5.1.1不等式的基本性质一

合集下载

高中数学

高中数学

5。

1 不等式的基本性质自主整理1。

两个实数的大小关系:a >b ⇔a-b______________0;a=b ⇔a —b______________0;a <b ⇔a —b______________0.2.不等式的基本性质:(1)a >b ⇔b______________a ;(2)a >b ,b >c ⇒a______________c;(3)a >b ⇒a+c______________b+c;(4)⇒⎭⎬⎫>>0c b a ac______________bc ,⇒⎭⎬⎫<>0c b a ac______________bc ; (5)a >b >0⇒a n ______________b n(n∈N ,且n >1); (6)a >b >0⇒n a ______________n b (n∈N ,且n >1)。

高手笔记1。

实数大小比较的原理与实数乘法的符号法则是推导不等式性质的依据.与等式相比,主要区别在数乘这一性质上,对于等式a=b ⇒ac=bc ,其中c 可取任意实数,而对于不等式a >b,两边同乘c 之后,ac 与bc 的大小关系就需对c 加以讨论确定.2。

学习不等式的性质应注意三个方面的问题:(1)注意区分不等号“>"“<"“≠”“≥”“≤"的含义,准确地表述不等式。

(2)不等式的传递变形中应注意不等号方向的一致性.(3)适当地放大或缩小是不等式变形的关键。

3。

不等式的一些性质在应用时可以适当延伸,如将“>”改为“≥”,“<"改为“≤”,将正数改为非负数等.如:a≥b,b≥c a≥c;a>b≥0,c >0⇒ac >bc 等,而且还可推证出其他一些结论性质,如a >b ,c >d ⇒a+c >b+d;a >b≥0,c >d≥0⇒ac >bd 等.4。

区分“⇒”和“⇔”,即“推出关系”和“等价关系”,或者说“不可逆关系”与“可逆关系”。

《不等式及其基本性质》教案

《不等式及其基本性质》教案

《不等式及其基本性质》教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。

举例说明不等式的形式,如a > b、a ≤b 等。

1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。

性质2:如果a > b 且c > d,a + c > b + d。

性质3:如果a > b 且c < d,a + c < b + d。

性质4:如果a > b,a c > b c(其中c 是任意实数)。

第二章:不等式的运算2.1 加减法不等式介绍加减法不等式的运算规则,如a > b 且c > 0,a + c > b + c;a > b 且c < 0,a + c < b + c。

举例说明如何解决涉及加减法的不等式问题。

2.2 乘除法不等式介绍乘除法不等式的运算规则,如a > b 且c > 0,ac > bc;a > b 且c < 0,ac < bc。

举例说明如何解决涉及乘除法的不等式问题。

第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如解a > b 的问题,可将b 移至不等式右边,得到a b > 0。

举例说明如何解简单不等式。

3.2 复合不等式的解法介绍解复合不等式的方法,如解a > b 且c > 0 的问题,可将不等式两边乘以c,得到ac > bc。

举例说明如何解复合不等式。

第四章:不等式的应用4.1 实际问题中的应用举例说明如何将实际问题转化为不等式问题,如判断身高、体重等是否符合要求。

引导学生运用不等式解决实际问题。

4.2 线性不等式组的解法介绍线性不等式组的解法,如解a > b 且c > d 的问题,可先解a > b,再解c > d,求交集。

不等式的基本性质(1)

不等式的基本性质(1)

教学设计一、教学目标1.知识与技能目标:(1)掌握不等式的基本性质.(2)经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同.2.过程与方法目标:(1)能说出一个不等式为什么可以从一种情势变形为另一种情势,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯.(2)进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力.3.情感态度与价值观目标目标:(1)尊重学生的个体差异,关注学生的学习情感和自信心的建立. (2)关注学生对问题的实质性认识与理解.二、教学重点与难点重点:探索不等式的基本性质,并能灵活地掌握和应用.难点:能根据不等式的基本性质进行化简.三、教学准备教具:多媒体、苹果、书本.学具:教材、笔、练习本.四、教学方法直观演示法、讲授法、自学指点法、小组合作探究法.五、学法指点引导学生学习、运用、视察、思考、抽象、归纳、分析、对照等方法. 六、教学过程本节课设计了五个教学环节:(一)情景引入,提出问题;(二)新知探究;(三)巩固练习;(四)例题讲授及运用巩固;(五)课堂小结;(六)当堂检测;(一)情景引入,提出问题老师手中呈现两本一模一样的书,假如其中一本书的质量为m㎏,另一本书的质量为n㎏,我们如何来表示这两本书的质量关系呢?现在,老师手中有两个苹果(一大一小),如果一个苹果的质量为c㎏,另一个的质量为d㎏,请问:你可以用一个怎样的式子来表示这两个苹果的质量关系呢?设计意图:由两本书的质量相同,引导学生得出m=n,通过直接视察得出两个苹果的质量关系为c>d,从而得出一个等式与一个不等式。

通过回顾等式的基本性质,引导学生类比等式的基本性质来探索不等式的基本性质。

(二)新知探究Ⅰ.对于4<6,那么(1)4+2 ____ 6+2 (2)4-2 ____ 6-2 (3)4+0____ 6+0 (4)4-0____6-0 类比“等式基本性质1”,尝试总不等式的性质.新知归纳:不等式的性质1:不等式的两边________,不等号的方向 ____ 。

课题不等式的基本性质教案

课题不等式的基本性质教案

课题不等式的基本性质教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。

举例说明不等式的形式,如a > b、a ≥b 等。

1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。

性质2:如果a > b 且c > 0,a + c > b + c。

性质3:如果a > b 且c < 0,a + c < b + c。

性质4:如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。

第二章:不等式的运算规则2.1 加减法规则如果a > b 且c > d,a + c > b + d。

如果a > b 且c < d,a + c < b + d。

2.2 乘除法规则如果a > b 且c > 0,ac > bc。

如果a > b 且c < 0,ac < bc。

如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。

第三章:不等式的比较与排序3.1 两个不等式的比较如果a > b 且c > d,a + c > b + d。

如果a > b 且c < d,a + c < b + d。

3.2 多个不等式的排序如果a > b 且c > d,a + c > b + d > c + d。

如果a > b 且c < d,a + c > b + d > c + d。

第四章:不等式的解法与应用4.1 不等式的解法介绍解不等式的方法,如移项、合并同类项、系数化等。

举例说明解不等式的步骤和技巧。

4.2 不等式的应用介绍不等式在实际问题中的应用,如优化问题、经济问题等。

举例说明如何将实际问题转化为不等式问题,并求解。

5.1.1不等式的基本性质(1)课件(人教版选修4-5)

5.1.1不等式的基本性质(1)课件(人教版选修4-5)

2
1 )
(3) a
2
b
2
(4)
2
a
2
b
• • • • • • • • • • •
主要内容 基本理论: a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b 基本理论四大应用之一:比较实数的大小. 一般步骤: 作差-变形-判断符号—下结论。 变形是关键: 1°变形常用方法:配方法,因式分解法。 2°变形常见形式是:变形为常数;一个常数与几 个平方和;几个因式的积。
2. 基本理论
0 X
• 1.实数在数轴上的性质: • 研究不等式的出发点是实数的大小关系。数
轴上的点与实数1-1对应,因此可以利用数 轴上点的左右位置关系来规定实数的大小:
A a a<b
B b x
B b a>b
A a x
设a,b是两个实数,它们在数轴上所对应的点分别是 A,B,那么,当点A在点B的左边时,a<b;当点A在点B的右 边时,a>b.

a b a b a b

0; 0; 0.
上式中的左边性质,合起来 就成为实数的大小顺序与运算性质之间的关系。 这一性质不仅可以用来比较两个实数的大小, 而且是推导不等式的性质、不等式的证明、解 不等式的主要依据。
思考?
_
• • • • • • • •
= (2x4 - 2x3 )- (x2 -1) = 2x3 (x -1) - (x -1) (x +1) = (x-1) [2x3 - (x +1) ] = (x-1)[(2x3-2x2) + (2x2-2x) + (x-1)] = (x -1)2 (2x2 + 2x + 1) = (x -1)2 [2 (x + 1/2)2 + 1/2] 技能: 分组组合;添项、拆项;配方法。

高中数学 第1章 不等式的基本性质和证明的基本方法 1.

高中数学 第1章 不等式的基本性质和证明的基本方法 1.
由21≤≤ff1-≤14≤,2, 得320≤ ≤ab≤ ≤332, . ∴3≤f(-2)=4a-2b≤12.上述解法是否正确?为什么?
2.在变形中,一般是变形得越彻底越有利于下一步的判断.作差法变形的常 用技巧有:因式分解、配方、通分、分母有理化等.
3.利用求商比较法比较两个式子的大小时,第(2)步的变形要向着有利于判 断商与1的大小关系的方向变形,这是最重要的一步.
[再练一题] 1.已知A=1x+1y,B=x+4 y,其中x,y为正数,试比较A与B的大小.
【解析】 a>b并不能保证a,b均为正数,从而不能保证A,B成立.又a>b ⇒a-b>0,但不能保证a-b>1,从而不能保证C成立.显然D成立.事实上,指数 函数y=12x是减函数,所以a>b⇔12a<12b成立.
【答案】 D
教材整理 2 一元一次不等式的解法 关于 x 的不等式 ax>b, (1)当 a>0 时,该不等式的解集为ba,+∞; (2)当 a<0 时,该不等式的解集为-∞,ba; (3)当 a=0 时,若 b<0,则该不等式的解集为 R;若 b≥0,则该不等式的解 集为 ∅.
不等式组xx>+m9<+51x+1, 的解集是{x|x>2},则m的取值范围是(
)
【导学号:38000000】
A.m≤2
B.m≥2
C.m≤1 【解析】
D.m≥1 原不等式组可化为xx>>m2,+1. ∵解集为{x|x>2},∴m+1≤2,
∴m≤1. 【答案】 C
教材整理3 一元二次不等式的解法
xx≠-2ba

ax2+bx+
c<0(a>0)的解集
{x|x1<x<x2}

不等式的基本性质[整理] [其它]

不等式的基本性质[整理] [其它]

第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。

不等式的性质(1)

不等式的性质(1)

针对练习
加上5 加上 (1)如果x 5>4, (1)如果x-5>4,那么两边都 如果 到x>9 (2)如果在-7<8的两边都加上9 (2)如果在-7<8的两边都加上9可得到 如果在 的两边都加上 (3)如果在5>-2的两边都加上a+2可得到 a+7 > a (3)如果在5>- 的两边都加上a+2可得到 如果在5> a+2 (4)如果在-3>- 的两边都乘以7 (4)如果在-3>-4的两边都乘以7可得到 -21>-28 如果在 (5)如果在8>0的两边都乘以8 (5)如果在8>0的两边都乘以8可得到 如果在8>0的两边都乘以 可得
2、 判断 、
Q a < b∴ a − b < b − b
(√)
a b Q a < b∴ < (√) 3 3 Q a < b ∴ − 2 a < − 2 b (×)
Q −2a > 0 ∴ a > 0
Q −a < −3 ∴ a < 3
(×) (×)
我是最棒的 ☞
例1:利用不等式的性质解下 列不等式, 列不等式,并在数轴上表 示解集. 示解集.
2 ( 4 ) x > 50 3
2 解:为了使不等式 x > 50中不等号的一边变为 x,根据不等式 3 3 的性质 2,不等式两边都乘 ,不等号的方向不变, 得 2
x > 75
这个不等式的解集在数轴的表示是

75
5x +1 x−5 −2 > 6 4
解:不等式两边同时乘以12,得 不等式两边同时乘以12, 12 2(5x+1)2(5x+1)-2×12>3(x-5) 12>3(x去分母 10x+2-24>3x10x+2-24>3x-15 去括号 10x-3x>2410x-3x>24-2-15 7x>7 X>1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1不等式的基本性质㈠
教学目的:
1、在具体情景中感受到不等式是刻画现实世界的有效模型。

2、通过操作,分析得出不等式的基本性质1。

教学重、难点
重点:不等式的概念和基本性质1。

难点:简单的不等式变形。

教学过程:
一、创设问题情景引入不等式概念
1、引入语:现实生活中不相等的数量关系到处可见,如何用式子表达它们?不等式发挥着重要任用。

2、(出示投影1)
⑴水果店的小王从水果批发市场购进100千克梨和84千克苹果,你能用“>”或“<”连接梨和苹果的进货量吗?
⑵几天后,小王卖出梨和苹果各a千克,你能用“>”或“<连接梨和苹果的剩余量吗?教师提示:⑴100千克________84千克;
⑵100-a________84-a
学生活动:学生在练习本上完成上述问题,并展开讨论。

教师指出:用不等号“>”(或“<”、“≥”、“≤”)表示不等关系的式子叫做不等式。

符号“≥”读作“大于或等于”,也可读作“不小于”;符号“≤”读作“小于或等于”,也可读作“不大于”。

如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

二、想一想,认识不等式的基本性质1
1、提出问题:在不等式5>3的两边同时加上或减去2,在横线上填“>”或“<”号
5+2________3+2;5-2________3-2
2、学生活动:⑴自己写一个不等式,在它的两边同时加上、减去同一个数,看看有什么结果?⑵讨论交流,大胆说出自己的“发现”。

3、教师活动:⑴让学生多次尝试;⑵参与学生讨论;⑶归纳指出:不等式的两边同时加上(或都减去)同一个数或同一个代数式,不等号的方向不变。

用字母表示:若a>b,则a+c>b+c 用a-c>b-c。

三、做一做,进行简单的不等式变形
1、(出示投影2)
例1、用“>”或“<”填空
⑴已知a>b,a+3________b+3;⑵已知a>b,a-5________b-5。

学生活动:学生独立完成此题。

[说明]解此题的理论依据就是根据不等式的性质1进行变形。

2.例2.把下列不等式化为x>a或x<a的形式.
(1)x+6>5 (2)3x>2x+2
学生活动:学生尝试将这个不等式变形。

师生共同分析解答;
解;(1)不等式的两边都减去6,得:
x+6-6>5-6
即x>-1.
(2)不等式两边都减去2x,得;
3x-2x>2x+2-2x
即x>2.
教师指出:像例2那样,把不等式的某一项变号后移到另一边.称为移项,这与解一元一次方程中的移项相类似。

四、随堂练习
课本P135、136练习第1,2、3题.
五、小结
1、不等式的概念和基本性质1.
2.简单不等式的变形.
六.作业
1、课本P138习题5.1A组第1.(1)(2),2.(1)题.
1.设a<b.用“>”或“<”号填空。

(1)a-1______b-1;(2)n+3______b+3;(3)a+m_____b+m (4)a-c_____b-c
2.把下列不等式化为x>a成x<a的形式.
(1)2-x<3:(2)3x-5<-11;(3)2x+3<3x+7 (4)5x<4x-2.。

相关文档
最新文档