雨中行走问题模型

合集下载

关于人在雨中行走的数学模型

关于人在雨中行走的数学模型

关于人在雨中行走的数学模型摘要本题在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中题中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收的雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

利用MATLAB软件对各个问题进行求解。

对于问题一,设降雨淋遍全身不考虑雨的方向,经简化假设人淋雨面积为前后左右及头顶面积之和。

对于问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量w与行走速度v之间的函数关系。

分析表明当行走速度为v时,淋雨量最少。

m对于问题三,雨从背面吹来,雨线与行走在同一平面内,人淋雨量于人和雨相对速度有关,列出函数关系式分析并求解。

关键词:淋雨量,降雨的大小,降雨的方向(风),路程的远近,行走的速度,雨滴下落的速度,角度,降雨强度问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a =1.5m (颈部以下),宽b =0.5m ,厚c =0.2m .设跑步距离d =1000m ,跑步最大速度m v =5s m /,雨速u =4s m /,降雨量w =2h cm /,记跑步速度为v .按以下步骤进行讨论:(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数θ,,,,,,wa之间的关系,问速度v多大,bucdθ,0ο30时的总淋雨量。

总淋雨量最少。

计算==θ(3)雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角α,如图2.建立总淋雨量与速度v及参数α,dca之间的关系,问速度v多ub,,w,,,大,总淋雨量最少。

人在雨中行走时的淋雨量问题

人在雨中行走时的淋雨量问题

人在雨中行走时的淋雨量问题人在雨中行走时的淋雨量问题一.模型假设 1.把人看做一个长方体;2.雨滴下落的速度,方向保持不变;3.人行走一段距离的速度,方向保持不变。

4.假设主要淋雨量集中在正面,背面和头部,忽略两侧淋雨量。

即考虑总淋雨量时只考虑(正面+头部)或者(背面+头部)二.符号说明1.V 为雨速(m/s ),方向定义为朝着人正面为正。

2.D 为人在雨中行走距离。

3.R 为人在雨中行走速度3.θ为雨滴下落方向与地平面的所成角,0°≤θ≤90°。

4. h1,h2,h3分别为视人体为一个长方体时人的身高(m)、身宽(m)、厚度(m);5.总淋雨量为W (R)单位为m 3。

三.模型建立本模型是在上诉理想条件下分析人在行走时的淋雨量的大小,而淋雨量的大小取决与降雨量的大小,方向,还有人行走的速度,行走的路程。

我们的目标是求出使得人在雨中行走时淋雨量最小的条件。

即最佳行走速度。

以人为Z 轴,人行走的方向为X 轴,左边为y 轴建立空间坐标系。

则雨的降落速度可以按这个坐标系分解到x 轴,y 轴,z 轴。

得到θθθsin ,cos ,cos V Vz V Vy V Vx ===。

进一步得到θcos V R V +=相.人的头部,正面或背面的淋雨面积为h1h2,h2h3,淋雨时间为D/V.则可得到人正面或背面的淋雨量为θcos 21V R h h R D +;人头部淋雨量为θsin 32V h h RD ;进一步得总淋雨量W(R )=()θθsin 33cos 21V h h V R h h RD ++。

分析:1)当雨从人正面降落,即V 方向取正,V>0,由此得到}sin 32)cos (21{)(θθV h h V R h h R D R W ++=;对W (R)进行单调性分析可知,其一阶导数0)(<'R W 。

所以W(V)单调递减。

无最小值。

2)当雨从人后面降落,即V 方向取负,V<0,由此得到()θθsin 33cos 21)(V h h V R h h RD R W ++= =21)cos 21sin 32(h Dh RV h h V h h D --θθ,θcos 0V R -<<----------------① =θθθcos ,21)sin 32cos 21(V R h Dh RV h h V h h D -≥++;------------------② 分别讨论上诉两种情况下的一阶导数可得:2)cos 21sin 32()(R V h h V h h D R W θθ+-=' 下面对其进行极值分析:其 a )当θcos 0R R -<<时,当θθcos 21sin 32V h h V h h +>0时,。

雨中行走数学建模

雨中行走数学建模

雨中行走问题的分析吴珍数学与应用数学二班 A班冯奎艳数学与应用数学二班 A班杨彦云数学与应用数学二班 A班摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。

针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。

然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。

针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。

关键词雨滴降落频率;优化模型;淋雨量一、问题重述一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。

那么在雨中以何种速度跑,淋雨量最少。

现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。

按以下步骤进行讨论:(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问速度多大时,总淋雨量最少。

(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为α,问速度多大时,总淋雨量最少。

(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。

二、问题分析人在雨中行走时,行走时间即淋雨时间。

把人看成一个长方体,总淋雨量是各个面淋雨量之和。

为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。

对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。

简单优化模型10雨中行走

简单优化模型10雨中行走

雨中行走问题提出:人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想知道:走多快才会少淋雨呢?模型假设:1.只考虑人在雨中沿直线从一处向另一处行进;2.视人体为一个长方体,其身高为h 米,身宽为w 米,厚度为d 米;3.人在雨中行走的速度为v 米/秒,行走距离为D 米;4.雨以速度r 米/秒,沿降雨角度θ(雨滴下落方向与人行走方向的角度)下落;5.降雨强度系数(单位时间内的降雨深度占竖直降雨速度的比例)为ρ,因而降雨强度(单位时间内单位面积上的降雨量,即单位时间内的降雨深度)为:⋅ρ竖直降雨速度.问题分析:如果不考虑降雨角度的影响,即人在行走过程中身体的前后、左右、上方都被雨水淋到,那么,淋雨面积为wd hd hw S ++=22,又淋雨时间为vD t =,故总淋雨量为v wd hd hw rD t S r C )22(++=⋅⋅=. 此式表明,淋雨量与行进速度成反比. 因此,人应尽可能快跑以能减少淋雨量.这种情形过于简单,下面来讨论考虑降雨角度影响的情形.模型建立: 分情况讨论:淋雨时间为v D t =1.20πθ≤<(0=θ不合乎实际)此时,雨迎面而来,人的头部和前部被淋(见下图).头部的淋雨量:头部的面积为dw ,雨在竖直方向上的分速度为θsin r ,降雨强度为θρsin r ⋅,故淋雨量为θρθρsin sin 1dr vwD v D dw r C =⋅⋅=. 前部的淋雨量:前部的面积为wh ,雨在水平方向上的分速度为θcos r ,相对于人的速度为v r +θcos ,降雨强度为)cos (v r +⋅θρ,故淋雨量为)cos ()cos (2v r h vwD v D wh v r C +=⋅⋅+=θρθρ. 于是,总淋雨量为 [])cos (sin )cos (sin 21v r h dr vwD v r h v wD dr v wD C C C ++=++=+=θθρθρθρ. 特别地,当2πθ=(雨竖直下落)时,总淋雨量为)(hv dr vwD C +=ρ. 2.πθπ<<2(πθ=不合乎实际)此时,雨从背后落下,人的头部、后部(或前部)被淋(见下图).v令απθ+=2,则20πα<<.头部的淋雨量:头部的面积为dw ,雨在竖直方向上的分速度为αcos r ,降雨强度为αρcos r ⋅,故淋雨量为αραρcos cos 1dr vwD v D dw r C =⋅⋅=. 水平方向上的淋雨量:后部(或前部)的面积为wh ,雨在水平方向上的分速度为αsin r ,相对于人的速度为|sin |v r -α,降雨强度为|sin |v r -⋅αρ,故淋雨量为|sin ||sin |2v r h vwD v D wh v r C -=⋅⋅-=αραρ. 于是,总淋雨量为 []|sin |cos |sin |cos 21v r h dr v wDv r h v wDdr v wDC C C -+=-+=+=ααραραρ.Case (1):αsin r v ≤此时,人的行进速度不快于雨在水平方向上的分速度(雨从后方赶上人),头部和后部被淋,总淋雨量为[])sin (cos v r h dr v wDC -+=ααρ.特别地,当αsin r v =时,人的行进速度恰好等于雨在水平方向上的分速度(人刚好跟着雨向前走),仅头部被淋,总淋雨量为αρcos dr v wDC =. Case (2):αsin r v >此时,人的行进速度快于雨在水平方向上的分速度(人赶上前方的雨),头部和前部被淋,总淋雨量为[])sin (cos ααρr v h dr v wDC -+=.综上,总淋雨量为[][][]⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-+≤<<-+≤<++=απθπααραπθπααρπθθθρsin ,2,)sin (cos sin ,2,)sin (cos 20,)cos (sin r v r v h dr vwD r v v r h dr vwD v r h dr v wD C 由απθ+=2得[][][]⎪⎪⎪⎩⎪⎪⎪⎨⎧-><<++-≤<<+-≤<++=θπθπθθρθπθπθθρπθθθρcos ,2,)cos (sin cos ,2,)cos (sin 20,)cos (sin r v r v h dr v wD r v v r h dr vwD v r h dr v wD C 即⎪⎪⎪⎩⎪⎪⎪⎨⎧-><<++-≤<<--≤<++=θπθπρθθρθπθπρθθρπθρθθρcos ,2,)cos sin (cos ,2,)cos sin (20,)cos sin ()(r v wDh v h d wDr r v wDh v h d wDr wDh v h d wDr v C 模型求解: 当20πθ≤<和θπθπcos ,2r v -≤<<时,)(v C 均为v 的减函数,故为使)(v C 最小,应使v 尽可能大;当θπθπcos ,2r v -><<时,)(v C 的单调性取决于θθcos sin h d +的正负,应视情况来判断.结论:要使淋雨量最小,(1)若雨迎面而来,则人应以最大可能的速度向前行进;(2)若雨从背后落下,则人应控制行进速度为雨在水平方向上的分速度.模型讨论:如果视人体为一圆柱,如何?。

人在雨中走淋雨模型

人在雨中走淋雨模型

人在雨中行走的淋雨量数学模型院系:数学与统计学院班级:数学与应用数学1班姓名:学号:摘要一直以来,下雨对我来说,是件很烦恼的的事情。

不管下雨有多大,不管有没有打伞,总是会让自己淋得全身是雨,所以研究人在雨中行走的淋雨量对我这样的人有很大的必要。

本题给定路人在地点AB之间为直线行走。

要求建立路人淋雨量与雨速、雨向、行走速度之间的关系。

假设题中所涉及的降雨量为指天空降落到地面上的直接降雨量(未经流失、蒸发、渗透在地面上(假设是水平地面)集聚的水层深度。

)。

淋雨量,指下雨时路人在行走时全身所淋的全部雨的量(即淋雨的路人淋雨的体积,为人表面的面积×淋雨时间×单位面积的淋雨量。

)。

雨速为天空中降雨的速度。

雨向随风而定。

行走速度即行人的步速。

对于问题,我们设人淋雨面积为模型人前、后、左、右、头顶面积之和。

当有风时,人的身体就不会全部淋雨,那么此时淋雨面积就要根据风向即雨向来定,要根据具体情况来确定淋雨体积。

关键词:模型、淋雨量、降雨量、雨速、雨向、降雨角度、行人行走速度、分析、联系实际。

问题重述与分析:问题:下雨时,路人从A地点直线行走到达B地点。

(1)建立路人淋雨量与雨速、雨向、行走速度的关系;(2)并用计算机模拟方法对建立的关系证实。

分析:假设雨向与行人行走方向成夹角为α,①当无风时,α=90°,雨自上而下垂直向下。

则雨均匀淋遍全身。

②当风迎面吹来,即此时α<90°,此时淋在行人身上的雨即为降雨的竖直分量。

③当风从背面吹来,即此时α>90°,此时淋在行人身上的雨也为降雨的竖直分量。

当有风时还要考虑降雨速度与行人速度的相对速度。

问题假设:假设行人为标准长方体形状。

假设行人在雨中行走时,以速度ν从地点A匀速向地点B走去,不管雨速、雨向如何都不变化。

雨向一旦固定,就不会在改变,即α恒定。

雨的密度相同,雨滴大小、形状相同,雨滴为标准球形。

假设行人淋雨的量与雨速成正比。

雨中行走问题

雨中行走问题

雨中行走问题天将下雨,从寝室到教室约一公里的路程,由于事情紧急,不拿雨具就跑了出去。

可刚到门口,天已经下了大雨。

如果冒雨前行,问你将会被淋得多湿?乍看简单,如果考虑了雨的方向,就会生出疑虑来。

1.澄清问题给定一个特定的降雨条件,能否设计一个方案使你被雨淋得最少?这个模型是确定的因为它完全取决于雨速、风向、路程与奔跑速度,我们需要给出一个依赖于这些因素的淋雨量的公式。

通过调查,可以知道一组比较经典的数据,雨速=4m/s, 走速=2m/s, 跑速=6m/s,路程=1000m, 降雨量=2cm/小时.与问题有关的因素:因素符号单位淋雨时间t 秒雨速r 米/秒雨的角度θ度走速 v 米/秒人的高度 h 米人的宽度 w 米人的厚度 d 米淋雨量 C 升雨的强度 I 行走距离 D 米2.形成模型先考虑最简单的情况:假定人走的是直线,将人视为正方体,设雨速为常数,不考虑雨向。

若一公理的路程中人奔跑速度为6米/秒,则耗时约为167秒。

若降雨量为2厘米/小时,则167秒中的降雨量约为2×167×0.01/3600 (米),假定人高为1.5米、宽为0.5米、厚为0.2米,则前后表面积1.5米2,侧面积0.6米2,顶部面积0.1米2。

设这些表面积都淋雨,则淋雨量=(2×167×0.01/3600)×2.2==2.041(升)这样,将约有两瓶啤酒的雨量淋在你的身上。

通常,雨垂直下的假定要取消。

实际上r、θ、v、t和C是变量而其它量在这个特殊情况下不是变量。

另外,雨速和降雨量是有区别的,如果雨象连续的水流,则雨速就可以确定地面的降雨量,然而这往往不现实,因为雨点是离散的,所以需要引入降雨强度的概念:由上面的数据,雨速=4米/秒=1.44×106厘米/小时,而降雨量为2厘米/小时,雨速和降雨量的比值为I=7.2×105,定义降雨强度I=1/(7.2×105),I反映的降雨的强度,I=0表示无雨,I=1表示雨是连续流。

关于雨中行走模型

关于雨中行走模型

关于雨中行走模型第六讲建模方法论(5)——建模实例(一)雨中行走问题夏季的某天,你去某地办事,接近目的地时,天空突然下起了大雨,糟糕的是你没有带雨具,且难以找到避雨的地方。

一个似乎很简单的事实是你应该在雨中尽可能的快走(跑),以减少雨淋时间。

这样做合理吗,试组建数学模型来探讨如何在雨中行走才能最大限度地减少雨淋的程度,即确定最优行走策略。

问题分析问题是在给定的降雨条件下,设计一个在雨中行走的策略(调整行走速度),使得你被雨水淋湿的程度最低。

所谓被雨水淋湿的程度,可以用其间被淋在身上的雨水量的大小来刻划,而与此有关的主要因素有:降雨的大小、风(降雨)的方向、路程的远近和行走的速度。

为了简化问题的研究,我们先做以下假设: 模型假设1(降雨的速度(即雨滴降落的速度)和降雨强度保持不变;2(行走速度恒定;3(风速及风向始终保持不变(这三项都是均匀化假设)。

4(把人的身体看成是一个呈长方体形状的物体(理想化)。

5(淋在身上的雨水被完全吸收(极端化)。

6(不考虑降雨的角度的影响,也就是说在行走的过程中身体的上方及前后左右都将淋到雨水。

7(设定变量和参数雨中行走的距离(单位:米):D;雨中行走的速度(单位:米/秒):v;人体的高度、宽度、厚度(单位:米):h,w, d被淋雨水总量(单位:升):C;降雨强度(单位:厘米/小时):I;2 身体被雨淋的面积(单位:米):S;雨中行走时间(单位:秒):t=D/v.其中,降雨强度是单位时间内平面上降雨的厚度,用以刻划降雨的大小。

在本问题中,D,d,w,h从而S是问题的参数;v,t,I是问题中的变量。

C是因变量,而v是决策变量。

模型中的参数可以通过观测和日常的调查资料得到。

模型的建立与求解按上面的分析与假设,容易知道:在雨中行走时被淋雨水总量等于被雨淋时间、被雨淋面积和降雨强度三者的乘积。

考虑到量纲一致性,并注意到I、v、D为常数,我们有C(v)=tS(米)=(米)=模型表明,被淋在身上的雨水总量与在雨中行走的速度成反比,因此在雨中最优行走策略是尽可能的快跑。

《雨中行走问题》课件

《雨中行走问题》课件
行人行走的方向取决于其目的地和路线选择。
行人行走的方向
行人行走的速度
雨滴对行人产生的冲击力会影响行人的行走速度和稳定性。
雨滴的冲击力
雨滴的湿度
雨滴的能见度
雨滴的湿度会影响行人的舒适度,进而影响其行走意愿和速度。
雨滴的能见度降低会影响行人的视线和判断力,从而影响其行走安全。
03
02
01
03
CHAPTER
机器学习算法
利用大量的历史数据和实时数据,不断优化和改进系统的行走策略。
数据驱动
适用于数据充足且需要高度智能化的雨中行走问题,如复杂环境、不确定因素等。
适用场景
04
CHAPTER
雨中行走问题的未来研究方向
雨滴对行人的影响
雨滴下落对行人的行走速度、步态和舒适度有何影响?
1
2
3
如何建立一个能够准确描述雨中行走动态过程的数学模型?
在健康和安全领域,研究雨中行走问题可以帮助提高行人的安全意识和行为,减少事故风险。
02
CHAPTER
雨中行走问题的数学模型
雨滴下落的速度取决于风速、重力加速度以及空气阻力等因素。
雨滴下落的速度
雨滴下落的方向与风向、气压等气象条件有关,同时也受到地形、建筑物等因素的影响。
雨滴下落的方向
行人行走的速度取决于其步频、步长以及身体状况等因素。
05
CHAPTER
结论
雨中行走问题涉及到人类日常生活中的实际问题,对解决该问题具有实际意义。
研究雨中行走问题有助于提高人们对于行走行为和环境因素的认知,促进相关领域的发展。
解决雨中行走问题可以为人们提供更加安全、舒适和高效的行走方式,提高生活质量。
通过改进雨具的材料、结构和使用方式,提高雨具的防水性能和舒适度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模之雨中行走问题模型
摘要:由于降雨方向的变化,在跑步过程中尽力快跑不一定是最好的策略。

就淋雨量与跑步快慢这个问题,我们通过建立数学模型来探讨在雨中如何行走才能使淋雨量最少。

在不考虑雨的方向时,当然是跑的越快淋得越少;考虑雨的方向时,那么再分情况讨论,若雨是迎着你前进的方向落下,这时以最大的速度向前跑可使淋雨量最少;若雨是从你的背后落下,那么你应控制在雨中行走的速度,让它刚好等于落雨速度的水平分量。

关键词:淋雨量,数学模型,降雨的方向。

正文
1.问题的提出
要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方形,高a=1.5(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步估计跑完全程的淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为 ,问跑步速度v 为多大时可使淋雨量最少。

(3)雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)
2.问题的分析
总的淋雨量等于人体的各个面上的淋雨量之和。

每个面上的淋雨量等于单位面积、单位时间的淋雨量与面积以及时间的乘积。

面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。

再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。

淋雨量(V )=降雨量(ω)×人体淋雨面积(S )×淋浴时间(t ) ①
时间(t )=跑步距离(d )÷人跑步速度(v ) ②
由①② 得: 淋雨量(V )=ω×S ×d/v
3.合理假设
3.1模型的假设
(1)人身体的表面非常复杂,为了使问题简单化,假设将人视为一个长方体,并设其高1.5m(颈部以下),宽0.5m,厚0.2m.其前、侧、顶的面积之比为1:b:c, (2)假设降雨量到一定时间时,应为定值; (3)此人在雨中跑步应为直线跑步;
(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;
(5)设雨速为常速且方向不变,选择适当的空间直角坐标系,使人行走的速度为(u,0,0)设雨的速度为(,,)x y z v v v v =,人行走的距离为d=100米。

在上述假设下,再有数学分析中曲面积分的通量概念,显然,单位时间内的淋雨量正比于()
()||,|0|,|0|1,,||||||x y z x y z u v v v b c u v v b v c ---⋅=-+⋅+⋅,从而总淋雨量正比于()()||.........................(3.1)x u d
R u v a u
=
-+ 其中||||0y z a v b v c =⋅+⋅≥,于是该问题抽象成如下数学问题: 在d,x v ,a 已知条件下,求()u R 的最小值。

3.2变量限定
m u :跑步的最大速度
v :雨的速度
w :单位时间内的降雨量
:Q 总的淋雨量
u :跑步速度
θ
:雨线方向与人体夹角
s :人可以被雨淋到的全身面积
m
d
t u =
:雨中行走的最短时间
4.模型的构建与求解
由于这个模型的特殊性,用图解法求解更方便些,分以下几种情况进行讨论: 4.1不考虑雨的方向
这是最简单的情形,即不考虑降雨角度的影响,降雨淋遍全身,那么淋雨的面积
()221.5*0.5 1.5*0.20.5*0.2 2.2s m =++=
淋雨的时间100
205
m d t s u =
== 而降雨量41
2/10/18
w cm h m s -==
⨯ 所以总的淋雨量4431
2.22010 2.441018
Q stw m --==⨯⨯
⨯≈⨯。

4.2考虑雨的方向;分雨从迎面和背面吹来两种情况,但雨线与跑步方向在同一平面内,且与人体的角度为θ 。

如图1和图2。

图1 雨从迎面吹来 图2 雨从背面吹来
由此建立总淋雨量与速度u 之间的关系表达式。

x v =sin v θ,cos z v v θ=。

4.2.1当x v >0时(即雨从背面吹来的情况),
()u R =()()()()()()()().................(3.2)x x x x x x d v a d
v u a d u v u u
d a v d u v a d u v
u
u +⎧-+=-<⎪⎪⎨
-⎪-+=->⎪⎩
再将x v 与a 进行比较: 1)当x v >a 时,()
u R u 的图形如图
3所示,由图可知, x u v =时,()u R 的最小值为
min x
da
R v =
图3 当x v >a 时,()u R u 的图形
2)当x v <a 时,()u R u 的图形如图4所示,由图可知,当u 尽可能大时,()u R 才会可
能小(接近d ).
图4 x v <a 时,()u R u 的图形
4.2.2当x v <0时(即雨从迎面吹来的情况),这是有
()u R =()()()||||...........................5.3x x d v a d
u v a d u u
+++=
+ 此时无论x v 为何值,()u R 都无最小值,即只有当u 尽可能大时,()u R 才会尽可能小,
()u R u 的图形如图5所示。

4.2.3当x v =a 及x v >0时,分别为式(3.1)和式(3.2)的特例。

所以综上所述,当x v >a>0时,即雨从背面吹来时,只要x u v =就可使前后不淋雨,从而总淋雨量最少,而其他情况都应使u 尽可能大,才能使淋雨量尽可能少,显然,这也符合人们的生活常识,
5.模型的结果分析
综合上面的分析,我们得到的结论是:
1.如果雨是迎着你前进的方向落下,这时的最优行走策略是以尽可能大的速度向前跑。

2.如果雨是从你的背后落下,这时你应该控制在雨中行的走的速度,使得它恰好等于雨下落时速度的水平分量
v。

但是该模型只是考虑雨线方向与人的跑步方向在同一平
x
面内,若是雨线方向与人的跑步方向不在同一平面内建立坐标系上,对于这种情况,我们认为在本质和考虑问题的思想上来说模型是不变的,应分别对几个淋雨面进行以上同样方法建立求解模型,但是解算的过程,我想应该更复杂。

参考文献
[1]熊启才,曹吉利,张东生. 数学模型方法及应用,重庆:重庆大学出版社,2005.
[2]姜启源,谢金星,叶俊. 数学模型(第三版),北京:高等教育出版社,2008.。

相关文档
最新文档