(优选)离散数学讲义
离散数学讲义(第1章)

1-2 联结词(续)
例:P:上海是一个大城市。 P:上海并不是一个大城市。 或 P:上海是一个不大的城市。
这两个命题具有相同的含义,因此用 同一个符号表示。
17
1-2 联结词(续)
P与 P的真值关系:
P
T F
PHale Waihona Puke F T否定是一个一元运算。
18
1-2 联结词(续)
(2)合取 设P,Q是两个命题,新命题“P并且Q”是 一个复合命题,称为命题P,Q的合取。记作: P∧Q 如:P:北京是中国的首都。 Q:北京是一个故都。 P∧Q:北京是中国的首都并且是一个 故都。
5
趣味逻辑数学题-巧猜围棋子
用数理逻辑学方法解题
P表示:“棋子为白色” Q表示:“甲说的是真话” 数理逻辑运算符: (非),(与),(或)
问题答案:S=(PQ)(PQ)
6
第一篇
数理逻辑
7
数理逻辑
数理逻辑是用数学方法来研究推理 过程的科学。主要是指引进一套符 号体系的方法,因此数理逻辑一般 又叫符号逻辑。 基本内容是:命题逻辑(演算)和 谓词逻辑(演算)。
22
1-2 联结词(续)
P∨Q的真值关系:
P T T F F Q T F T F P∨Q T T T F
析取是一个二元运算。
23
1-2 联结词(续)
注意:析取联结词∨与汉语中的“或”的意义不 完全相同。汉语中的“或”既可以表示“排斥 或”,也可以表示“可兼或”。
例如: P:今天晚上我在家看电视或去剧场看戏。 Q:他可能是100米或400米赛跑的冠军。
28
1-2 联结词(续)
在命题演算中,五个联结词的含义由真值表唯一确定。
离散数学(第四版)讲义1

引言Discrete Math.离散数学研究离散对象及其相互间关系的一门数学学科。
研究离散结构的数学分支。
(辞海)计算机科学、信息科学、数字化科学的数学基础离散数学的内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)组合论(Combination)线性代数(Linear Algebra)概率论(Probability Theory)……与高等数学的区别教学内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)离散数学的由来与发展:一、古老历史:计数:自然数发展:图论:Konigsberg七桥问题二、年青新生:计算机:二进制运算离散数学课程设置:计算机系核心课程信息类专业必修课程其它类专业的重要选修课程离散数学的后继课程:数据结构、编译技术、算法分析与设计、人工智能、数据库、……离散数学课程的学习方法:强调:逻辑性、抽象性;注重:概念、方法与应用参考教材:1、离散数学(耿素云,屈婉玲,北大版)2、离散数学(方世昌,西安电子科大版)3、离散数学结构(第三版、影印版)(Bernard Kolman、Robert C.Busby、Sharon Ross,清华版)4、离散数学提要与范例(阮传概、卢友清,北京广播学院版)第一章命题逻辑(Proposition Logic)1、命题符号化及联结词2、命题公式及分类3、等值演算4、联结词全功能集5、对偶与范式6、推理理论逻辑学:研究推理的一门学科数理逻辑:用数学方法研究推理的一门数学学科——一套符号体系+ 一组规则数理逻辑的内容:古典数理逻辑:命题逻辑、谓词逻辑现代数理逻辑:逻辑演算、公理化集合论、递归论、模型论、证明论1、命题符号化及联结词命题(Proposition):一个有确定真或假意义的语句。
离散数学讲义

A
(1)
B
A
(2) A’ ) A’ )
B
A (3)
B
因此不能说(1.2)式与(3)式总是相等的.
AB = (A
(3)
AB = (A B’ )
(B B’ ) (B
(A
B)
(1.2)
§1.6集合成员表
前面定义的集合运算的交.并.补.显然对全集U运算 是封闭的.下面对这些概念以新的形式定义,使之数量 化.能够更新,更清晰,更具理论价值.先讨论基本成员表. a.集合A的补集可如下定义: A′的成员表
元素附加一个标号,以使描述这个元素在该集合中的
相应位置.如A={a,b,c}分别是一、二、三元素,在A 的子集中,常有一些元素出现,另一些元素不出现。
我们根据这一情况来指定集合中元素的次序,用
如下方式表示.如A的各子集表为: B000=φ, B 001={c}, B010={b}, B011={b,c}, B100={a},
全集因所讨论的问题不同可相异.例如:
讨论正整数范围内U可取作N;实数讨论问题U可取
作R. 定义2: 设A.B为二集合.属于A或B的所有元素构 成的集合称为A与B的并.记为A∪B.即 A∪B={u | u∈Aoru∈B}
既属于A又属于B的所有元素构成的集合称为A与
B的交. 记为A∩B.即 A∩B={u | u∈A且u∈B} 例 ( 略)
解: 如A={a,c }
B={b,c}
有A-B={a} , 2 A-B={φ,{a}}
2A={φ,{a},{c},{a,c}}
2B= {φ,{b},{c},{b,c}}
2A-2B= {{a},{a,c}} 与2A-B互不包含. 进一步可看到:
《离散数学》讲义 - 2

注意:
①括号的约定,与命题逻辑合式公式对括号的约定 类似,但量词后的括号不能省略。 ②谓词合式公式简称为谓词公式。
离散数学
23
小结
谓词函数
谓词和客体变元 谓词函数、命题 客体变元取值范围及真值
个体域和全总个体域 量词
存在量词和全称量词(表示及判定)
谓词公式 谓词表达式表示命题或句子(带有量词)
32
小结
谓词公式翻译
量词 谓词函数 联结词
离散数学
33
2-3习题作业
P62 (3)a),c);(5);(7)
离散数学
34
2-4 变元的约束
离散数学
35
1、概念
(1)指导变元(作用变元)和作用域(辖域) 给定a为一个谓词公式,其中有一部分公式形 式为(x)P(x)或(x)P(x)。其中、后面跟的x 叫做量词的指导变元或作用变元;P(x)叫做相应量 词的作用域或辖域。 注意:括号有决定性的作用。
离散数学 28
附3:一些人对某种食物过敏。 解:设:M(x):x是人。 R(y):y是食物。 Q(x,y):x对y过敏。 (x)(M(x)(y)(R(y)Q(x,y)))
离散数学
29
附4:有且仅有一个偶数是质数。 分析:命题(有一个偶数是质数)(只有一个偶数是质 数) 解:设:P(x):x是偶数。 Q(x):x是质数。 E(x,y):x等于y。 (x)((P(x)Q(x))(y)( (P(y)Q(y))E(x,y))) 或 (x)((P(x)Q(x))(y)( (P(y)E(x,y))Q(y)))
离散数学
38
2、n元谓词的确定-约束变元的概念
根据约束变元的概念,P(x1,x2,…,xn)是n元 谓词,它有n个相互独立的自由变元。若对其中的 k个变元进行约束则成为n-k元谓词。即根据谓词 公式中所包含的自由变元的个数。 谓词公式中如果没有自由变元出现,则该公式 就成为一个命题。
《离散数学》讲义(胡盛)

小结
合式公式(命题公式)及其判定 自然语言的翻译(符号化形式)
列出原子命题,并符号化 不同的原子命题使用不同的符号,符号使用最少 选择合适的联结词,根据命题表达的真实含义,而不 拘泥于形式
离散数学
30
1-3 命题公式与翻译
P12(3)(5)ad(7)
离散数学
31
第一章 数理逻辑 1-4 真值表与等价公式
(PQ) (PQ) T F F T
35
1、真值表
例题4 给出(PQ)(PQ)的真值表 公式不论命题变元做何种指派,其真值永为真, 我们把这类公式记为T。
P Q PQ (PQ) P Q PQ T T T F F T F F T F F F F T T T F F T T F T F T F T T T (PQ)( PQ) T T T T
定义1-5.1
给定一命题公式,若无论对分量作怎样的指派,其对 应的真值永为T,则称该命题公式为重言式或永真公 式。 例如:表1-4.4
明天下雨
2. 我们去看电影
房间里有十张凳子
二元运算
离散数学 17
1-2 联结词
析取(),其定义可用如下真值表表示
P T T F Q T F T PQ T T T 今天我在家看电视或去剧场看戏
她可能是100米或400米赛跑的冠军
他昨天作了二十或三十道习题 可兼或
F
F
F
排斥或
二元运算
离散数学 18
它可以是有意义的一般论证,也可以是科学理论中的数学证 明或结论。建立逻辑学的主要目的在于探索出一套完整的规 则,按照这些规则,就可以确定任何特定论证是否有效。这 些规则,通常称为推理规则。
离散数学
6
离散数学讲义(第4章)

4-4 基数的概念(续)
Peano公理:
(1)0N,(其中0=) (2)如果0N,则n+N(其中n+=n∪{n})
(3)如果一个子集S N具有性质:
(a) 0S (b)如果nS,有n+S 则S=N
注:
1)性质(3)称极小性质,指明了自然数系统的最小性。 即自然数系统是满足公理(1)(2)的最小集合。 2)自然数也可不从0开始,只需定义=1即可。
证明:令f:PS,f(x)=tg-1x/p+1/2 (- ∞ <x< ∞)
显然f的值域是S,且f是双射函数。
18
4-4 基数的概念(续)
定理:在集合族上等势关系是一个等价关系。 证明:设集合族为S a)对任意的A S,必有A A b)若A,B S,如果A B,必有B A c)若A,B,C S,如果A B,B C,则有A C 定义:如果有一个从集合{0,1,…,n-1}到A的双射函数,那 么称集合 A 是有限的;如果集合 A 不是 有限的 ,则它是 无 限的。 定理:自然数集合N是无限的。 证明:设 n 是 N 的任意元素,f 是任意的从 {0,1,…,n-1} 到 N 的函数。设k=1+max{f(0),f(1),…,f(n-1)} ,那么k N, 但对每一个x {0,1,…,n-1},有f(x) k。因此f不能是满 射函数,即f也不是双射函数。因为n和f都是任意的,故N 是无限的。
注:一般有h (g f) = (h g) f,即函数的复合是可结 合的。因此可以将括号去掉。
12
4-2 逆函数和复合函数(续)
定义:函数f:X Y称作常函数,如果存在某个y0 Y, 对于每个x X,都有f(x)=y0,即f(X)={y0}。 定义:如果Ix={〈x,x〉|xX},则称函数Ix:X X为恒 等函数。
《离散数学》总复习上课讲义

第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))
离散数学讲义(第6章)

18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f
格
c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
置换规则:若AB, 则(B)(A)
等值演算的基础: (1) 等值关系的性质:自反、对称、传递 (2) 基本的等值式 (3) 置换规则
应用举例——证明两个公式等值
例1 证明 p(qr) (pq)r 证 p(qr)
p(qr) (蕴涵等值式,置换规则) (pq)r (结合律,置换规则) (pq)r (德摩根律,置换规则) (pq) r (蕴涵等值式,置换规则)
(优选)离散数学讲 义
1
等值式
定义 若等价式AB是重言式,则称A与B等值, 记作AB,并称AB是等值式 说明:定义中,A,B,均为元语言符号, A或B中 可能有哑元出现. 例如,在 (pq) ((pq) (rr))中,r为左边 公式的哑元. 用真值表可验证两个公式是否等值 请验证:p(qr) (pq) r
pqpq, 所以,为冗余的联结词; 类似地,也是冗余的 联结词. 又在{, , }中,由于
pq(pq), 所以,是冗余的联结词. 类似地,也是冗余的联 结词.
联结词的全功能集(续)
定义 设S是一个联结词集合,如果任何n(n1) 元 真值函数都可以由仅含S中的联结词构成的公式表 示,则称S是联结词全功能集. 说明:
p(qr) (pq) r
基本等值式
双重否定律 : AA
等幂律: AAA, AAA
交换律:
ABBA, ABBA
结合律:
(AB)CA(BC)
(AB)CA(BC)
分配律:
A(BC)(AB)(AC)
A(BC) (AB)(AC)
基本等值式(续)
德·摩根律 : (AB)AB
(AB)AB
吸收律: A(AB)A, A(AB)A
几个500强面试题
★为什么下水道的井盖是圆的?
★一个屋子有一个门(门是关闭的)和3 盏 电灯。屋外有3 个开关,分别与这3 盏灯相 连。你可以随意操纵这些开关,可一旦你 将门打开,就不能变换开关了。确定每个 开关具体管哪盏灯。
★假设时钟到了12 点。注意时针和分针重 叠在一起。在一天之中,时针和分针共重 叠多少次?你知道它们重叠时的具体时间 吗?
若S是联结词全功能集,则任何命题公式都可用S 中的联结词表示.
若S1, S2是两个联结词集合,且S1 S2. 若S1是全
功能集,则S2也是全功能集.
1.4 联结词全功能集
▪ 复合联结词
排斥或 与非式 或非式
▪ 真值函数 ▪ 联结词全功能集
复合联结词
排斥或: pq(pq)(pq) 与非式: pq(pq) 或非式: pq(pq)
真值函數
问题:含n个命题变项的所有公式共产生多少个互 不相同的真值表?
答案为 22n个,为什么? 定义 称定义域为{00…0, 00…1, …, 11…1},值域 为{0,1}的函数是n元真值函数,定义域中的元素是 长为n的0,1串. 常用F:{0,1}n{0,1} 表示F是n元真值 函数.
共有 22n个n元真值函数. 例如 F:{0,1}2{0,1},且F(00)=F(01)=F(11)=0, F(01)=1,则F为一个确定的2元真值函数.
命题公式与真值函数
对于任何一个含n个命题变项的命题公式A,都存在 惟一的一个n元真值函数F为A的真值表. 等值的公式对应的真值函数相同. 下表给出所有2元真值函数对应的真值表, 每一个含 2个命题变项的公式的真值表都可以在下表中找到.
例如:pq, pq, (pq)((pq)q) 等都对应
表中的
F (2 13
)
2元真值函数对应的真值表
pq
00 01 01 11 pq
00 01 01 11
F F F F F F F F (2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
0
1
2
3
4
5
6
7
00000000
00001111
00110011
01010101
F (2) 8
F (2) 9
F (2) 10
F (2) 11
F (2) 12
F (2) 13
F (2) 14
F (2) 15
11111111
00001111
00110011
01010101
联结词的全功能集
定义 在一个联结词的集合中,如果一个联结词可 由集合中的其他联结词定义,则称此联结词为冗余 的联结词,否则称为独立的联结词. 例如,在联结词集{, , , , }中,由于
说明:也可以从右边开始演算(请做一遍) 因为每一步都用置换规则,故可不写出 熟练后,基本等值式也可以不写出
应用举例——证明两个公式不等值
例2 证明: p(qr) (pq) r 用等值演算不能直接证明两个公式不等值,证明两
个公式不等值的基本思想是找到一个赋值使一个成 真,另一个成假.
方法一 真值表法(自己证) 方法二 观察赋值法. 容易看出000, 010等是左边的 成真赋值,是右边的成假赋值. 方法三 用等值演算先化简两个公式,再观察.
应用举例——判断公式类型
例3 用等值演算法判断下列公式的类型
( (蕴涵等值式)
q(pq) (德摩根律)
p(qq) (交换律,结合律)
p0
(矛盾律)
0
(零律)
由最后一步可知,该式为矛盾式.
例3 (续)
(2) (pq)(qp) 解 (pq)(qp)
(pq)(qp) (蕴涵等值式) (pq)(pq) (交换律) 1 由最后一步可知,该式为重言式. 问:最后一步为什么等值于1?
例3 (续)
(3) ((pq)(pq))r)
解 ((pq)(pq))r)
(p(qq))r (分配律)
p1r
(排中律)
pr
(同一律)
这不是矛盾式,也不是重言式,而是非重言式的可
满足式.如101是它的成真赋值,000是它的成假赋值.
总结:A为矛盾式当且仅当A0 A为重言式当且仅当A1
说明:演算步骤不惟一,应尽量使演算短些
零律:
A11, A00
同一律: A0A, A1A
排中律: AA1
矛盾律: AA0
基本等值式(续)
蕴涵等值式: ABAB
等价等值式: AB(AB)(BA)
假言易位:
ABBA
等价否定等值式: ABAB
归谬论:
(AB)(AB) A
注意:
A,B,C代表任意的命题公式
牢记这些等值式是继续学习的基础
等值演算与置换规则