2016.1上海徐汇区九年级数学试题及答案
上海市 2016年中考数学真题试卷附解析

2016年上海中考数学试卷一. 选择题1. (2016·上海)如果a 与3互为倒数,那么a 是( ) A. 3- B. 3 C. 13- D. 13答案:D考点:倒数关系。
解析:3的倒数是13。
2. (2016·上海)下列单项式中,与2a b 是同类项的是( )A. 22a bB. 22a bC. 2ab D. 3ab答案:A考点:同类项的概念。
解析:含有相同字母,并且相同字母的指数相同的单项式为同类项,所以,选A 。
3. (2016·上海)如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+ 答案:C考点:图象的平移变换。
解析:抛物线22y x =+向下平移1个单位变为221y x =+-,即为21y x =+4. (2016·上海)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是( )A. 3次B. 3.5次C. 4次D. 4.5次 答案:C考点:加权平均数的计算。
解析:平均数为:1(223241056)20⨯+⨯+⨯+⨯=4(次)。
5. (2016·上海)已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =,那么向量AC 用向量a 、b 表示为( ) A.12a b + B. 12a b - C. 12a b -+ D. 12a b -- 答案:A考点:平面向量,等腰三角形的三线合一。
解析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,12AC AD DC AD BC =+=+=12a b +6. (2016·上海)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( )A. 14r <<B. 24r <<C. 18r <<D. 28r << 答案:B考点:勾股定理,点与圆、圆与圆的位置关系。
年徐汇区初三数学一模试卷及答案

2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A)32=y x ; (B)3=-y x x ; (C )35=+y y x ; (D)52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A)512; (B )125; (C )135; (D)1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A)2)3(22--=x y ; (B)2)3(22+-=x y ; (C)2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A)BC DE //; (B )B AED ∠=∠;(C)AC AB AD AE =; (D) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B)31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ;ﻩ (B)0≥x ﻩ; (C )1-≥x ; (D)2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B C =b ,那么=AC __b a-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___. 17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.图3F ABCDE 图2AB C DA B C DEF图1三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.解:原式123113232-+--⨯= 232133-++-=332--=20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于 点B ,与y 轴交于点C ,顶点为D . 求:(1)点D C B 、、坐标; (2)BCD ∆的面积.解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ; ∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A .∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,=b.求:(1)向量(用向量a 、b 表示); (2)B tan 的值.解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥; ∴CF AF =;∴CE BE =.∵BC AD //,AB DE //,∴四边形ABED 是平行四边形; ∴AB DE =;∴=a=,=b 2121=;∴b a21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ; 又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC , ∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B .图4ABC DE F22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈).解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ;∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里);∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足 CE AD CD AE ⋅=⋅.(1)求证:AB DE //; (2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =; ∵B DAB ∠=∠,∴BD AD =;∴CD BD CE AE =; ∴AB DE //.(2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2; 又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠; ∴ADF ∆∽DBA ∆; ∴1==BD AD DF AF ; ∴AF DF =.图6ABCD E24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧), ∵OC OB =;∴)0,3(B ; ∴0339=++-b ,解得2=b ; ∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ;∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ; ∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ;当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去); ∴点M 的坐标是)53,56(--.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (4分) (2)当PEQ ∆是等腰三角形时,求BD 的长; (4分) (3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值. (6分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;∵AC DF //,∴ABBDAP DF =;即323x y y x =--, ∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ;图8QPDBAC E B AC备用图QPDBAC EF︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ;︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠; ∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .。
2016年上海市中考数学试卷(含详细答案及解析)

2016年上海市中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.(4分)如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.2.(4分)下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab3.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.(4分)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次C.4次 D.4.5次5.(4分)已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+ D.﹣﹣6.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每小题4分,共48分7.(4分)计算:a3÷a=.8.(4分)函数y=的定义域是.9.(4分)方程=2的解是.10.(4分)如果a=,b=﹣3,那么代数式2a+b的值为.11.(4分)不等式组的解集是.12.(4分)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.(4分)已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.(4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.(4分)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.(4分)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.(4分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)18.(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.(10分)计算:|﹣1|﹣﹣+.20.(10分)解方程:﹣=1.21.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.(10分)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.(12分)已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE 是平行四边形.24.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.(14分)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2016年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.(4分)(2016•上海)如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(4分)(2016•上海)下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.(4分)(2016•上海)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.(4分)(2016•上海)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次C.4次 D.4.5次【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.(4分)(2016•上海)已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+ D.﹣﹣【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.(4分)(2016•上海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.(4分)(2016•上海)计算:a3÷a=a2.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.(4分)(2016•上海)函数y=的定义域是x≠2.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.(4分)(2016•上海)方程=2的解是x=5.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.(4分)(2016•上海)如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.(4分)(2016•上海)不等式组的解集是x<1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.(4分)(2016•上海)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.(4分)(2016•上海)已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.(4分)(2016•上海)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.(4分)(2016•上海)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.(4分)(2016•上海)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.(4分)(2016•上海)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.(4分)(2016•上海)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.(10分)(2016•上海)计算:|﹣1|﹣﹣+.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.(10分)(2016•上海)解方程:﹣=1.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.(10分)(2016•上海)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D 在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.(10分)(2016•上海)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【分析】(1)设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.(12分)(2016•上海)已知:如图,⊙O是△ABC的外接圆,=,点D 在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE 是平行四边形.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.(12分)(2016•上海)如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan ∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).连接AC,∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),=×4×5=10,S△ACD=×4×4=8,又S△ABC=S△ABC+S△ACD=18.∴S四边形ABCD(3)过点C作CH⊥AB,垂足为点H.=×AB×CH=10,AB=5,∵S△ABC∴CH=2,在RT△BCH中,∠BHC=90°,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.(14分)(2016•上海)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)①EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;②GA=GE时,则∠GAE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(0<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.参与本试卷答题和审题的老师有:2300680618;caicl;HJJ;sd2011;王学峰;星期八;知足长乐;sks;zhjh;曹先生;gsls;弯弯的小河;gbl210;sjzx;张其铎;家有儿女;梁宝华;LG(排名不分先后)菁优网2017年4月8日。
2016届上海徐汇区初三数学一模试卷加答案(完美word版)

2015学年第一学期徐汇区学习能力诊断卷初三数学 试卷 2016.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列两个图形一定相似的是(A )两个菱形; (B )两个矩形; (C )两个正方形; (D )两个等腰梯形. 2.如图1,如果EF CD AB ////,那么下列结论正确的是(A )EF CD AE AC =; (B )DF CEBD AC =; (C )CD AB CE AC =; (D ) CEBD DF AC =. 3.将抛物线2)1(22-+=x y 向右平移2个单位,再向上平移2个单位后所得新抛物线的 表达式是(A )2)3(2+=x y ;(B )2)3(+=x y ;(C )2)1(-=x y ;(D )2)1(2-=x y . 4.点G 是ABC ∆的重心,如果5==AC AB ,8=BC ,那么AG 的长是 (A )1; (B )2 ; (C )3; (D ) 4.5.如果从甲船看乙船,乙船在甲船的北偏东︒30方向,那么从乙船看甲船,甲船在乙船的 (A )南偏西︒30方向; (B )南偏西︒60方向; (C )南偏东︒30方向; (D )南偏东︒60方向.6.如图2,梯形ABCD 中,BC AD //,︒=∠90BAC ,AC AB =,点E 是边AB 上一 点,︒=∠45ECD ,那么下列结论错误的是(A )ECB AED ∠=∠; (B )ACE ADE ∠=∠ ; (C )AD BE 2=; (D ) CE BC 2=.二.填空题(本大题共12题,每题4分,满分48分)7.计算:=+-+b a b a2131)32(2__▲___.8.如果32=b a ,那么=+-ba ab __▲___. 9.已知二次函数122-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是__▲___. 10.如果两个相似三角形的面积比是9:4,那么它们对应高的比是__▲___.A BC DEF图1图2A BCDE11.如图3所示,一皮带轮的坡比是4.2:1,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是__▲___米.12.已知点)4,1(M 在抛物线142+-=ax ax y 上,如果点N 和点M 关于该抛物线的对称 轴对称,那么点N 的坐标是__▲___. 13.点D 在ABC ∆的边AB 上,3=AC ,4=AB ,B ACD ∠=∠,那么AD 的长是_▲_. 14.如图4,在□ABCD 中,6=AB ,4=AD ,BAD ∠的平分线AE 分别交BD 、CD于F 、E ,那么=BFDF__▲___. 15.如图5,在ABC ∆中,BC AH ⊥于H ,正方形DEFG 内接于ABC ∆,点E D 、分别在边AC AB 、上,点F G 、在边BC 上,如果20=BC ,正方形DEFG 的面积为 25,那么AH 的长是__▲___.16.如图6,在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,43tan =∠ACD ,5=AB ,那么CD 的长是__▲___.17.如图7,在梯形ABCD 中,BC AD //,AD BC 2=,点E 是CD 的中点,AC 与BE交于点F ,那么ABF ∆和CEF ∆的面积比是__▲___.18.如图8,在ABC Rt ∆中,︒=∠90BAC ,3=AB ,53cos =B ,将ABC ∆绕着点A 旋转得ADE ∆,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是_▲_.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:︒︒+︒︒-︒60cos 45cot 30cos 30tan 245sin 4.20.(本题满分10分)抛物线c x x y +-=22经过点)1,2(.(1)求抛物线的顶点坐标; (5分)(2)将抛物线c x x y +-=22沿y 轴向下平移后,所得新抛物线与x 轴交于B A 、两 点,如果2=AB ,求新抛物线的表达式. (5分)ABCDEF G H 图5 A B CD图6 ABC D E F 图7 ABC D E图8 图3如图9,在ABC ∆中,点E D 、分别在边AC AB 、上,43=AB AD ,3=AE ,1=CE ,6=BC .(1)求DE 的长; (5分)(2)过点D 作AC DF //交BC 于F ,设AB a =,=b,求向量(用向量a 、b 表示). (5分)22.(本题满分10分)如图10,热气球在离地面800米的A 处,在A 处测得一大楼楼顶C 的俯角是︒30,热气球沿着水平方向向此大楼飞行400米后到达B 处,从B 处再次测得此大楼楼顶C 的俯角是︒45,求该大楼CD 的高度. 参考数据:41.12≈,73.13≈.23.(本题满分12分)如图11,在ACB ∆中,BC AC =,点D 在边AC 上,BD AB =,ED BE =,且ABD CBE ∠=∠,DE 与CB 交于点F .求证:(1)BE AD BD ⋅=2; (6分)(2)DF BC BF CD ⋅=⋅. (6分)ABCDE 图9ABCDE F 图11如图12,在AOB Rt ∆中,︒=∠90AOB ,已知点)1,1(--A ,点B 在第二象限,22=OB ,抛物线c bx x y ++=253经过点A 和B . (1)求点B 的坐标; (3分)(2)求抛物线c bx x y ++=253的对称轴; (3分) (3)如果该抛物线的对称轴分别和边BO AO 、的延长线交于点D C 、,设点E 在直线AB 上,当BOE ∆和BCD ∆相似时,直接写出点E 的坐标.(6分)25.(本题满分14分)如图13,四边形ABCD 中,︒=∠60C ,5==AD AB ,8==CD CB ,点Q P 、分别是边BC AD 、上的动点,AQ 和BP 交于点E ,且BAD BEQ ∠-︒=∠2190,设P A 、两点的距离为x .(1)求BEQ ∠的正切值; (4分) (2)设y PEAE=,求y 关于x 的函数解析式及定义域; (5分) (3)当AEP ∆是等腰三角形时,求Q B 、两点的距离. (5分)DB AC QPE图132015学年第一学期徐汇区初三年级数学学科 期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)7.b a 213311+; 8.51; 9.0≥x ; 10.3:2; 11.26; 12.)4,3(; 13.49; 14.32; 15.320; 16.512; 17.1:6; 18.524.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式21123332224+⨯⨯-⨯=;……………………………………………(5分)2122+-=;……………………………………………………………(3分) 122+=.…………………………………………………………………(2分) 20.解:(1)由题意,得144=+-c ,解得1=c ;…………………………………(1分)∴抛物线的解析式为122+-=x x y ;……………………………………(1分)即2)1(-=x y ;……………………………………………………………(1分) ∴顶点坐标是)0,1(.………………………………………………………(2分) (2)设平移后的抛物线解析式是n x x y -+-=122;………………………(1分)∴ 该抛物线的对称轴是直线1=x ;………………………………………(1分) 又2=AB ,由抛物线的对称性可得)0,0(A 、)0,2(B ;………………(1分) ∴01=-n ,解得1=n ;…………………………………………………(1分) ∴新抛物线的表达式是x x y 22-=.……………………………………(1分)21.解:(1)∵3=AE ,1=CE ,∴43=AC AE ;……………………………………(1分)又43=AB AD ,∴ABADAC AE =; …………………………………………(1分) ∴BC DE //.∴ ABADBC DE =……………………………………………(1分)即436=DE ,解得29=DE .……………………………………………(2分)(2)∵AC DF //,∴ABBDAC DF =;……………………………………………(1分) 又43=AB AD ,∴41=AC DF ,即AC DF 41=;……………………………(2分) ∵b a+=,∴b a 4141+=. ……………………………………(2分)22.解: 分别延长DC AB 、交于点E . ……………………………………………(1分)∵AB 与地面平行,DC 与地面垂直,∴AB DE ⊥,∴︒=∠90E . …(1分)在CEB Rt ∆中,︒=∠45EBC ,∴︒=∠45ECB ,∴BE EC =;……(1分) 设x CE =,则x BE =,400+=x AE . ………………………………(1分) 在AEC Rt ∆中,︒=∠90E ,∴AEECCAE =∠tan ; ……………………(1分) 即40030tan +=︒x x,解得)13(200+=x ;…………………………(2分)即546)173.1(200)13(200=+⨯≈+=CE (米) ;……………………(2分) ∴254546800=-=CD (米); ……………………………………………(1分) 答: 大楼CD 的高度254米. 23.证明:(1)∵BC AC =,∴ABC A ∠=∠; ……………………………………(1分) ∵ED BE =,∴DBE BDE ∠=∠;…………………………………(1分)∵ABD CBE ∠=∠,∴CBD ABD CBD CBE ∠+∠=∠+∠, 即ABC DBE ∠=∠,∴A BDE ∠=∠;∴BED ∆∽BCA ∆ ;……(1分) ∵BD AB =,∴BDA A ∠=∠;∴ABC BDA ∠=∠;又A A ∠=∠,∴ABD ∆∽BCA ∆;…………………………………(1分) ∴BED ∆∽ADB ∆ ;……………………………………………………(1分) ∴BEBD BD AD =,即BE AD BD ⋅=2.…………………………………(1分) (2)∵ABD ∆∽BCA ∆,∴C ABD ∠=∠;………………………………(1分) 又ABD CBE ∠=∠,∴C CBE ∠=∠;……………………………(1分)∴BE AC //,∴EFDFBE DC =;…………………………………………(1分) ∵BED ∆∽BCA ∆,∴C E ∠=∠,1==ABBDBC BE ;………………(1分)∴CBE E ∠=∠,∴EF BF =;………………………………………(1分)又BC BE =,∴BFDFBC DC =;…………………………………………(1分) 即DF BC BF CD ⋅=⋅.24.解:(1)分别过点B A 、作y 轴的垂线,垂足分别是D C 、.可得ACO ∆∽ODB ∆,∴OAOBAC OD OC BD ==;∵)1,1(--A ,∴2=OA ; ∴2,2==OD BD ;∴)2,2(-B …………………………………………(3分)(2)由题意,可得⎪⎪⎩⎪⎪⎨⎧=+--=+-;22512;153c b c b ……………………………………………(1分) 解得⎪⎪⎩⎪⎪⎨⎧-=-=;514;56c b ……………………………………………………………(1分) ∴51456532--=x x y ; ∴对称轴是直线1=x .……………………………………………………(1分) (3)点)0,34(-E 或)58,54(--E .…………………………………………(各3分)25.解:(1)联结BD AC 、交于点O .…………………………………………………(1分)∴AD AB =,∴BAD BAD ABD ADB ∠-︒=∠-︒=∠=∠21902180,又BAD BEQ ∠-︒=∠2190,∴ADB BEQ ∠=∠; ∵AD AB =,CD CB =,∴BD AC ⊥,DO BO =; ∵︒=∠60BCD ,∴BCD ∆是等边三角形,∴8==BC BD ; 在AOD Rt ∆中,︒=∠90AOD ,∴3452222=-=-=DO AD AO ,∴43tan ==∠DO AO ADO ; ∴43tan =∠BEQ . ………………………………………………………(3分)(2)如图,联结BD 交AQ 于F .∵ADB BEQ AEP ∠=∠=∠,DAF EAP ∠=∠, ∴AEP ∆∽ADF ∆,∴DFADPE AE =;…………………(1分) ∵ABD ADB BEQ ∠=∠=∠,AFB BFE ∠=∠; ∴BFE ∆∽AFB ∆ ;∴BAF FBE ∠=∠;∴PBD ∆∽FAB ∆ ;∴BDPDAB BF =; 即855x BF -=,得8525x BF -=;∴85398xBF DF +=-=;…(2分) ∴39540+=x y ,定义域是50<≤x .…………………………………(2分)DB ACQ PE F(3)如图,联结BD 交AQ 于F .∵AEP ∆∽ADF ∆,当AEP ∆是等腰三角形时; ∴ADF ∆也是等腰三角形. 分情况讨论:︒1 当AD AF =时,0=BQ ,但此时点E Q B 、、重合,BEQ ∠不存在,不合题意,舍去;……………………………………(1分)︒2 当DF AF =时,解得4825〈=DF ,此时AF 与边BC 没有交点(即点Q 不在边BC 上),不合题意,舍去;…………………………………(2分)︒3 当5==AD DF 时,得3=BF ,此时1=y ,∴51=x ,符合题意; 联结AC 交BD 于O ,过点Q 作BF QG ⊥于G ;可得3tan =∠BFQ , 因此,解得339-=BQ ,即Q B 、两点的距离是339-.…(2分)综合︒1、︒2、︒3,当AEP ∆是等腰三角形时,Q B 、两点的距离是339-.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈 兴于《诗》,立于礼,成于乐——孔子 己所不欲,勿施于人——孔子 读书破万卷,下笔如有神——杜甫 读书有三到,谓心到,眼到,口到——朱熹 立身以立学为先,立学以读书为本——欧阳修 读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿 书卷多情似故人,晨昏忧乐每相亲——于谦DB ACQ PEF书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。
徐汇区2016年数学二模卷答案

3
OP OC ,又 COP DOC ,∴ OCP ∽ ODC , OC OD CD OD a ,∴ CD aPC ;又 a 1 ,∴ CD PC ;………(1 分) ∴ PC OC
即 ∵⊙ P 和⊙ C 相切, PC 是圆心距,∴⊙ P 和⊙ C 相只能内切;……(1 分) ∴ CD PC PC ;即 aPC PC PC ;……………………………(1 分) 解得 a 2 . ………………………………………………………………… (1 分) (3)联结 BP 、 OC .∵ OCP ∽ ODC ,∴ OCP D ; ∵ OC OB ,∴ OBC OCB ;∵ D OBC 90 , ∴ OCP OCB 90 ,即 BCP 90 .…………………………(1 分) ∵ PC OA BC OP , OA OB ,∴
2015 学 年 第 二 学 期 徐 汇 区 初 三 年 级 数 学 学 科 学习能力诊断卷参考答案和评分标准
一、选择题: (本大题共 6 题,每题 4 分,满分 24 分) 1.B; 2.C; 3.C; 4.D; 5.B; 二.填空题: (本大题共 12 题,满分 48 分) 6.A.
2 400 400 a ;12. 2; 3 x 10 x 16 13.0.21 ;14.答案不唯一,如: AC BD 等;15.4 ;16.x 1;17.2200 ;18. . 5
上海市2016年中考数学试卷及答案解析

解得:DC=90
故该建筑物的高度为:BC=BD+DC=120 故答案为:208.
【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.
18. 如图, 矩形 ABCD 中, BC=2, 将矩形 ABCD 绕点 D 顺时针旋转 90°, 点 A、 C 分别落在点 A′、 C′处.如果点 A′、C′、B 在同一条直线上,那么 tan∠ABA′的值为 .
10.如果 a= ,b=﹣3,那么代数式 2a+b 的值为 【考点】代数式求值. 【专题】计算题;实数.
﹣2
.
【解析】把 a 与 b 的值代入原式计算即可得到结果. 【解答】解:当 a= ,b=﹣3 时,2a+b=1﹣3=﹣2, 故答案为:﹣2 【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
12.如果关于 x 的方程 x2﹣3x+k=0 有两个相等的实数根,那么实数 k 的值是 【考点】根的判别式;解一元一次方程.
.
【解析】根据方程有两个相等的实数根结合根的判别式,即可得出关于 k 的一元一次方程, 解方程即可得出结论. 【解答】解:∵关于 x 的方程 x ﹣3x+k=0 有两个相等的实数根, ∴△=(﹣3)2﹣4×1×k=9﹣4k=0, 解得:k= . 故答案为: . 【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出 9﹣4k=0.本题属 于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不 等式或不等式组)是关键.
.
【考点】无理方程. 【解析】利用两边平方的方法解出方程,检验即可. 【解答】解:方程两边平方得,x﹣1=4, 解得,x=5, 把 x=5 代入方程,左边=2,右边=2, 左边=右边, 则 x=5 是原方程的解, 故答案为:x=5. 【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验 根是解题的关键.
2016届上海徐汇区初三数学一模试卷加答案(完美word版)

徐汇区2015学年第一学期期末初三数学 本卷共4页第 1 页2015学年第一学期徐汇区学习能力诊断卷初三数学 试卷 2016.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列两个图形一定相似的是(A )两个菱形; (B )两个矩形; (C )两个正方形; (D )两个等腰梯形. 2.如图1,如果EF CD AB ////,那么下列结论正确的是(A )EF CD AE AC =; (B )DF CEBD AC =; (C )CD AB CE AC =; (D ) CEBD DF AC =. 3.将抛物线2)1(22-+=x y 向右平移2个单位,再向上平移2个单位后所得新抛物线的 表达式是(A )2)3(2+=x y ;(B )2)3(+=x y ;(C )2)1(-=x y ;(D )2)1(2-=x y . 4.点G 是ABC ∆的重心,如果5==AC AB ,8=BC ,那么AG 的长是 (A )1; (B )2 ; (C )3; (D ) 4.5.如果从甲船看乙船,乙船在甲船的北偏东︒30方向,那么从乙船看甲船,甲船在乙船的 (A )南偏西︒30方向; (B )南偏西︒60方向; (C )南偏东︒30方向; (D )南偏东︒60方向.6.如图2,梯形ABCD 中,BC AD //,︒=∠90BAC ,AC AB =,点E 是边AB 上一 点,︒=∠45ECD ,那么下列结论错误的是(A )ECB AED ∠=∠; (B )ACE ADE ∠=∠ ; (C )AD BE 2=; (D ) CE BC 2=.二.填空题(本大题共12题,每题4分,满分48分)7.计算:=+-+b a b a2131)32(2__▲___.A BC DEF图1图2A BCDE徐汇区2015学年第一学期期末初三数学 本卷共4页第 2 页8.如果32=b a ,那么=+-ba ab __▲___. 9.已知二次函数122-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是__▲___. 10.如果两个相似三角形的面积比是9:4,那么它们对应高的比是__▲___.11.如图3所示,一皮带轮的坡比是4.2:1,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是__▲___米. 12.已知点)4,1(M 在抛物线142+-=ax ax y 上,如果点N 和点M关于该抛物线的对称轴对称,那么点N 的坐标是__▲___.13.点D 在ABC ∆的边AB 上,3=AC ,4=AB ,B ACD ∠=∠,那么AD 的长是_▲_.14.如图4,在□ABCD 中,6=AB ,4=AD ,BAD ∠的平分线AE 分别交BD 、CD 于F 、E ,那么=BFDF__▲___. 15.如图5,在ABC ∆中,BC AH ⊥于H ,正方形DEFG 内接于ABC ∆,点E D 、分别在边AC AB 、上,点F G 、在边BC 上,如果20=BC ,正方形DEFG 的面积为 25,那么AH 的长是__▲___.16.如图6,在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,43tan =∠ACD ,5=AB ,那么CD 的长是__▲___.17.如图7,在梯形ABCD 中,BC AD //,AD BC 2=,点E 是CD 的中点,AC 与BE交于点F ,那么ABF ∆和CEF ∆的面积比是__▲___.18.如图8,在ABC Rt ∆中,︒=∠90BAC ,3=AB ,53cos =B ,将ABC ∆绕着点A 旋转得ADE ∆,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是_▲_. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分; 满分78分) 19.(本题满分10分)计算:︒︒+︒︒-︒60cos 45cot 30cos 30tan 245sin 4.20.(本题满分10分)A B CD E F G H图5A B CD图6ABC D E F图7ABC DE图8图3徐汇区2015末初三数学 页第 抛物线c x x y +-=22经过点)1,2(.(1)求抛物线的顶点坐标; (5分)(2)将抛物线c x x y +-=22沿y 轴向下平移后,所得新抛物线与x 轴交于B A 、两 点,如果2=AB ,求新抛物线的表达式. (5分) 21.(本题满分10分)如图9,在ABC ∆中,点E D 、分别在边AC AB 、上,43=AB AD ,3=AE ,1=CE ,6=BC . (1)求DE 的长; (5分)(2)过点D 作AC DF //交BC 于F ,设AB a =,BC =b,求向量DF (用向量a 、b 表示). (5分)22.(本题满分10分)如图10,热气球在离地面800米的A 处,在A 处测得一大楼楼顶C 的俯角是︒30,热气球沿着水平方向向此大楼飞行400米后到达B 处,从B 处再次测得此大楼楼顶C 的俯角是︒45,求该大楼CD 的高度. 参考数据:41.12≈,73.13≈.23.(本题满分12分)如图11,在ACB ∆中,BC AC =,点D 在边BD =,ED BE =,且ABD CBE ∠=∠,DE 与CB 交于点F .求证:(1)BE AD BD ⋅=2; (6分) (2)DF BC BF CD ⋅=⋅. (6分) 24.(本题满分12分)如图12,在A O B Rt ∆中,︒=∠90AOB ,已知点在第二象限,22=OB ,抛物线c bx x y ++=253经过点A 和B .(1)求点B 的坐标; (3分)(2)求抛物线c bx x y ++=253的对称轴; (3分) (3)如果该抛物线的对称轴分别和边BO AO 、的延长线交于点D C 、,设点E 在直线AB 上,当BOE ∆和BCD ∆相似时,直接写出点E 的坐标.(6分)ABCDE 图9徐汇区2015学年第一学期期末初三数学 本卷共4页第 4 页25.(本题满分14分)如图13,四边形ABCD 中,︒=∠60C ,5==AD AB ,8==CD CB ,点Q P 、分别是边BC AD 、上的动点,AQ 和BP 交于点E ,且BAD BEQ ∠-︒=∠2190,设P A 、两点的距离为x . (1)求BEQ ∠的正切值; (4分) (2)设y PEAE=,求y 关于x 的函数解析式及定义域; (5分) (3)当AEP ∆是等腰三角形时,求Q B 、两点的距离. (5分)2015学年第一学期徐汇区初三年级数学学科 期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)7.b a 213311+; 8.51; 9.0≥x ; 10.3:2; 11.26;12.)4,3(; 13.49; 14.32; 15.320; 16.512; 17.1:6; 18.524.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式21123332224+⨯⨯-⨯=;……………………………………………(5分)2122+-=;……………………………………………………………(3分) 122+=.…………………………………………………………………(2分) 20.解:(1)由题意,得144=+-c ,解得1=c ;…………………………………(1分)∴抛物线的解析式为122+-=x x y ;……………………………………(1分)DBA CQPE 图13徐汇区2015学年第一学期期末初三数学 本卷共4页第 5 页即2)1(-=x y ;……………………………………………………………(1分) ∴顶点坐标是)0,1(.………………………………………………………(2分)(2)设平移后的抛物线解析式是n x x y -+-=122;………………………(1分)∴ 该抛物线的对称轴是直线1=x ;………………………………………(1分) 又2=AB ,由抛物线的对称性可得)0,0(A 、)0,2(B ;………………(1分) ∴01=-n ,解得1=n ;…………………………………………………(1分) ∴新抛物线的表达式是x x y 22-=.……………………………………(1分)21.解:(1)∵3=AE ,1=CE ,∴43=AC AE ;……………………………………(1分) 又43=AB AD ,∴ABADAC AE =; …………………………………………(1分) ∴BC DE //.∴ ABADBC DE =……………………………………………(1分) 即436=DE ,解得29=DE .……………………………………………(2分)(2)∵AC DF //,∴ABBDAC DF =;……………………………………………(1分) 又43=AB AD ,∴41=AC DF ,即AC DF 41=;……………………………(2分) ∵b a+=,∴b a DF 4141+=. ……………………………………(2分)22.解: 分别延长DC AB 、交于点E . ……………………………………………(1分)∵AB 与地面平行,DC 与地面垂直,∴AB DE ⊥,∴︒=∠90E . …(1分)在CEB Rt ∆中,︒=∠45EBC ,∴︒=∠45ECB ,∴BE EC =;……(1分) 设x CE =,则x BE =,400+=x AE . ………………………………(1分) 在AEC Rt ∆中,︒=∠90E ,∴AEECCAE =∠tan ; ……………………(1分) 即40030tan +=︒x x,解得)13(200+=x ;…………………………(2分)徐汇区2015学年第一学期期末初三数学 本卷共4页第 6 页即546)173.1(200)13(200=+⨯≈+=CE (米) ;……………………(2分)∴254546800=-=CD (米); ……………………………………………(1分) 答: 大楼CD 的高度254米. 23.证明:(1)∵BC AC =,∴ABC A ∠=∠; ……………………………………(1分) ∵ED BE =,∴DBE BDE ∠=∠;…………………………………(1分)∵ABD CBE ∠=∠,∴CBD ABD CBD CBE ∠+∠=∠+∠,即ABC DBE ∠=∠,∴A BDE ∠=∠;∴BED ∆∽BCA ∆ ;……(1分) ∵BD AB =,∴BDA A ∠=∠;∴ABC BDA ∠=∠;又A A ∠=∠,∴ABD ∆∽BCA ∆;…………………………………(1分) ∴BED ∆∽ADB ∆ ;……………………………………………………(1分)∴BEBDBD AD =,即BE AD BD ⋅=2.…………………………………(1分) (2)∵ABD ∆∽BCA ∆,∴C ABD ∠=∠;………………………………(1分) 又ABD CBE ∠=∠,∴C CBE ∠=∠;……………………………(1分)∴BE AC //,∴EFDFBE DC =;…………………………………………(1分) ∵BED ∆∽BCA ∆,∴C E ∠=∠,1==ABBDBC BE ;………………(1分)∴CBE E ∠=∠,∴EF BF =;………………………………………(1分)又BC BE =,∴BFDFBC DC =;…………………………………………(1分) 即DF BC BF CD ⋅=⋅.24.解:(1)分别过点B A 、作y 轴的垂线,垂足分别是D C 、.可得ACO ∆∽ODB ∆,∴OAOBAC OD OC BD ==;∵)1,1(--A ,∴2=OA ; ∴2,2==OD BD ;∴)2,2(-B …………………………………………(3分)(2)由题意,可得⎪⎪⎩⎪⎪⎨⎧=+--=+-;22512;153c b c b ……………………………………………(1分)徐汇区2015学年第一学期期末初三数学 本卷共4页第 7 页解得⎪⎪⎩⎪⎪⎨⎧-=-=;514;56c b ……………………………………………………………(1分) ∴51456532--=x x y ; ∴对称轴是直线1=x .……………………………………………………(1分)(3)点)0,34(-E 或)58,54(--E .…………………………………………(各3分) 25.解:(1)联结BD AC 、交于点O .…………………………………………………(1分)∴AD AB =,∴BAD BAD ABD ADB ∠-︒=∠-︒=∠=∠21902180,又BAD BEQ ∠-︒=∠2190,∴ADB BEQ ∠=∠;∵AD AB =,CD CB =,∴BD AC ⊥,DO BO =; ∵︒=∠60BCD ,∴BCD ∆是等边三角形,∴8==BC BD ; 在AOD Rt ∆中,︒=∠90AOD ,∴3452222=-=-=DO AD AO ,∴43tan ==∠DO AO ADO ; ∴43tan =∠BEQ . ………………………………………………………(3分)(2)如图,联结BD 交AQ 于F .∵ADB BEQ AEP ∠=∠=∠,DAF EAP ∠=∠, ∴AEP ∆∽ADF ∆,∴DFADPE AE =;…………………(1分) ∵ABD ADB BEQ ∠=∠=∠,AFB BFE ∠=∠; ∴BFE ∆∽AFB ∆ ;∴BAF FBE ∠=∠; ∴PBD ∆∽FAB ∆ ;∴BDPDAB BF =; DB ACQPEF徐汇区2015学年第一学期期末初三数学 本卷共4页第 8 页即855x BF -=,得8525x BF -=;∴85398xBF DF +=-=;…(2分) ∴39540+=x y ,定义域是50<≤x .…………………………………(2分)(3)如图,联结BD 交AQ 于F .∵AEP ∆∽ADF ∆,当AEP ∆是等腰三角形时; ∴ADF ∆也是等腰三角形. 分情况讨论:︒1 当AD AF =时,0=BQ ,但此时点E Q B 、、重合,BEQ ∠不存在,不合题意,舍去;……………………………………(1分)︒2 当DF AF =时,解得4825〈=DF ,此时AF 与边BC 没有交点(即点Q 不在边BC 上),不合题意,舍去;…………………………………(2分)︒3 当5==AD DF 时,得3=BF ,此时1=y ,∴51=x ,符合题意; 联结AC 交BD 于O ,过点Q 作BF QG ⊥于G ;可得3tan =∠BFQ , 因此,解得339-=BQ ,即Q B 、两点的距离是339-.…(2分)综合︒1、︒2、︒3,当AEP ∆是等腰三角形时,Q B 、两点的距离是339-.DB A CQPEF。
上海市2016年中考数学试卷及答案解析

上海市2016年中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.【考点】倒数.【解析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【解析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【解析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次 C.4次 D.4.5次【考点】加权平均数.【解析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷2080÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=, =,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣【考点】*平面向量.【解析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【解析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a= a2.【考点】同底数幂的除法.【专题】计算题.【解析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.函数y=的定义域是x≠2 .【考点】函数自变量的取值范围.【解析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程=2的解是x=5 .【考点】无理方程.【解析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.如果a=,b=﹣3,那么代数式2a+b的值为﹣2 .【考点】代数式求值.【专题】计算题;实数.【解析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.不等式组的解集是x<1 .【考点】解一元一次不等式组.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【考点】根的判别式;解一元一次方程.【解析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x 的值增大而减小,那么k的取值范围是k>0 .【考点】反比例函数的性质.【解析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【专题】计算题.【解析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【考点】三角形中位线定理.【解析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000 .【考点】条形统计图;扇形统计图.【解析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【解析】分别利用锐角三角函数关系得出BD ,DC 的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30, tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m ),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD 中,BC=2,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分别落在点A ′、C ′处.如果点A ′、C ′、B 在同一条直线上,那么tan ∠ABA ′的值为.【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【解析】设AB=x ,根据平行线的性质列出比例式求出x 的值,根据正切的定义求出tan ∠BA ′C ,根据∠ABA ′=∠BA ′C 解答即可. 【解答】解:设AB=x ,则CD=x ,A ′C=x+2, ∵AD ∥BC , ∴=,即=,解得,x 1=﹣1,x 2=﹣﹣1(舍去),∵AB ∥CD ,∴∠ABA ′=∠BA ′C , tan ∠BA ′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.【考点】实数的运算;负整数指数幂.【解析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.解方程:﹣=1.【考点】解分式方程.【解析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【考点】解直角三角形;勾股定理.【解析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求yB关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【解析】(1)设设yB 关于x的函数解析式为yB=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设yA 关于x的解析式为yA=k1x.将(3,180)代入可求得yA关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得yA ,yB的值,最后求得yA与yB的差即可.【解答】解:(1)设yB 关于x的函数解析式为yB=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以yB 关于x的函数解析式为yB=90x﹣90(1≤x≤6).(2)设yA 关于x的解析式为yA=k1x.根据题意得:3k1=180.解得:k1=60.所以yA=60x.当x=5时,yA=60×5=300(千克);x=6时,yB=90×6﹣90=450(千克).450﹣300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【解析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【考点】二次函数综合题.【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x 2﹣4x ﹣5,得顶点D 的坐标为(2,﹣9). 连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5), 又S △ABC =×4×5=10,S △ACD =×4×4=8, ∴S 四边形ABCD =S △ABC +S △ACD =18.(3)过点C 作CH ⊥AB ,垂足为点H . ∵S △ABC =×AB ×CH=10,AB=5,∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3,∴tan ∠CBH==.∵在RT △BOE 中,∠BOE=90°,tan ∠BEO=,∵∠BEO=∠ABC , ∴,得EO=,∴点E 的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.如图所示,梯形ABCD 中,AB ∥DC ,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE=∠DAB .(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【考点】四边形综合题.【专题】综合题.【解析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.上海市2016年中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣ D.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次 B.3.5次 C.4次 D.4.5次5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=, =,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a= .8.函数y=的定义域是.9.方程=2的解是.10.如果a=,b=﹣3,那么代数式2a+b的值为.11.不等式组的解集是.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x 的值增大而减小,那么k的取值范围是.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.20.解方程:﹣=1.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线(千克)与时间x(时)的函数图象,根据图象提供的信息,段OG表示A种机器人的搬运量yA解答下列问题:关于x的函数解析式;(1)求yB(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.。