高中数学必修4总复习练习题及答案1
高中数学必修4习题和复习参考题对应答案

高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
2022年(中学)数学学科知识与教学能力模拟及答案

(中学)数学学科知识与教学能力模拟一、主观题(每小题10 分,共 100分)1、“两角差的余弦公式”是高中数学必修4中的内容“经历用向量的数量积推出两角差的余弦公式的过程,进一步体会向量方法的作用”请完成“两角差的余弦公式推导过程”教学设计中的下列任务:(1)分析学生已有的知识基础;(2)确定学生学习的难点;(3)写出推导过程。
【答案】本题主要以高中数学必修4中“两角差的余弦公式”为例,考查三角函数的基础知识、课程概述及教学设计工作等相关知识,比较综合性地考查学科知识、课程知识以及教学技能的基本知识和基本技能。
(1)学生已有的知识基础:高一学生已经学习了《平面向量》和《三角函数》的知识,从日常教学所反应的学生特点来看,学生对类比和分类讨论的思想有所体会,但是还是只停留在体会阶段,没有办法真正灵活的运用。
具有了一定归纳总结的能力,但对于一般结论的原因,还是没能用严格的定义证明。
(2)“两角差的余弦公式”是高中数学必修4第三章《三角恒等变换》第一节《和角公式》的重点内容,“两角差余弦公式”的推导及在推导过程中体现的思想方法是本课的重点内容,同时它也是难点。
(3)教科书已经明确指出,向量的数量积是解决距离与夹角问题的好工具,在两角差的余弦公式的推导中正好能够体现向量的数量积的作用。
2、推理分为合情推理与演绎推理。
(1)分别阐述合情推理与演绎推理的含义;(7分)(2)举例说明合情推理与演绎推理在解决数学问题上的作用,并阐述两者之间的关系。
(8分)【答案】本题主要考查合情推理与演绎推理的概念及关系。
3、一条光线斜射在一水平放置的平面镜上,入射角为请建立空间直角坐标系,并求出反射光线的方程;若将反射光线绕平面镜的法线旋转一周,求所得旋转曲面的方程。
【答案】本题主要考查空间曲面与方程的基础知识。
首先建立直角坐标系,写出入射光线的直线方程,根据反射光线与入射光线关于轴对称,得出反射光线的方程;然后将反射光线绕Z轴旋转一周,即可得出旋转曲面即圆锥面的方程。
重点高中数学必修4习题和复习参考题及对应参考答案

高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角. 2、写出终边在x 轴上的角的集合. 答案:S={α|α=k·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k·360°,k ∈Z },-245°,115°; (5){β|β=90°+k·360°,k ∈Z },-270°,90°; (6){β|β=270°+k·360°,k ∈Z },-90°,270°; (7){β|β=180°+k·360°,k ∈Z },-180°,180°; (8){β|β=k·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k·360°,k ∈Z } 二 {β|90°+k·360°<β<180°+k·360°,k ∈Z }三 {β|180°+k·360°<β<270°+k·360°,k ∈Z }四{β|270°+k·360°<β<360°+k·360°,k ∈Z }说明:用角度制和弧度制写出各象限角的集合. 5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2是( )、A .第一象限角B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念. 7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值;(2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理. 2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20 习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值: (1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值. 3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简: (1)asin0°+bcos90°+ctan180°; (2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简. 5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题. 6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号. 7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号. 8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值. 9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0;(2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0;(3)角θ为第一或第四象限角当且仅当sin0 tanθθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34 x x==-.说明:要分别对x 是第三象限角和第四象限角进行讨论. 12、已知3tan 3,2απαπ=<<,求cosα-sinα的值. 答案:1(31)2- 说明:角α是特殊角. 13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α; (3)(cosβ-1)2+sin 2β=2-2cosβ; (4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tanα说明:先变形,再根据同角三角函数的基本关系进行化简. 3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式. 4、从本节的例7可以看出,cos 1sin 1sin cos x xx x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29 习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数. 2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′; (6)26sin()3π-. 答案:(1)22; (2)-0.7193; (3)-0.0151; (4)0.6639;(5)-0.9964; (6)32-说明:先利用诱导公式转化为锐角三角函数,再求值. 3、化简:(1)sin (-1071°)·sin99°+sin (-171°)·sin (-261°); (2)1+sin (α-2π)·sin (π+α)-2cos 2(-α). 答案:(1)0;(2)-cos 2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简. 4、求证:(1)sin (360°-α)=-sinα; (2)cos (360°-α)=cosα; (3)tan (360°-α)=-tanα. 答案:(1)sin (360°-α)=sin (-α)=-sinα; (2)略; (3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B 组1、计算: (1)sin420°·cos750°+sin (-330°)·cos (-660°); (2)tan675°+tan765°-tan (-330°)+tan (-690°);(3)252525sincos tan()634πππ++-. 答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值. 2、已知1sin()2πα+=-,计算: (1)sin (5π-α); (2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46 习题1.4A 组1、画出下列函数的简图: (1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1) (2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究. 5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2kπ],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2kπ,(2k +1)π],k ∈Z 时,y=-cosx 是增函数.说明:利用正弦、余弦函数的单调性研究所给函数的单调性. 6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法. 7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期. 答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解. 8、利用正切函数的单调性比较下列各组中两个函数值的大小:(1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 10、设函数f (x )(x ∈R )是以?2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是: f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题. 11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=kπ,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题: (1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗? 答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57 习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2) (3) (4)说明:研究了参数A 、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式. t 0t 02t 03t 0 4t 05t 06t 07t 08t 09t 0 10t 011t 012t 0s-20.0 -17.8 -10.10.110.3 17.7 20.0 17.7 10.30.1-10.1 -17.8 -20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P 的纵坐标关于时间t 的函数关系式为y=rsin (ωt +φ),t ∈[0,+∞);点P 的运动周期和频率分别为2πω和2ωπ. 说明:应用函数模型y=rsin (ωt +φ)解决实际问题. P65 习题1.61、根据下列条件,求△ABC 的内角A :(1)1sin 2A =;(2)2cos 2A =-; (3)tanA=1;(4)3tan 3A =-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论. P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2kπ,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解. 3、确定下列三角函数值的符号: (1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sinφ,tanφ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==; 当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α. 答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形. 7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2; (2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2c osα-2sinαcosα =右边.(2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形. 8、已知tanα=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα; (3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85.说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号. 10、已知1sin()2πα+=-,计算: (1)cos (2π-α);(2)tan (α-7π).答案:(1)当α为第一象限角时,3cos(2)2πα-=, 当α为第二象限角时,3cos(2)2πα-=-; (2)当α为第一象限角时,3tan(7)3απ-=,当α为第二象限角时,3tan(7)3απ-=-. 说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算. 11、先比较大小,再用计算器求值: (1)sin378°21′,tan1111°,cos642.5°; (2)sin (-879°),313ta n (),c o s ()810ππ--;(3)sin3,cos (sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216; (2)sin (-879°)=-0.358,3313tan()0.414,cos()0.588810ππ-=--=-; (3)sin3=0.141,cos (sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证. 12、设π<x <2π,填表:x sinx -1cosx tanx答案:x sinx -1 cosx 0 tanx1不存在-1说明:熟悉各特殊角的三角函数值. 13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z };最小值为1,此时x 的集合为{x|x=2kπ,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤.说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1) (2) (3) (4)说明:可要求学生在作出图象后,用计算机或计算器验证. 17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.B 组1、已知α为第四象限角,确定下列各角的终边所在的位置:(1)2α; (2)3α; (3)2α. 答案:(1)3(1)42k k παππ+<<+,所以2α的终边在第二或第四象限;(2)9012030901203k k α︒+︒<<︒+︒+︒,所以3α的终边在第二、第三或第四象限;(3)(4k +3)π<2α<(4k +4)π,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上.说明:不要求探索α分别为各象限角时,nα和nα的终边所在位置的规律. 2、一个扇形的弧长与面积的数值都是5,求这个扇形中心角的度数. 答案:约143°说明:先用弧度制下的扇形面积公式求出半径,再求出中心角的弧度数,然后将弧度数化为角度数.。
高中数学必修四 正切函数的性质和图象(最全提纲)巩固练习

正切函数的性质与图象【学习目标】1.能画出tan y x =的图象,并能借助图象理解tan y x =在,22ππ⎛⎫- ⎪⎝⎭上的性质; 2.会利用正切函数的单调性比较函数值大小; 3.理解正切函数的对称性. 【要点梳理】要点一:正切函数的图象 正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”(1)复习单位圆中的正切线: A T=tan α (2)利用正切线画函数y= tanx ,x ∈)2,2(ππ-的图象步骤是:①作直角坐标系,并在x=2π-的左侧作单位圆 ②把单位圆的右半圆分成8份,(每份8π).分别在单位圆中作出正切线;③把横坐标从2π-到2π也分成8份④把正切线的端点移到对应的位置; ⑤把上面的点连成光滑的曲线.由于tan (x+π)=tanx , y=tanx 是周期为π的周期函数只把y=tanx , x ∈)2,2(ππ-的图象左、右移动k π个单位(k ∈z )就得到y=tanx (x ∈R 且x ≠k π+2π)的图象.要点二:正切函数的性质 1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R由正切函数的图象可知,当()2x k k z ππ<+∈且无限接近于2k ππ+时,tan x 无限增大,记作tan x →+∞(tan x 趋向于正无穷大);当()2x k k z ππ>-+∈,tan x 无限减小,记作tan x →-∞(tan x趋向于负无穷大).也可以从单位圆上的正切线来考虑.因此tan x可以取任何实数值,但没有最大值和最小值.称直线,2x k k z ππ=+∈为正切函数的渐进线.3.周期性:正切函数是周期函数,最小正周期是π 4.奇偶性:正切函数是奇函数,即()x x tan tan -=-. 要点诠释:观察正切函数的图象还可得到:点,0()2k k z π⎛⎫∈ ⎪⎝⎭是函数tan ,y x x R =∈,且2x k ππ≠+的对称中心,正切函数图象没有对称轴5.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增要点诠释:正切函数在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内单调递增,不能说正切函数在整个定义域上是增函数.要点三:正切函数型tan()(0,0)y A x A ωϕω=+≠>的性质 1.定义域:将“x ωϕ+”视为一个“整体”.令,2x k k z πωϕπ+≠+∈解得x .2. 值域:(),-∞+∞3.单调区间:(1)把“x ωϕ+”视为一个“整体”;(2)0(0)A A ><时,函数单调性与tan (,)2y x x k k z ππ=≠+∈的相同(反);(3)解不等式,得出x 范围. 要点诠释:若0ω<,一般先用诱导公式化为0ω>,使x 的系数为正值,然后求单调区间. 4.奇偶性:当()2k k z πϕ=∈时为奇函数,否则,不具备奇偶性. 5.周期:最小正周期为||T πω=. 【典型例题】类型一:正切函数的定义域 例1.求下列函数的定义域. (1)1lg(tan )y x =;(2)y =.【思路点拨】求函数的定义域应面面俱到,必须从各个角度来考虑,从各个角度来看,都必须有意义,通常需要考虑的方面有:分母不为0,真数大于0,偶次根式内的数大于或等于0,正切函数、余切函数自身有意义等.【答案】(1),,442k k k k πππππππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭(k ∈Z )(2),,,2332k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(k ∈Z ) 【解析】 (1)要使1lg(tan )y x =有意义,必须满足()2tan 0tan 1x k k Z x x ππ⎧≠+∈⎪⎪>⎨⎪≠⎪⎩,即()2()2()4x k k Z k x k k Z x k k Z πππππππ⎧≠+∈⎪⎪⎪<<+∈⎨⎪⎪≠+∈⎪⎩, ∴函数1lg(tan )y x =的定义域为,,442xk k k k πππππππ⎛⎫⎛⎫∈+++ ⎪ ⎪⎝⎭⎝⎭(k ∈Z ).(2)要使y=2()3x k x k x k k Z πππππ⎧⎪≠⎪⎪≠+⎨⎪⎪≠+∈⎪⎩,∴函数y =,,,2332x k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫∈-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(k ∈Z ).【总结升华】求三角函数定义域时,常常归纳为解三角不等式组,这时可利用基本三角函数的图象或单位圆中三角函数线直观地求得解集.举一反三:【变式1】(2016 宁夏期中)已知函数()tan()23f x x ππ=+ (1)求f (x )的最小正周期.(2)求f (x )的定义域和单调区间. (3)求方程()f x =【思路点拨】由条件利用正切函数的周期性、定义域、单调性,求得函数的周期、定义域的单调区间,解三角方程,求得方程()f x =【答案】(1)2;(2)定义域为:1{|2,}3x x k k Z π≠+∈;单调增区间为51(2,2)33k k -+,k ∈Z ;(3){x |x =2k ,k ∈Z}.【解析】(1)对于函数()tan()23f x x ππ=+,它的周期等于22T ππ==.(2)令232x k ππππ+≠+,求得123x k ≠+,k ∈Z ,故函数的定义域为:1{|2,}3x x k k Z π≠+∈;令2232k x k ππππππ-<+<+,求得12523k x k -<<+, 可得函数的单调增区间为51(2,2)33k k -+,k ∈Z . (3)由方程()tan()23f x x ππ=+=,可得233x k ππππ+=+, 求得x =2k ,故方程的解集为{x |x =2k ,k ∈Z}.类型二:正切函数的图象 例2.函数1tan 23y x π⎛⎫=-⎪⎝⎭在一个周期内的图象是下图中的( )【答案】A【解析】该题目借助于函数的图象考查了函数1tan 23y x π⎛⎫=-⎪⎝⎭的周期、单调性、图象分布的规律等知识,可从函数的周期与坐标轴的交点两个方面确定答案.由函数周期212T ππ==,排除选项B 、D .将23x π=代入函数式中,12tan tan 00233ππ⎛⎫⨯-== ⎪⎝⎭.故函数图象与x 轴的一个交点为2,03π⎛⎫ ⎪⎝⎭.故选A .【总结升华】借助于函数周期公式及特殊点进行排除、验证是做选择题的有效方法. 举一反三:【变式1】(2015秋 安徽舒城县期末)如图所示,函数3cos |tan |(02y x x x π=≤≤且)2x π≠的图象是( )【答案】C【解析】∵sin , 02cos |tan |sin , 23sin , 2x x y x x x x x x πππππ⎧≤<⎪⎪⎪==-<≤⎨⎪⎪<<⎪⎩,∴函数3cos |tan |(02y x x x π=≤≤且)2x π≠的图象是C . 故选C .类型三:正切函数的周期性 例3.求下列函数的周期(1)y=3tan(2x+3π) (2)y=7tan(3x -6π) 【解析】(1)f(x)= 3tan(2x+3π)=3tan(2x+3π+π)= 3tan[2(x+2π)+3π]=f(x+2π). ∴周期为2π.(2)f(x)= y=7tan(3x -6π)=7tan(3x -6π+π)=7 tan[31(x+3π)-6π]=f(x+3π)∴周期为3π.举一反三:【变式1】判断下列函数是否是周期函数.若是周期函数,求其最小正周期. (1)2tan y x =; (2)|tan |y x =; (3)tan ||y x =.【答案】(1)是(2)是(3)不是 【解析】 (1)22()tan tan ()()f x x x f x ππ==+=+∴函数2tan y x =是周期函数,最小正周期是π.(2)()|tan ||tan()|()f x x x f x ππ==+=+∴|tan |y x =是周期函数,最小正周期是π.(3)由图象知,函数不是周期函数类型四:正切函数的单调性例4.(2015秋 新疆阿勒泰市月考)已知函数()3tan(2)3f x x π=-.(1)求f (x )的定义域与单调区间(2)比较()2f π与()8f π-的大小.【思路点拨】(1)由题意利用正切函数的定义域和单调性,求得f (x )的定义域与单调区间. (2)根据函数的解析式,求得()2f π与()8f π-的值,可得()2f π与()8f π-的大小.【答案】(1)定义域为5{|,}212k x x k Z ππ≠+∈,单调增区间为5(,)212212k k ππππ-+;(2)()()28f f ππ<-【解析】(1)由函数()3tan(2)3f x x π=-,可得232x k πππ-≠+,求得5212k x ππ≠+,k ∈Z ,故函数的定义域为5{|,}212k x x k Z ππ≠+∈.令2232k x k πππππ-<-<+,求得5212212k k x ππππ-<<+, 故函数的单调增区间为5(,)212212k k ππππ-+.(2)2()3tan 23f ππ==-1tan73()3tan()3tan()336812431tan 3f ππππππ+-=-=-+=-⋅=-=+-, ∴()()28f f ππ<-.【总结升华】比较三角函数值大小时,①异名函数化为同名函数,②利用诱导公式化为同一单调区间,③利用函数的单调性比较大小. 举一反三:【变式1】求函数1tan 24y x π⎛⎫=-+ ⎪⎝⎭的单调区间.【解析】11tan tan 2424y x x ππ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭,由1()2242k x k k Z πππππ-<-<+∈. 得32222k x k ππππ-<<+,k ∈Z .∴函数1tan 24y x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为32,222k k ππππ⎛⎫-+ ⎪⎝⎭,k ∈Z .【高清课堂:正切函数的图象与性质 394837 例3】 【变式2】求函数|tan(2-)|3y x =π的单调增区间.【答案】5,26212k k ππππ⎛⎫++⎪⎝⎭【巩固练习】 1.函数tan()3y x π=+的定义域( ).A .|,6x R x k k Z ππ⎧⎫∈≠+∈⎨⎬⎩⎭ B .|,6x R x k k Z ππ⎧⎫∈≠-∈⎨⎬⎩⎭ C .|2,6x R x k k Z ππ⎧⎫∈≠+∈⎨⎬⎩⎭ D .|2,6x R x k k Z ππ⎧⎫∈≠-∈⎨⎬⎩⎭2.函数y=5tan(2x+1)的最小正周期为( )A .4π B .2πC .πD .2π 3.tan (,)2y x x k k Z ππ=≠+∈在定义域上的单调性为( ).A .在整个定义域上为增函数B .在整个定义域上为减函数C .在每一个开区间(,)()22k k k Z ππππ-++∈上为增函数 D .在每一个开区间(2,2)()22k k k Z ππππ-++∈上为增函数4.当22x ππ-<<时,函数y=tan |x|的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .不是对称图形 5.下列各式正确的是( ).A .1317tan()tan()45ππ-<- B .1317tan()tan()45ππ->- C .1317tan()tan()45ππ-=- D .大小关系不确定6.函数1tan y x =(44x ππ-≤≤且x ≠0)的值域是( )A .[―1,1]B .(―∞,-1]∪[1,+∞)C .(-∞,1]D .[-1,+∞)7.(2017 广东惠州月考)直线y =a (a 为常数)与正切曲线y =tan x 相交的相邻两点间的距离是( )A .2πB .2πC .πD .与a 值有关 8.(2015秋 重庆期中)对于函数f (x )=tan 2x ,下列选项中正确的是( )A .f (x )在(,)24ππ-上是递增的B .f (x )在定义域上单调递增C .f (x )的最小正周期为πD .f (x )的所有对称中心为(,0)4k π9.函数5tan 3x y ⎛⎫=-⎪⎝⎭的最小正周期是________。
【人教A版】2020学年高中数学必修四全册习题(17份,含答案)

分层训练·进阶冲关A组基础练(建议用时20分钟)1.射线OA绕端点O逆时针旋转120°到达OB位置,由OB位置顺时针旋转270°到达OC位置,则∠AOC= ( B )A.150°B.-150°C.390°D.-390°2.经过一小时,时针转过了 ( B )A. radB.- radC. radD.- rad3.下列说法正确的个数是( A )①小于90°的角是锐角②钝角一定大于第一象限的角③第二象限的角一定大于第一象限的角④始边与终边重合的角为0°A.0B.1C.2D.34.下列各角中,与60°角终边相同的角是( A )A.-300°B.-60°C.600°D.1 380°5.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是( C )A.1B.4C.1或4D.2或46.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( C )A.2B.sin 2C.D.2sin 17.已知两角的和是1弧度,两角的差是1°,则这两个角为8.把-π表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是9.已知α是第二象限角,且|α+2|≤4,则α的集合是(-1.5π,-π)∪(0.5π,2].10.已知集合A={x|2kπ≤x≤2kπ+π,k∈Z},集合B={x|-4≤x≤4},则A∩B=[-4,-π]∪[0,π].11.已知α=1,β=60°,γ=,δ=-,试比较这四个角的大小.【解析】因为β=60°=>1>-,所以β=γ>α>δ.12.在坐标系中画出下列各角:(1)-180°.(2)1070°.【解析】在坐标系中画出各角如图所示.B组提升练(建议用时20分钟)13.若角α和角β的终边关于x轴对称,则角α可以用角β表示为( B )A.k·360°+β(k∈Z)B.k·360°-β(k∈Z)C.k·180°+β(k∈Z)D.k·180°-β(k∈Z)14.如果角α与x+45°具有同一条终边,角β与x-45°具有同一条终边,则α与β的关系是( D )A.α+β=0B.α-β=0C.α+β=k·360°(k∈Z)D.α-β=k·360°+90°(k∈Z)15.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的.16.若α,β两角的终边互为反向延长线,且α=-120°,则β= k·360°+60°,k∈Z.17.在与角10 030°终边相同的角中,求满足下列条件的角.(1)最大的负角.(2)最小的正角.(3)在360°~720°中的角.【解析】(1)与10 030°终边相同的角的一般形式为β=k·360°+10 030°(k∈Z),由-360°<k·360°+10 030°<0°,得-10 390°<k·360°<-10 030°,解得k=-28,故所求的最大负角为β=-50°.(2)由0°<k·360°+10 030°<360°,得-10 030°<k·360°<-9 670°,解得k=-27,故所求的最小正角为β=310°.(3)由360°≤k·360°+10 030°<720°,得-9 670°≤k·360°<-9 310°,解得k=-26,故所求的角为β=670°.18.在角的集合{α|α=k·90°+45°,k∈Z}中.(1)有几种终边不相同的角?(2)有几个落在-360°~360°之间的角?(3)写出其中是第二象限角的一般表示方法.【解析】(1)当k=4n(n∈Z)时,α=n·360°+45°与45°角终边相同.当k=4n+1(n∈Z)时,α=n·360°+135°与135°的终边相同.当k=4n+2(n∈Z)时,α=n·360°+225°与225°的终边相同.当k=4n+3(n∈Z)时,α=n·360°+315°与315°的终边相同.所以,在给定的角的集合中共有4种终边不相同的角.(2)由-360°≤k·90°+45°<360°,得-≤k<.又k∈Z.故k=-4,-3,-2,-1,0,1,2,3.所以,在给定的角的集合中落在-360°~360°之间的角共有8个. (3)其中,第二象限的角可表示为α=k·360°+135°,k∈Z.C组培优练(建议用时15分钟)19.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于( C )A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D.{-126°,54°}20.如图所示,半径为1的圆的圆心位于坐标原点,点P从点A(1,0)出发,按逆时针方向等速沿单位圆周旋转,已知P点在1 s内转过的角度为θ(0<θ<π),经过2 s达到第三象限,经过14 s后又回到了出发点A处,求θ.【解析】因为0<θ<π,且2kπ+π<2θ<2kπ+(k∈Z),则必有k=0,于是<θ<.又14θ=2nπ(n∈Z),所以θ=.从而<<,即<n<.所以n=4或5,故θ=或.分层训练·进阶冲关A组基础练(建议用时20分钟)1.如果α的终边过点P(2sin 30°,-2cos 30°),则sin α的值等于( C )A. B.- C.- D.-2.已知角α的正弦线是单位长度的有向线段,那么角α的终边( B )A.在x轴上B.在y轴上C.在直线y=x上D.在直线y=x或y=-x上3.若sin θ<cos θ,且sin θ·cos θ<0,则θ在( D )A.第一象限B.第二象限C.第三象限D.第四象限4.化简的结果是( C )A.sin 4+cos 4B.sin 4-cos 4C.cos 4-sin 4D.-sin 4-cos 45.已知cos θ=,且<θ<2π,则的值为 ( D )A. B.- C. D.-6.已知θ∈,在单位圆中角θ的正弦线、余弦线、正切线分别是a,b,c,则它们的大小关系是( B )A.a>b>cB.c>a>bC.c>b>aD.b>c>a7.已知α是第二象限角,P(x,)为其终边上一点,且cos α=x,则sin α的值为( A )A. B. C. D.-8.sin 1,cos 1,tan 1的大小关系为( C )A.sin 1>cos 1>tan 1B.sin 1>tan 1>cos 1C.tan 1>sin 1>cos 1D.tan 1>cos 1>sin 19.已知α终边经过点(3a-9,a+2),且sin α>0,cos α≤0,则a的取值范围为-2<a≤3.10.已知=2,则tan α= 1.11.求函数y=+的定义域.【解析】要使函数有意义,则需即所以2kπ+≤x≤2kπ+π(k∈Z),所以函数的定义域为.12.求下列各式的值.(1)cos+tanπ .(2)sin 630° +tan 1 125° +tan 765° +cos 540° .【解析】(1)原式=cos+tan=cos+tan=+1=.(2)原式=sin (360°+270°)+tan(3×360°+45°)+tan (2×360°+45°)+cos(360°+180°)=sin 270°+tan 45°+tan 45°+cos 180°=-1+1+1-1=0.B组提升练(建议用时20分钟)13.函数y=++的值域是( C )A.{-1,1,3}B.{1,3}C.{-1,3}D.R14.已知sin α,cos α是方程3x2-2x+a=0的两根,则实数a的值为( B )A. B.- C. D.15.已知sin θ-cos θ=,则sin 3θ-cos 3θ=.16.若α∈[0,2π),且cos α≥,则α的取值范围是17.求证:2(1-sin α)(1+cos α)=(1-sin α+cos α)2.【证明】右边=[(1-sin α)+cos α]2=(1-sin α)2+cos 2α+2cos α(1-sin α)=1-2sin α+sin 2α+cos 2α+2cos α(1-sin α)=2-2sin α+2cos α(1-sin α)=2(1-sin α)(1+cos α)=左边,所以原式成立.18.利用单位圆解不等式(组):(1)3tan α+>0. (2)【解析】(1)3tan α+>0,即tan α>-,如图(1),由正切线知kπ-<α<kπ+,k∈Z.故不等式的解集为.(2)不等式组即为如图(2),区域(横线)为sin α>,区域(斜线)为cos α≤.两区域的公共部分为不等式组的解,即不等式组的解集为.C组培优练(建议用时15分钟)19.已知sin α>sin β,那么下列命题成立的是( D )A.若α,β是第一象限角,则cos α>cos βB.若α,β是第二象限角,则tan α>tan βC.若α,β是第三象限角,则cos α>cos βD.若α,β是第四象限角,则tan α>tan β20.已知关于x的方程4x2-2(m+1)x+m=0的两个根恰好是一个直角三角形的一个锐角的正、余弦,求实数m的值.【解析】设直角三角形的一个锐角为β,因为方程4x2-2(m+1)x+m=0中,Δ=4(m+1)2-4×4m=4(m-1)2≥0,所以当m∈R时,方程恒有两实根.又因为sin β+cos β=,sin βcos β=,所以由以上两式及sin 2β+cos 2β=1,得1+2×=,解得m=±.当m=时,sin β+cos β=>0,sin β·cos β=>0,满足题意,当m=-时,sin β+cos β=<0,这与β是锐角矛盾,舍去.综上,m=.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.若cos(π+α)=-,π<α<2π,则sin(2π+α)等于( D )A. B.± C. D.-2.已知f(sin x)=cos 3x,则f(cos 10°)的值为( A )A.-B.C.-D.3.若sin(3π+α)=-,则cos等于( A )A.-B.C.D.-4.已知sin=,则cos的值等于( A )A.-B.C.-D.5.已知tan 5° =t,则tan (-365° )= ( C )A.tB.360° +tC.-tD.与t无关6.若tan(5π+α)=m,则的值为( A )A. B. C.-1 D.17.记cos(-80°)=k,那么tan 100°等于 ( B )A. B.-C. D.-8.已知cos=,则cos= -.9.若cos α=,且α是第四象限角,则cos= .10.计算sin21°+sin22°+…+sin288°+sin289°=.11.已知sin(π+α)=-.计算:(1)cos.(2)sin.(3)tan(5π-α).【解析】(1)因为sin(π+α)=-sin α=-,所以sin α=.cos=cos=-sin α=-.(2)sin=cos α,cos2α=1-sin2α=1-=.因为sin α=,所以α为第一或第二象限角.①当α为第一象限角时,sin=cos α=.②当α为第二象限角时,sin=cos α=-.(3)tan(5π-α)=tan(π-α)=-tan α,因为sin α=,所以α为第一或第二象限角.①当α为第一象限角时,cos α=,所以tan α=,所以tan(5π-α)=-tan α=-.②当α为第二象限角时,cos α=-,tan α=-,所以tan(5π-α)=-tan α=.12.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.【证明】因为sin(α+β)=1,所以α+β=2kπ+(k∈Z),所以α=2kπ+-β(k∈Z).故tan(2α+β)+tan β=tan+tan β=tan(4kπ+π-2β+β)+tan β=tan(4kπ+π-β)+tan β=tan(π-β)+tan β=-tan β+tan β=0,所以原式成立.B组提升练(建议用时20分钟)13.若sin(π-α)=log8,且α∈,则cos(π+α)的值为( B )A. B.- C.± D.以上都不对14.已知cos(75°+α)=,则sin(α-15°)+cos(105°-α)的值是( D )A. B. C.- D.-15.已知tan(3π+α)=2,则= 2.16.设f(x)=asin(πx+α)+bcos(πx+β)+2,其中a,b,α,β为非零常数.若f(2 013)=1,则f(2 014)= 3.17.若cos(α-π)=-,求的值.【解析】原式====-tan α.因为cos(α-π)=cos(π-α)=-cos α=-,所以cos α=.所以α为第一象限角或第四象限角.当α为第一象限角时,cos α=,sin α==,所以tan α==,所以原式=-.当α为第四象限角时,cos α=,sin α=-=-,所以tan α==-,所以原式=.综上,原式=±.18.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2对应三个内角的正弦值,那么(1)试判断△A1B1C1是锐角三角形吗?(2)试借助诱导公式证明△A2B2C2中必有一个角为钝角.【解析】(1)由已知条件△A1B1C1的三个内角的余弦值均大于0,即cos A1>0,cos B1>0,cos C1>0,从而△A1B1C1一定是锐角三角形.(2)由题意可知若A2,B2,C2全为锐角,则A2+B2+C2=++=-(A1+B1+C1)=,不合题意.又A2,B2,C2不可能为直角,且满足A2+B2+C2=π,故必有一个角为钝角.C组培优练(建议用时15分钟)19.在△ABC中,若sin(2π-A)=-sin(π-B),cosA=-cos(π-B),求△ABC的三个内角.【解析】由条件得sin A=sin B,cos A=cos B,平方相加得2cos2A=1,cos A=±,又因为A∈(0,π),所以A=或π.当A=π时,cos B=-<0,所以B∈,所以A,B均为钝角,不合题意,舍去.所以A=,cos B=,所以B=,所以C=π.20.是否存在角α,β,α∈,β∈(0,π),使等式同时成立?若存在,求出α,β的值;若不存在,说明理由.【解析】由条件,得由①2+②2,得sin2α+3cos2α=2, ③又因为sin2α+cos2α=1, ④由③④得sin2α=,即sin α=±,因为α∈,所以α=或α=-.当α=时,代入②得cos β=,又β∈(0,π),所以β=,代入①可知符合.当α=-时,代入②得cos β=,又β∈(0,π),所以β=,代入①可知不符合.综上所述,存在α=,β=满足条件.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.函数y=sin的最小正周期为( C )A.πB.2πC.4πD.2.函数y=-cos x(x>0)的图象中距离y轴最近的最高点的坐标为( B )A. B.(π,1) C.(0,1) D.(2π,1)3.函数f(x)=的定义域为( A )A.B.C.D.4.已知a∈R,函数f(x)=sin x-|a|,x∈R为奇函数,则a等于( A )A.0B.1C.-1D.±15.下列函数中,同时满足:①在上是增函数,②为奇函数,③以π为最小正周期的函数是 ( A )A.y=tan xB.y=cos xC.y=tanD.y=|sin x|6.下列关系式中正确的是( C )A.sin 11°<cos10°<sin168°B.sin 168°<sin11°<cos10°C.sin 11°<sin168°<cos10°D.sin 168°<cos10°<sin 11°7.函数y=3tan的对称中心的坐标为8.下列各组函数中,图象相同的是(4).(1)y=cos x与y=cos(π+x);(2)y=sin与y=sin;(3)y=sin x与y=sin(-x);(4)y=sin(2π+x)与y=sin x.9.函数y=cos的单调增区间是10.若函数y=2sin ωx(ω>0)的图象与直线y+2=0的两个相邻公共点之间的距离为,则ω的值为3.11.在[0,2π]内用五点法作出y=-sin x-1的简图.【解析】(1)按五个关键点列表(2)描点并用光滑曲线连接可得其图象,如图所示.12.已知定义在R上的函数f(x)满足f(x+2)f(x)=1,且对∀x∈R,f(x)≠0,求证:f(x)是周期函数.【证明】因为f(x+2)f(x)=1且f(x)≠0,所以f(x+2)=,所以f(x+4)=f[(x+2)+2]===f(x).所以函数f(x)是周期函数,4是一个周期.B组提升练(建议用时20分钟)13.如图所示,函数y=cos x|tan x|的图象是( C )14.在(0,2π)上使cos x>sin x成立的x的取值范围是( A )A.∪B.∪C. D.15.若tan≤1,则x的取值范围是16.已知函数f(x)=3sin(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈,则f(x)的取值范围是.17.已知函数f(x)=试画出f(x)的图象.【解析】在同一坐标系内分别画出正、余弦曲线,再比较两个函数的图象,上方的画成实线,下方的画成虚线,则实线部分即为f(x)的图象.18.已知函数f(x)=2asin+a+b的定义域为,值域是[-5,1],求a,b的值.【解析】因为0≤x≤,所以≤2x+≤.所以-≤sin≤1.所以a>0时,解得a<0时,解得综上,a=2,b=-5或a=-2,b=1.C组培优练(建议用时15分钟)19.函数f(x)=-cos xln x2的部分图象大致是图中的( A )20.设函数y=-2cos,x∈,若该函数是单调函数,求实数a的最大值.【解析】由2kπ≤x+≤2kπ+π(k∈Z),得4kπ-π≤x≤4kπ+π(k∈Z).所以函数的单调递增区间是(k∈Z),同理函数的单调递减区间是(k∈Z).令π∈,即≤k≤,又k∈Z,所以k不存在.令π∈,得k=1.所以π∈,这表明y=-2cos在上是减函数,所以a的最大值是.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点( A )A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度2.已知ω>0,函数f(x)=cos的一条对称轴为x=,一个对称中心为,则ω有( A )A.最小值2B.最大值2C.最小值1D.最大值13.函数y=sin在区间上的简图是( A )4.若函数f(x)=sin的图象向右平移个单位后与原图象关于x轴对称,则ω的最小正值是( D )A. B.1 C.2 D.35.已知f(x)=2sin的图象经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为( A )A.T=6,φ=B.T=6,φ=C.T=6π,φ=D.T=6π,φ=6.将函数f(x)=sin ωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点,则ω的最小值是( D )A. B.1 C. D.27.利用“五点法”作函数y=Asin(ωx+φ)(A>0)的图象时,其五点的坐标分别为,,,,,则A= ,周期T= π.8.函数y=sin 2x的图象向右平移φ个单位长度(φ>0)得到的图象恰好关于x=对称,则φ的最小值是π.9.将函数y=sin 4x的图象向左平移个单位,得到函数y=sin(4x+φ)(0<φ<π)的图象,则φ的值为.10.在函数y=-2sin的图象与x轴的交点中,离原点最近的交点坐标是.11.用“五点法”画函数y=3sin,x∈的图象.【解析】①列表:2x+-y=3sin②描点:在坐标系中描出下列各点:,,,,.③连线:用光滑的曲线将所描的五个点顺次连接起来,得函数y=3sin,x∈的简图,如图所示.12.已知曲线y=Asin(ωx+φ) (A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数表达式.(2)用“五点法”画出(1)中函数在[0,π ]上的图象.【解析】(1)由题意知A=,T=4×=π,则ω==2. 所以y=sin (2x+φ).又因为sin=1,所以+φ=2kπ+,k∈Z.所以φ=2kπ+,k∈Z.又因为φ∈,所以φ=.所以y=sin.(2)列出x、y的对应值表:πππ2x+π-描点,连线,如图所示:B组提升练(建议用时20分钟)13.要得到函数f(x)=cos的图象,只需将函数g(x)=sin的图象( C )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度14.已知函数y=Asin(ωx+φ)+m的最大值是4,最小值是0,最小正周期是,直线x=是其图象的一条对称轴,则下面各解析式符合条件的是( D )A.y=4sin+2B.y=2sin+2C.y=2sin+2D.y=2sin+215.将函数f(x)=sin(ωx+φ)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sin x的图象,则f=.16.关于函数f(x)=2sin,以下说法:①其最小正周期为;②图象关于点对称;③直线x=-是其一条对称轴.其中正确的序号是①②③.17.已知函数f(x)=sin.(1)求函数f(x)的单调增区间.(2)当x∈时,求函数f(x)的最大值和最小值及相应的x的值. 【解析】(1)令-+2kπ≤2x-≤+2kπ,k∈Z,解得-+kπ≤x≤+kπ,k∈Z,所以函数f(x)的单调增区间是,k∈Z.(2)因为x∈,所以2x-∈,所以sin∈,所以f(x)min=-,此时x=0;f(x)max=1,此时x=π.18.函数f(x)=Asin(ωx+φ)的一段图象如图所示.(1)求f(x)的解析式.(2)把f(x)的图象向左至少平移多少个单位长度,才能使得到的图象对应的函数为偶函数?【解析】(1)由题意知A=3,T===5π,所以ω=.由f(x)=3sin的图象过点,得sin=0,又|φ|<,所以φ=-.所以f(x)=3sin.(2)由f(x+m)=3sin=3sin为偶函数(m>0),知-=kπ+(k∈Z),即m=kπ+(k∈Z).因为m>0,所以m min=.故至少把f(x)的图象向左平移个单位长度,才能使得到的图象对应的函数是偶函数.C组培优练(建议用时15分钟)19.已知函数f(x)=2sin ωx,其中常数ω>0.(1)若y=f(x)在上单调递增,求ω的取值范围.(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有30个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.【解析】(1)因为ω>0,根据题意有⇒0<ω≤.所以ω的取值范围是.(2)由f(x)=2sin 2x可得,g(x)=2sin+1=2sin+1,令g(x)=0⇒sin=-⇒x=kπ-或x=kπ-π,k∈Z,即g(x)的零点相离间隔依次为和,故若y=g(x)在[a,b]上至少含有30个零点,则b-a的最小值为14×+15×=.20.已知函数f(x)=asin+1(a>0)的定义域为R,若当-≤x≤-时,f(x)的最大值为2.(1)求a的值.(2)用五点法作出函数在一个周期闭区间上的图象.(3)写出该函数的对称中心的坐标.【解析】(1)当-≤x≤-时,则-≤2x+≤,所以当2x+=时,f(x)有最大值为+1.又因为f(x)的最大值为2,所以+1=2,解得a=2.(2)由(1)知f(x)=2sin+1.令2x+分别取0,,π,,2π,则求出对应的x与y的值,如表所示.2x+-1画出函数在区间上的图象如图.(3)f(x)=2sin+1,令2x+=kπ,k∈Z,解得x=-,k∈Z,所以函数f(x)=2sin+1的对称中心的横坐标为-,k∈Z.又因为函数f(x)=2sin+1的图象是函数f(x)=2sin的图象向上平移一个单位长度得到的,所以函数f(x)=2sin+1的对称中心的纵坐标为1,所以对称中心坐标为,k∈Z.关闭Word文档返回原板块分层训练·进阶冲关A组基础练(建议用时20分钟)1.电流I(A)随时间t(s)变化的关系是I=3sin 100πt,t∈[0,+∞),则电流I变化的周期是( A )A. B.50 C. D.1002.商场人流量被定义为每分钟通过入口的人数,劳动节某商场的人流量满足函数F(t)=50+4sin(t≥0),则在下列哪个时间段内人流量是增加的( C )A.[0,5]B.[5,10]C.[10,15]D.[15,20]3.一种波的波形为函数y=-sin x的图象,若其在区间[0,t]上至少有2个波峰(图象的最高点),则正整数t的最小值是( C )A.5B.6C.7D.84.函数y=x+sin|x|,x∈[-π,π]的大致图象是( C )5.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+b的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为( A )A.f(x)=2sin+7(1≤x≤12,x∈N+)B.f(x)=9sin(1≤x≤12,x∈N+)C.f(x)=2sin x+7(1≤x≤12,x∈N+)D.f(x)=2sin+7(1≤x≤12,x∈N+)6.如图所示,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致是( C )7.如图所示的图象显示的是相对平均海平面的某海湾的水面高度y(m)在某天24 h内的变化情况,则水面高度y关于从夜间0时开始的时间x 的函数关系式为y=-6sin x.8.某摩天轮建筑,其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第7分钟时他距地面大约为85米.9.一根长a cm的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(cm)和时间t(s)的函数关系式是s=3cos,t∈[0,+∞),则小球摆动的周期为.10. (2018·福州高一检测)如图,在平面直角坐标系xOy中,质点M,N间隔3分钟先后从点P出发,绕原点按逆时针方向作角速度为弧度/分钟的匀速圈周运动,则M与N的纵坐标之差第4次达到最大值时,N 运动的时间为37.5分钟.11.已知电流I与时间t的关系式为I=Asin(ωt+φ).(1)如图是I=Asin(ωt+φ)(ω>0,|φ|<)在一个周期内的图象,根据图中数据求解析式.(2)如果t在任意一段秒的时间内,电流I=Asin(ωT+φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?【解析】(1)由图知,A=300,=-=,所以T=,所以ω=,由·+φ=0,得φ=.所以I=300sin;(2)因为t在任意一段秒内I都能取到最大值和最小值,所以T≤,ω≥300π>942,所以ω最小取值为943.12.已知某地一天从4~16时的温度变化曲线近似满足函数y=10sin+20,x∈[4,16].(1)求该地区这一段时间内温度的最大温差.(2)若有一种细菌在15 ℃到25 ℃之间可以生存,那么在这段时间内,该细菌最多能生存多长时间?【解析】(1)由函数易知,当x=14时函数取最大值,此时最高温度为30 ℃,当x=6时函数取最小值,此时最低温度为10 ℃,所以最大温差为30 ℃-10 ℃=20 ℃.(2)令10sin+20=15,得sin=-,而x∈[4,16],所以x=.令10sin+20=25,得sin=,而x∈[4,16],所以x=.故该细菌能存活的最长时间为-=(小时).B组提升练(建议用时20分钟)13.稳定房价是我国实施宏观调控的重点,国家出台的一系列政策已对各地的房地产市场产生了影响,某市房地产中介对本市一楼盘的房价作了统计与预测:发现每个季度的平均单价y(每平方米的价格,单位:元)与第x季度之间近似满足:y=500sin(ωx+φ)+9 500(ω>0),已知第一、二季度平均单价如表所示:则此楼盘在第三季度的平均单价大约是( C )A.10 000元B.9 500元C.9 000元D.8 500元14.(2018·沈阳高一检测)有一块半径为R(R是正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O为圆心,A,B在圆的直径上,C,D,E在半圆周上,如图.设∠BOC=θ,征地面积为f(θ),当θ满足g(θ)=f(θ)+R2sin θ取得最大值时,开发效果最佳,开发效果最佳的角θ和g(θ)的最大值分别为( B )A.,R2B.,R2C.,R2(1+)D.,R2(1+)15.如图所示是一弹簧振子作简谐振动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是y=2sin.16.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀地绕点O 旋转,当时间t=0时,点A与钟面上标12的点B重合,若将A,B两点的距离d(cm)表示成时间t(s)的函数,则d= 10sin ,其中t∈[0,60].17.如图所示,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin ωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,2);赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.求A,ω的值和M,P两点间的距离.【解析】依题意,有A=2,=3,即T=12.又T=,所以ω=.所以y=2sin x,x∈[0,4].所以当x=4时,y=2sin=3.所以M(4,3).又P(8,0),所以MP===5(km).即M,P两点间的距离为5 km.18.如图,一个水轮的半径为4 m,水轮圆心O距离水面2 m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数.(2)点P第一次到达最高点大约需要多少时间?【解析】(1)如图所示建立直角坐标系,设角φ是以Ox为始边,OP0为终边的角.OP每秒钟内所转过的角为=.OP在时间t(s)内所转过的角为t=t.由题意可知水轮逆时针转动,得z=4sin+2.当t=0时,z=0,得sin φ=-,即φ=-.故所求的函数关系式为z=4sin+2.(2)令z=4sin+2=6,得sin=1,令t-=,得t=4,故点P第一次到达最高点大约需要4 s.C组培优练(建议用时15分钟)19.一物体相对于某一固定位置的位移y(cm)和时间t(s)之间的一组对应值如表,则可近似地描述该物体的位移y和时间t之间的关系的一个三角函数式为20.为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入,为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,入住客栈的游客人数基本相同;②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系.(2)请问哪几个月份要准备400份以上的食物?【解析】(1)设该函数为f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<|φ|<π),根据条件①,可知这个函数的周期是12;由②可知,f(2)最小,f(8)最大,且f(8)-f(2)=400,故该函数的振幅为200;由③可知,f(x)在[2,8]上单调递增,且f(2)=100,所以f(8)=500.根据上述分析可得,=12,故ω=,且解得根据分析可知,当x=2时,f(x)最小,当x=8时,f(x)最大,故sin=-1,且sin=1.又因为0<|φ|<π,故φ=-.所以入住客栈的游客人数与月份之间的关系式为f(x)=200sin+300.(2)由条件可知,200sin+300≥400,化简,得sin≥⇒2kπ+≤x-≤2kπ+,k∈Z,解得12k+6≤x≤12k+10,k∈Z.因为x∈N*,且1≤x≤12,故x=6,7,8,9,10.即只有6,7,8,9,10五个月份要准备400份以上的食物.关闭Word文档返回原板块单元质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.扇形的周长是4,面积为1,则该扇形的圆心角的弧度数是( C )A. B.1 C.2 D.42.若120°角的终边上有一点(-4,a),则a的值为 ( C )A.-4B.±4C.4D.23.下列三角函数值的符号判断正确的是 ( C )A.sin 156°<0B.cos>0C.tan<0D.tan 556°<04.sin 300°+tan600°的值等于 ( B )A.-B.C.-+D.+5.已知函数f(x)=3sin x-4cos x(x∈R)的一个对称中心是(x0,0),则tan x0的值为 ( D )A.-B.C.-D.6.下列函数中,最小正周期为π,且图象关于直线x=对称的是( B )A.y=sinB.y=sinC.y=cosD.y=cos7.函数f(x)=Asinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A= ( B )A.3B.C.D.18.函数y=sin的图象可由函数y=cos x的图象至少向右平移m(m>0)个单位长度得到,则m= ( A )A.1B.C.D.9.函数f(x)=2sin(ωx+φ)的部分图象如图所示,则ω,φ的值分别是 ( B )A.2,-B.2,-C.4,D.4,10.函数y=cos2x+sin x-1的值域为 ( C )A. B.C. D.[-2,0]11.已知函数f(x)=tan ωx在内是减函数,则实数ω的取值范围是 ( B )A.(0,1]B.[-1,0)C.[-2,0)D.12.已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点, x=为y=f(x)图象的对称轴,且f(x)在单调,则ω的最大值为 ( B )A.11B.9C.7D.5二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.若2sin α-cos α=0,则=-.14.函数f(x)=sin+cos的最大值为.15.设函数f(x)=cos x,先将f(x)纵坐标不变,横坐标变为原来的2倍,再将图象向右平移个单位长度后得g(x),则函数g(x)到原点距离最近的对称中心为.16.给出下列命题:①存在实数x,使sin x+cos x=;②函数y=sin是偶函数;③若α,β是第一象限角,且α>β,则cos α<cos β;④函数y=sin 2x的图象向左平移个单位,得到函数y=sin的图象.其中结论正确的序号是②.(把正确的序号都填上)三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知tan α+=,求2sin2(3π-α)-3cos·sin+2的值.【解析】因为tan α+=,所以2tan2α-5tan α+2=0.解得tan α=或tan α=2.2sin2(3π-α)-3cos sin+2=2sin2α-3sin αcos α+2=+2=+2.当tan α=时,原式=+2=-+2=;当tan α=2时,原式=+2=+2=.18.(本小题满分12分)已知f(α)=. (1)化简f(α).(2)当α=-时,求f(α)的值.【解析】(1)f(α)===-cos α.(2)当α=-时,f(α)=-cos=-cos=-.。
高中数学必修4习题和复习参考题及对应答案

高中数学必修4习题和复习参考题及对应答案A组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角:(1)-265°;(2)-1000°;(3)-843°10′;(4)3900°.答案:(1)95°,第二象限;(2)80°,第一象限;(3)236°50′,第三象限;(4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x轴上的角的集合.答案:S={α|α=k·180°,k∈Z}.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k∈Z},-300°,60°;(2){β|β=-75°+k·360°,k∈Z},-75°,285°;(3){β|β=-824°30′+k·360°,k∈Z},-104°30′,255°30′;(4){β|β=475°+k·360°,k∈Z},-245°,115°;(5){β|β=90°+k·360°,k∈Z},-270°,90°;(6){β|β=270°+k·360°,k∈Z},-90°,270°;(7){β|β=180°+k·360°,k∈Z},-180°,180°;(8){β|β=k·360°,k∈Z},-360°,0°.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合.说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角C .小于180°的正角D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k∈Z ,所以180451802k k α︒<<︒+︒,k∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念. 7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算. 9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618SS =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由. (提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =. 用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm. 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°.答案:(1)1sin ,tan 22ααα===(2)sin tan 122ααα=-=-=;(3)1sin ,cos tan 2ααα===(4)1sin ,tan 2ααα=== 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434sin ,cos ,tan 553ααα===;当a <0时,434sin ,cos ,tan 553ααα=-=-=-.说明:根据定义求三角函数值. 3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值. (1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题. 6、确定下列三角函数值的符号:(1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号. 7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号. 8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值. 9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0; (2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0. 答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0; 当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0, 所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0, 当sinθ>0且tanθ<0时,角θ为第二象限角; 当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角. 综上所述,原命题成立. (其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知sin α=,且α为第四象限角,求cosα,tanα的值; (2)已知5cos 13α=-,且α为第二象限角,求sinα,tanα的值; (3)已知3tan 4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,2 (2)1212,135-;(3)当α为第二象限角时,34sin ,cos 55αα==-, 当α为第四象限角时,34sin ,cos 55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1. 说明:要注意角α是第几象限角.11、已知1sin 3x =-,求cosx ,tanx 的值.答案:当x 为第三象限角时,cos tan x x ==当x 为第四象限角时,cos tan 34x x ==- 说明:要分别对x 是第三象限角和第四象限角进行讨论.12、已知3tan 2απαπ=<<,求cosα-sinα的值.答案:11)2说明:角α是特殊角. 13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cosβ-1)2+sin 2β=2-2cosβ;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2α为第二象限角. 答案:-2t anα说明:先变形,再根据同角三角函数的基本关系进行化简. 3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式. 4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π;(4)sin3π; (5)2cos 9π-;(6)-cos75°34′; (7)-tan87°36′; (8)tan6π-. 说明:利用诱导公式转化为锐角三角函数. 2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′);(5)cos1615°8′;(6)26sin()3π-.答案:(1)2;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)-说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+;(3)3cos()2πα-; (4)tan()2πα-. 答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x∈[0,2π]; (2)y=3cosx +1,x∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32; 使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-; (4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期: (1)2sin 3y x =,x∈R ; (2)1cos 42y x =,x∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx+φ)和函数y=Acos (ωx+φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究. 5、求下列函数的单调区间: (1)y=1+sinx ,x∈R ; (2)y=-cosx ,x∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k∈Z 时,y=1+sinx 是减函数. (2)当x∈[(2k -1)π,2kπ],k∈Z 时,y=-cosx 是减函数; 当x∈[2kπ,(2k +1)π],k∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性. 6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期. 答案:2π. 说明:可直接由函数y=Atan (ωx+φ)的周期T πω=得解. 8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°; (3)93tan 6tan(5)1111ππ-与; (4)7tantan 86ππ与. 答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tantan 86ππ<. 说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合:(1)1+tanx≥0;(2)tan 0x . 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 10、设函数f (x )(x∈R )是以 2为最小正周期的周期函数,且x∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题. 11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k∈Z ,对称轴的方程是x=kπ,k∈Z ;正切曲线的对称中心坐标为(,0)2k π,k∈Z ,正切曲线不是轴对称图形. 说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)sin )2x x ∈R ≥;(22cos 0()x x ∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z . 说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题: (1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x∈[2k-1,2k +1],k∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x∈[-1,1]的解析式为y=|x|,x∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x∈[2k-1,2k +1],k∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度 D .向右平行移动13个单位长度(2)为了得到函数cos5xy =,x∈R 的图象,只需把余弦曲线上所有的点的( )、 A .横坐标伸长到原来的5倍,纵坐标不变 B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x∈R ; (2)1cos32y x =,x∈R ; (3)3sin(2)6y x π=+,x∈R ;(4)112cos()24y x π=-,x∈R .答案:(1)(2)(3)(4)说明:研究了参数A 、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48xy π=-,x∈[0,+∞);(2)1sin(3)37y x π=+,x∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-.先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x∈R的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x∈R的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx+φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,2i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s)的函数关系是),[0,)3s t π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm ) 答案:(1)2(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x∈[0,+∞). 说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题: (1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2);(2)最高点和最低点与平衡位置的距离都是2;(3)经过2π秒小球往复运动一次;(4)每秒钟小球能往复振动12π次.说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P是半径为r cm的砂轮边缘上的一个质点,它从初始位置P0开始,按逆时针方向以角速度ω rad/s做圆周运动.求点P的纵坐标y关于时间t的函数关系,并求点P的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos A=-;(3)tanA=1;(4)3 tan A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B 组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场? 答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论. P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ;(2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ; (4){β|β=2kπ,k∈Z },-2π,0,2π.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解. 3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断. 4、已知1cos 4ϕ=,求sinφ,tanφ.答案:当φ为第一象限角时,sin tan 4ϕϕ==当φ为第四象限角时,sin tan ϕϕ== 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值.答案:当x 为第一象限角时,tanx=2,cos x x ==;当x 为第三象限角时,tanx=2,cos x x == 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形. 7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2cosα-2sinαcosα =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形. 8、已知tanα=3,计算:(1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα;(3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85.说明:第(2)题可由222sin tan 9cos ααα==,得21cos 10α=,所以23sin cos tan cos 10αααα==.或2222sin cos tan 33sin cos 10sin cos tan 131αααααααα====+++. 9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号. 10、已知1sin()2πα+=-,计算: (1)cos (2π-α);(2)tan (α-7π).答案:(1)当α为第一象限角时,cos(2)πα-=,当α为第二象限角时,cos(2)πα-=(2)当α为第一象限角时,tan(7)3απ-=,当α为第二象限角时,tan(7)απ-= 说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算. 11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°; (2)sin (-879°),3313tan(),cos()810ππ--; (3)sin3,cos (sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216; (2)sin (-879°)=-0.358,3313tan()0.414,cos()0.588810ππ-=--=-; (3)sin3=0.141,cos (sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证. 12、设π<x <2π,填表:说明:熟悉各特殊角的三角函数值. 13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos x =cos x =1,1><-,所以原式不能成立;(2)因为sin x =,而|1<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合:(1)sin xy π=,x∈R ;(2)y=3-2cosx ,x∈R .答案:(11π,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;1π,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k∈Z }; 最小值为1,此时x 的集合为{x|x=2kπ,k∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质. 15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数. 答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证. 17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x∈[0,2π]的图象? (3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x∈[0,π]的图象关于直线2x =对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.B 组1、已知α为第四象限角,确定下列各角的终边所在的位置:(1)2α; (2)3α; (3)2α. 答案:(1)3(1)42k k παππ+<<+,所以2α的终边在第二或第四象限; (2)9012030901203k k α︒+︒<<︒+︒+︒,所以3α的终边在第二、第三或第四象限;(3)(4k +3)π<2α<(4k +4)π,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上.说明:不要求探索α分别为各象限角时,nα和nα的终边所在位置的规律.。
高一数学必修4全册习题(答案详解)

高一三角同步练习1(角的概念的推广)一.选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 5、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180|αα 6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7、已知角2α的终边在x 轴的上方,那么α是 ( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角 8、若α是第四象限的角,则α- 180是 .(89上海)A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角二.填空题1、写出-720°到720°之间与-1068°终边相同的角的集合___________________.2、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.3、若角α的终边为第二象限的角平分线,则α的集合为______________________.4、在0°到360°范围内,与角-60°的终边在同一条直线上的角为 .三.解答题1、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)210-; (2)731484'-.2、求θ,使θ与900-角的终边相同,且[]1260180,-∈θ.3、设集合{}Z k k x k x A ∈+⋅<<+⋅=,30036060360|, {}Z k k x k x B ∈⋅<<-⋅=,360210360|,求B A ,B A .4、已知角α是第二象限角,求:(1)角2α是第几象限的角;(2)角α2终边的位置。
((完整版))人教版高一数学期末复习(公式总结及综合练习和答案),推荐文档

增函数
x (0,1)时,y (, 0) x (1, )时,y (0, )
表2
p q
p为奇数 q为奇数
ab 0
பைடு நூலகம்
p为奇数 q为偶数
p为偶数 q为奇数
ab
ab
幂函数 y x ( R)
0 1
1
1
ab
奇函数
偶函数
第一象限 性质
减函数
增函数
人教版高中数学必修一至必修四公式(必会)
过定点(0,1)
x 0,
yR
图象
过定点 (0,1)
过定点 (1, 0)
性质
减函数
增函数
x (, 0)时,y (1, ) x (, 0)时,y (0,1) x (0, )时,y (0,1) x (0, )时,y (1, )
减函数
x (0,1)时,y (0, ) x (1, )时,y (, 0)
f (x1 ) f (x2 ) 0即f (x1 ) f (x2 ) 则认为该函数在其定义域内单调递减。(具体情况具体定)
函数的周期:若 f (x T ) f (x) ,则 T 为函数周期。
必修四:
4、关于扇形的计算公式: l 2πR 2 R;S πR 2 1 R 2 1 Rl
单调递增:(, p ) ( p,) 单调递减:( p,0)(0, p )
对数函数:
loga a 1 , loga b logb a 1, loga 1 0 , a loga N N (N、a 0且a 1) ,
log a b
1 log b
(a、b a
0且a、b
1) , log b
a
(k ,0) x k 使
2
(x ) =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1题.设为第二象限角,且有cos一cos_,则一为( )
2 2 2
A.第一象限角 E.第二象限角
C.第三象限角
D.第四象限角
答案:C
第2题.在Rt A ABC中,A B为锐角,则sinAsinB ( )
A.有最大值1 ,最小值0
2
E.既无最大值,也无最小值
C.有最大值1,无最小值
2
D.有最大值1,无最小值答案:C
第 3 题.sin5o sin25o sin95o sin65o的值是( )
A. 1
B. 1
C.兰
D.
2 2 2 2
答案:D
B. (9, 1)
C. (9,1)
D. ( 9, 1)
答案:C
第6题.已知三角形
uuu mu
ABC中,BA- BC 0,则三角形
ABC的形状为
A.钝角三角形
B.直角三角形
C.锐角三角形答
案:A
D.等腰直角三角形
第7题.已知,
均为锐角,且sin 5, cos
5 10
10 ,
求
解:由0 n,
2 0 一,得—0 ,—
2 2 2
n
2 ,
又由已知可得cos 2.5 3.10
,sin
5 10
的
值.
第4题•平面上有四个互异的点
uuu
A B, C, D,已知(DB
ujir uuu mu
DC 2DA)(AB
uuu
AC) 0 ,贝U
△ABC的形状是( A.直角三角形
C.等腰直角三角形)
E.等腰三角形
D.
1
第5题.已知A(1, 3), B&? ,且向量AC
uuu
与向量BC共线,则C点可以是
A. ( 9,1)
所以有sin( )i
•血
)sin cos cos sin
2
所以
n
4 •
第8题•如右图,三个全等的正方形并排在一起,则
答案:45。
(或n)
4
第10题.化简.1 sin2 4 _______ •
答案:cos4
第11题.与a (5,12)垂直的单位向量的坐标为________________ .
答案:咚,5或咚丿
13 13 13 13
第12题.已知向量a (1,2) b ( 3,2),当k为何值时,
(1)k a b 与a 3b 垂直?
(2)k a b与a 3b平行?平行时它们是同向还是反向?
解:(1) k a b k(12) (3,2) (k 3,2k 2) , a 3b (1,2) 3( 3, 2 ) (10, 4).
当(k a b)-( a 3b)0时,这两个向量垂直,
由
10(k
3) (2 k 2)( 4) 0 ,解得k 19.
即当k 19 时,k a b与a 3b垂直.
(2 )
当
fka b 与 a 3b平行'时,存在唯一的实数使k a b (a 3b)由(k 3, 2k 2) (10, 4),
k 1
得k 3 10 解得 3
2k 2 4 1
3
即当k
1
-时,k
a b与a 3b平行,此时k a
b 1 a b ,
3 3
Q
1 1
a b与a 3b反向.
3 3
, 亠uuu um
第9题•在△ABC中,若BC a , CA
uur
AB c,且a-b b-c c-a,贝U △ABC的形状
第14题.若 tan
m , n 2 n , 则sin (
)
A. mm 2
1 B. m m
2 1
小
m
m
C.
D.
Jm 2
1
2 .
m 1
答案:c
第15题.设
为钝角, 且sin
5 ,cos
5,则 的值为(
)
5
10
A.竺
B. 5 n
C. 7n
D.
5 n 或7n
4
4
4
4 4
答案:C
log 1 sin 2x n
的单调递减区间为(
2
4
A.
n k n k n , k Z
4
B.
n
n
k n _
k n , k
Z
8 8
C.
3 n ■ n - .
Z k n , k n , k
8 8 D.
n k 3 n n — k n , k Z
8 8
答案: B
第13题•如图所示,已知正方形
PF BC 于点F ,连结
UUL 证明:取基底a AB , DP , EF 所以有|a | |b , a b ,
因为点P 在正方形的对角线 UUU
所以不妨设AP (a UUT
AD ,则因为ABCD 为正方形,
a-b 0 .
/
AC 上,
1
/ E 1
b),
unr 则DP
(a b) b
1)b , uu
n EB
(1
)a , UU U
BF
iun EF um EB UHL BF (1 uur
LULT EF-DP [(1 )a b H
(1)b] (1
a 2 (1)
b 2
UUIL LULT
即EF DP ,所以有
DP
第16题•函数y
b 即 [01]
ABCD , P 点为对角线 AC 上任一点, PE AB 于点E , ,求
证DP EF .
第17题. 若 sin(180°
)
1
―: - ? 则 sec(
)sin( 90o ) 的值是
10
csc(540o )cos(
270o
)
A. 1
B. 1
C. 丄
D.
3
3
27
3
答案:c
uuu
第 18 题.若 A(3cos ,sin ,1), B(2cos ,sin ,1),则 AB 的取值范围是(
)
A. [0,5]
B. [1,5]
C. (1,)
D. [1,25]
答案:E
则|PP 4等于(
解:由
8
所以cos
解得a 1 .
第19题.
B , P , Pl 四点共线,且依次排列,
P 3是的中点,|PP 2 m,
A. 2m n 答案:B
B. 2n
C. D. m n
第20题.已知 sin
,求 2sin 8
(sin cos ) 1 的值.
2si n (sin cos
2sin 2
2sin cos
sin 2 cos2 . 2sin 2
^.2 sin
n
cos
8
24. 2
25
第21题.已知函数 f (x) 2cos 2 x 3sin2x a ( a 为常数),
(1 )若x R ,求f(x)的单调递增区间; (2)若x
0,n
时,f (x)的最大值为4, a 的值. 2
解:f(x) 2cos 2 x . 3sin 2x a 2sin 2x 上 a 1 .
6
(1
)由2k n 卫€ 2x 卫W 2k n 卫,k Z 得f (x)的单调递增区间为
k n ~ , k n
2 6 2
3
k Z ;
(2)因为x 「所以,当x :时函数f(x)
2sin 2x -
6
a 1有最大值a
_n 6
3 4 ,
解得 综上所述,实数a 的值为6或10 •
3
第22题•已知函数
1
f(x) cos2x
2
asi nx —的定义域为
4
0,」,最大值为2, 2
求实数
值. 解: 1
f (x) cos2x
2
a 1 2
asinx
(1 2sin x) asinx 4
2
(1) (2) 解得 (3)
sin x
当x 0即sinx 0时原函数取得最大值,
既有 当0< a < 1时,当sinx -时原函数取得最大值,即有
2 2
2或a 3,均与0 < - < 1矛盾,为增根,舍去;
2
a
1时,当x 上即sinx 1时原函数取得最大值,即有 2 2
a 4 2
a
解得
a 2。