】如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E 是AB的中点,CE⊥BD。

(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3) △DBC 是等腰三角形吗?并说明理由。

【009】一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数k y x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD .(1)若点A B ,在反比例函数k y x =的图象的同一分支上,如图1,试证明:①AEDK CFBK S S =四边形四边形;②AN BM =.(2)若点A B ,分别在反比例函数k y x =的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论.【010】如图,抛物线y =A,C 点,且经过点(23)a -,(1)求抛物线对应的函数表达式;(2)经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4)当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45o ,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)1抛物线y轴交于点D,与直线y x=交于点M N、分别与圆O相切于点A和、,且MA NC点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长.(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.【(10)(02),,,三点.B C-(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.2的正方形OABC 的两顶点A 、C 分别O在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数; (3)设MBN ∆的周长为p ,在旋转正方形COABC的过程中,p值是否有变化?请证明你的结论.7),且顶点C的横坐标为4,【015】如图,二次函数的图象经过点D(0,39该图象在x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【016】如图9,已知正比例函数和反比例函数的图象都经过点(33)A,.(1)求正比例函数和反比例函数的解析式;(2)把直线O A向下平移后与反比例函数的图象交于点(6),,求m的值B m和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S =?若存在,求点E 的坐标;若不存在,请说明理由.【017】如图,已知抛物线2y x bx c =++经过(10)A ,. (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90°后,点B 沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.【24bx a +-经过(10)A -,、(04)C ,两点,与x 轴交(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.【沿AE 折叠,使点O 恰好落在BC 上F 处,以BC 至M ,使CM =|CF —EO |,再以CM 、CO (1)试比较EO 、EC 的大小,并说明理由(2)令;四边形四边形CNMN CFGHS S m =,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y=mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。

【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。

相关文档
最新文档