2012广州一模试题及参考答案

合集下载

2012广州一模理综试题答案

2012广州一模理综试题答案

试卷类型:A 2012年广州市普通高中毕业班综合测试(一)理科综合2012.3 本试卷共12页.36小题,满分3OO分。

考试用时150分钟.一、单项选择题:本题包括16小题,每小题4分,共64分。

在每小题给出的四个选项中只有一个选项符合题目要求,选对的得4分,选错或不答的得0分o1.下列叙述不正确的是A.生物的遗传信息储存在DNA或RNA中B.细胞膜保障了细胞内部环境的相对稳定C.溶酶体可消化细胞器碎片D.受精卵中含有本物种全部种类的蛋白质2.下列关于生命活动的叙述,正确的是A.小分子物质都可通过被动运输的方式进入细胞B.线粒体内膜和叶绿体类囊体薄膜都有能量转换功能C.酶在细胞代谢中有多种功能、D.剧烈运动时骨骼肌细胞不产生C023.下列对人体干细胞和癌细胞的叙述,正确的是A.干细胞内没有原癌基因和抑癌基因B.干细胞和癌细胞都不会衰老或凋亡C.若抑制DNA复制会使这两种细胞都停留在分裂间期D.干细胞增殖产生的子细胞立即进入下一个细胞周期4.荠菜的果实形状有三角形和卵圆形两种,该性状的遗传由两对等位基因控制。

将纯合的结三角形果实荠菜和纯合的结卵圆形果实荠菜杂交,F.全部结三角形果实,F2的表现型及比例是结三角形果实植株:结卵圆形果实植株= 15:1。

下列有关说法,正确的是A.对F,测交,子代表现型的比例为1:1:l:lB.荠菜果实形状的遗传不遵循基因的自由组合定律C.纯合的结三角形果实植株的基因型有四种D.结卵圆形果实荠菜自交,子代植株全结卵圆形果实5.我国从越南引进姬小蜂来控制本地区对棕榈科植物危害极大的害虫——椰心叶甲,下列有关叙述不正确的是A.利用姬小蜂进行生物防治应作全面评估和监测B.引进姬小蜂后可降低本地椰心叶甲的环境容纳量C.姬小蜂引进本地后其种群增长曲线呈“J”型D.引进本地的姬小蜂会与椰心叶甲共同进化6.以下说法不正确的是A.用含蛋白酶和脂肪酶的洗衣粉去除奶渍效果更好B.用以纤维素为唯一碳源的培养基来分离纤维素分解菌C.在植物组织培养过程中改变培养条件容易获得突变体D.基因工程和蛋白质工程只能生产自然界已存在的蛋白质7.下列说法正确的是A.甲烷和乙醇均能发生取代反应B.苯酚和甲苯遇FeCl3均显紫色C.溴乙烷与NaOH水溶液共热生成乙烯D.油脂和淀粉都是高分子化合物8.下列说法正确的是A.Fe在一定条件下与水反应生成H2和Fe(OH)3B.Fe3O4溶于盐酸后加入几滴KSCN溶液,溶液显红色C.FeCl2溶液蒸干灼烧后得到FeCl2固体D.FeCl3饱和溶液滴入NaOH溶液中可制备Fe(OH)3胶体9.能在水溶液中大量共存的一组离子是A.H+、Fe3+、I-、SO42-B.Al3+、Mg2+、CO32-、Cl-C.K+、Ag+、Ca2+、NO3-D.NH4+、Na+、OH-、MnO4-10.设n A为阿伏加德罗常数的数值,下列说法正确的是(相对原子质量:C 12 O 16)A.常温下,22g CO2含有n A个氧原子B.2mol Na与足量水反应,转移n A个电子C.1L0.1mol·L-1CH3COOH溶液中含有0.1n A个H+D.常温常压下,22.4LCH4中含有n A个CH4分子11.对于0.1 mol·L-1 NH4Cl溶液,正确的是A.升高温度,溶液pH升高B.通入少量HCl,c(NH4+)和c(Cl-)均增大C.c(NH4+) + c(OH-)=c(Cl-)+ c(H+)D.c(Cl-) > c(H+) > c(NH4+) > c(OH-)12.某小组为研究电化学原理,设计如图装置,下列叙述正确的是A.若a和b为石墨,通电后a电极上发生的反应为Cu2++2e-=CuB.若a和b为石墨,通电后滴入酚酞,a电极附近溶液呈红色C.若a为铜,b为铁,通电后Cu2+向a电极移动D.若a为粗铜,b为纯铜,通电后b电极质量增加13. 油滴在水面上形成如图所示的单分于油膜,可估測分子大小.用该方法估测油酸分子大小,需要测量油酸的A.质量和密度B.体积和密度C.质量和体积D.体积和油膜面积14. 交变电流的A.周期为1OOsB.频率为50HzC.电压峰值为D.电压有效值为50V15. 如图a,甲车自西向东做匀加速运动,乙车由南向北做勾速运动,到达O位置之前,乙车上的人看到甲车运动轨迹大致是图B中的16. 静电场中,可以根据A.场强的强弱判断电势的高低B.电势的高低判断场强的强弱C.电场线方向判断电势的高低D.电场线方向判断场强的强弱二、双项选择题:本大题共9小题,每小题6分,共在毎小题给出的四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得O分。

2012年广州市高三一模理科数学试题以及解答

2012年广州市高三一模理科数学试题以及解答

数学(理科)试题A 第 1 页 共 4 页试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R,函数y =A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定数学(理科)试题A 第 2 页 共 4 页5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 正(主)视图侧(左)视图数学(理科)试题A 第 3 页 共 4 页(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5PACD图3数学(理科)试题A 第 4 页 共 4 页19.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).·5·2012年广州市普通高中毕业班综合测试(一)一、选择题:二、填空题:9 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,213.35,1014. 15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭ tantan 341tan tan34ππ+=ππ-2==-4分 (2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭()tan α=+πtan 2α==.…………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=,②由①、②解得21cos 5α=.……9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos 5α=-,sin 5α=-10分 所以cos 4απ⎛⎫- ⎪⎝⎭cos cos sin sin 44ααππ=+ 22⎛=+⨯= ⎝⎭12分 17.(本小题满分12分) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,解得3a =.………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.………3分方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦.…5分 (3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……6分这两名同学成绩之差的绝对值X 的所有情况如下表:·6·所以的所有可能取值为0,1,2,3,4,6,8,9.………………………………………8分由表可得1(0)16P X==,2(1)16P X==,1(2)16P X==,4(3)16P X==,2(4)16P X==,3(6)16P X==,1(8)16P X==,2(9)16P X==.所以随机变量X的分布列为:随机变量X的数学期望为121423012346161616161616EX=⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯6817164==.…12分18.(本小题满分14分)(1)证明略(2)过点A作平面PBC的垂线,垂足为H,连PH,则APH∠为直线AP与平面PBC所成的角.…………………………………8分由(1)知,△ABC的面积12ABCS AC BE∆=⨯⨯=9分因为PD=,所以13P ABC ABCV S PD-∆=⨯⨯133=⨯=.………………10分由(1)知PBC∆为直角三角形,BC=PB=所以△PBC的面积11322PBCS BC PB∆=⨯⨯==.…………11分因为三棱锥A PBC-与三棱锥P ABC-的体积相等,即A PBC P ABCV V--=,即133AH⨯⨯=AH=.……………………12分在Rt△PAD中,因为PD,1AD=,所以2AP==.…………………………13分………………10分·7·因为3sin 2AH APH AP ∠===AP 与平面PBC14分 19.(本小题满分14分)(1)解: {}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).……………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.……………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭111(21)2(23)2n n n n -=-++.………………………10分 所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.……………………………14分 20.(本小题满分14分)(1)解双曲线C 的方程为2214y x -=.………………………3分 (2)设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩……………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k-=+.6分 同理可得,21244k x k +=-.……………7分 所以121x x ⋅=.………………8分(3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),·8·则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.……………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.……………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.………………11分由(2)知,121x x ⋅=,即211x x =.设21t x =,则14t <≤,221245S S t t -=--.设()45t t f t =--,则()()()222241t t f t t t-+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.………………12分当2t =,即1x =()()2212max21S S f -==.……………………13分所以2212S S -的取值范围为[]0,1.……………………………………14分 21.(本小题满分14分)(1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1x x e ϕ'=-.……………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥.即1()()0f x g x -≥,所以()f x 1()g x ≥.……………………………3分·9·(2)解:当0x >时,()f x >()n g x .……………………………4分用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,……………………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.……………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +. 由①、②知,当0x >时,都有()f x >()n g x .…………………………8分 (3)先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.………………………9分 再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………10分以下用数学归纳法证明不等式(*):·10·①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.…………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C 2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭, 12分 所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.。

2012广州一模试题及答案

2012广州一模试题及答案

2012年广州市普通高中毕业班综合测试(一)英语2012.3 本试卷共12页,三大题,满分135分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用2B格笔在“考生号”处填涂考生号。

用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答卷纸各题目指定区城内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并变回。

I 语言知识及应用(共两节,满分45分)第一节完形填空(共15小题;每小题2分,满分30分)阅读下面短文,掌握其大意,然后从1~15各题所给的A、B、C和D项中,选出最佳选项,并在答题卡上将该项涂黑。

The more accessible a company's services are, the more business it will do. Why are the same ___1___ not applied when it comes to Internet websites then? A Hong Kong study has found that the local sites of two leading ___2___, McDonald's and Motorola, are the most user-unfriendly of the 30 websites tested. The lack of ___3___ means they are not only losing customers, but ___4___ to meet their social responsibilities.In an ever-more Internet-connected world, ___5___ are as important as physical shops or offices. They are ___6___ used as a way of banking, shopping and getting news. This is especially so for the disabled, who find it ___7___ to shop on-line than go to a store in person. A website that does not let them do this is the same as having a(n) "___8___" sign on a door.In Hong Kong, it is ___9___ not to provide the disabled with access to schools and buildings, but at present there are no specific laws on Internet accessibility. However, companies are morally responsible for ensuring that their websites can be ___10___ by people who are visually disabled or have difficulty walking around. Ideals for design have long been put forward by the World Wide Web Consortium, a global community working on open standards to ___11___ accessibility and development.Computer technology is ___12___ fast and it is now much easier to create websites that are ___13___ for all people, sighted or disabled. Companies should ensure that the designers of their websites ___14___ guidelines for accessibility. We should try to make our city as ___15___ aspossible, on-line and off.1. A. data B. principles C. experiences D. technologies2. A. companies B. products C. stores D. factories3. A. power B. study C. attraction D. access4. A. deciding B. attempting C. failing D. stopping5. A. computers B. hotlines C. signals D. websites6. A. increasingly B. possibly C. extremely D. randomly7. A. cheaper B. safer C. easier D. quicker8. A. waiting B. sale C. open D. closed9. A. unreasonable B. illegal C. unimportant D. impolite10. A. found B. read C. known D. created11. A. permit. B. discover C. start D. ensure12. A. weakening B. dropping C. changing D. flying13. A. wonderful B. usable C. harmless D. profitable14. A. follow B. write C. break D. ignore15. A. beautiful B. wealthy C. accessible D. respectable第二节语法填空(共10小题;每小题1.5分,满分15分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卡标号为16~25的相应位置上。

2012年广州市一模数学试题(理科)

2012年广州市一模数学试题(理科)

数学(理科)试题A 第 1 页 共 4 页试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.方差()()()2222121n s x x x xx xn ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12n x x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R,函数y =A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12 D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定数学(理科)试题A 第 2 页 共 4 页5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠= ,2A B =,6B C =,在B C 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16B .13C .12D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为 A .252 B .216 C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题)9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 .11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .5 121 22图2图1 俯视图 正(主)视图侧(左)视图数学(理科)试题A 第 3 页 共 4 页(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦A B 的中点,3O P =cm ,弦C D 过点P ,且13C P C D=,则C D 的长为 cm .15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值. 17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示. 已知甲、乙两个小组的数学成绩的平均分相同. (1)求a 的值;(2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3C D =,PD =.(1)证明△PBC 为直角三角形;(2)求直线A P 与平面PBC 所成角的正弦值.图4甲组 乙组 89 7a 357 9 66 图5BPACD图3数学(理科)试题A 第 4 页 共 4 页19.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214yx +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线A P 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设T A B ∆与P O B ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uurg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn xxxg x x n =+++++L (*n ∈N ).(1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数. 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9.310.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14. 15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+⎪⎝⎭……………………………………………………………………………1分 t a n t a n341tan tan34ππ+=ππ-…………………………………………………………………………3分 2==--………………………………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分 ()tan α=+π……………………………………………………………………6分tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ①因为22sin cos 1αα+=, ②由①、②解得21cos 5α=.………………………………………………………………………………9分因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos 5α=-,sin 5α=-.…………………………………………10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分525210⎛⎫=-⨯+-⨯=- ⎪ ⎪⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分解得3a =.…………………………………………………………………………………………………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦.……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分所以X 的所有可能取值为08分 由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 的分布列为:随机变量X 121423012346161616161616E X =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分6817164==.…………………………………………………………………………………………12分……………………10分18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC平面ABC,平面PAC 平面A B C A C=,PD⊂平面PAC,ACPD⊥,所以P D⊥平面ABC.…………………………………………………………………………………1分记AC边上的中点为E,在△ABC中,A B B C=,所以ACBE⊥.因为AB BC==4=AC,所以BE===3分因为P D⊥AC,所以△PC D为直角三角形.因为PD=,3C D=,所以PC===.………4分连接B D,在R t△BD E中,因为BE=,1D E=,所以BD===5分因为P D⊥平面ABC,BD⊂平面ABC,所以P D⊥BD.在R t△PBD中,因为PD=,BD=,所以PB===.…………………………………………………6分在PBC∆中,因为BC=PB=PC=所以222BC PB PC+=.所以PBC∆为直角三角形.………………………………………………………………………………7分证明2:因为平面⊥PAC平面ABC,平面PAC I平面A B C A C=,PD⊂平面PAC,ACPD⊥,所以P D⊥平面ABC.…………………………………………………………………………………1分记AC边上的中点为E,在△ABC中,因为A B BC=,所以ACBE⊥.因为AB BC==4=AC,所以BE===3分连接B D,在R t△BD E中,因为90BED∠=o,BE=,1D E=,所以BD===4分在△BC D中,因为3C D=,BC=BD=,所以222BC BD CD+=,所以BC BD⊥.……………………………………………………………5分因为P D⊥平面ABC,B C⊂平面ABC,所以BC PD⊥.…………………………………………………………………………………………6分因为BD PD D=,所以B C⊥平面PBD.因为PB⊂平面PBD,所以B C P B⊥.所以PBC∆为直角三角形.………………………………………………………………………………7分BPA CDE(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连P H ,则A P H ∠为直线A P 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC的面积12A B C S A C B E ∆=⨯⨯=.…………………………………………9分因为PD =,所以13P A B C A B C V S P D -∆=⨯⨯133=⨯=10分由(1)知PBC ∆为直角三角形,BC =,PB =所以△PBC的面积11322P B C S BC PB ∆=⨯⨯=⨯=.……………………………………11分因为三棱锥A P B C -与三棱锥P A B C -的体积相等,即A PBC P ABC V V --=,即1333AH ⨯⨯=,所以3AH =.……………………………………………………………12分在R t △PAD中,因为PD =,1AD =,所以2AP ===.………………………………………………………13分因为3sin 23A H A P H A P∠===.所以直线A P 与平面PBC314分解法2:过点D 作D M AP ∥,设DM PC M = ,则D M 与平面PBC 所成的角等于A P 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,B C P B ⊥,且PD PB P = ,所以B C ⊥平面PBD . 因为B C ⊂平面PBC ,所以平面P B C ⊥平面PBD .过点D 作D N P B ⊥于点N ,连接M N , 则D N ⊥平面PBC .所以D M N ∠为直线D M 与平面PBC 所成的角.……10分 在R t△PAD 中,因为PD =,1AD =,所以2AP ===.………………………………………………………11分因为D M AP ∥,所以D M C D A PC A=,即324D M =,所以32D M =.………………………………12分由(1)知BD=,PB =PD =,所以2P D B D D N PB⨯===13分BP ACDMN因为2sin 332D N D M N D E∠===, 所以直线A P 与平面PBC314分解法3:延长C B 至点G ,使得B G B C =,连接A G 、P G ,……………………………………8分 在△P C G中,PB BG BC ===所以90CPG ∠=o ,即C P P G ⊥.在△PAC中,因为PC =2PA =,4A C =,所以222PA PC AC +=, 所以C P P A ⊥. 因为PA PG P =I , 所以C P ⊥平面PAG .…………………………………………………………………………………9分过点A 作AK PG ⊥于点K , 因为A K ⊂平面PAG , 所以C P AK ⊥. 因为PG CP P =I ,所以AK ⊥平面P C G .所以APK ∠为直线A P 与平面PBC 所成的角.……………………………………………………11分 由(1)知,B C P B ⊥, 所以PG PC ==在△C AG 中,点E 、B 分别为边C A 、C G 的中点,所以2AG BE ==12分 在△PAG 中,2PA =,AG =PG =所以222PA AG PG +=,即P A A G ⊥.……………………………………………………………13分因为sin 3A G A P K P G∠===.所以直线A P 与平面PBC 所成角的正弦值为3.…………………………………………………14分解法4:以点E 为坐标原点,以E B ,E C 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分BPACDEGK则()0,2,0A -,)0,0B,()0,2,0C,(0,P -.于是(AP =,PB =,(0,3,PC =设平面PBC 的法向量为(),,x y z =n ,则0,0.P B P C ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,30.y y +-=-=⎪⎩ 取1y =,则z =x =所以平面PBC 的一个法向量为=n .……………………………………………………12分设直线A P 与平面PBC 所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n所以直线A P 与平面PBC 314分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以E B ,E C 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………1分则)0,0B,()0,2,0C ,(0,P -.于是(BP =- ,()2,0BC =.因为(()2,00BP BC =-=,所以BP BC ⊥ .所以B P B C ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分(2)由(1)可得,()0,2,0A -.于是(AP = ,PB =,(0,3,PC =.设平面PBC 的法向量为(),,x y z =n ,AA则0,0.P B P C ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,30.y y +-=-=⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线A P 与平面PBC 所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n. 所以直线A P 与平面PBC所成角的正弦值为3.…………………………………………………14分19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分 又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232nn n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭ 111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+.故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,1=,即2b =.所以双曲线C 的方程为2214yx -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线A P 的斜率为k (0k >),则直线A P 的方程为(1)y k x =+,………………………………………………………………………4分 联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k-=+.所以22244k x k-=+.…………………………………………………………6分同理可得,21244k x k+=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分因为AP AT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=.即()221141y x =-,()222241y x =-.…………………………………………………………………6分 所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线A P 的方程为11(1)1y y x x =++,………………………………………4分联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =.所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤.因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S A B y y ==,21111||||||22S O B y y ==,所以()()22222222122121121441544S S y y x xx x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =.设21t x =,则14t <≤,221245S S t t-=--.设()45t tf t =--,则()()()222241t t f t tt-+'=-+=,当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x =()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力)(1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.………………………………………………………………………………………3分(2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:(资料来源:中国高考吧 ) ①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分 令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*):方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为11111111112211121CCC2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫ ⎪⎝⎭,…12分所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分方法2(基本不等式法):因为12n +≤,……………………………………………………………………………………11分12n +≤,……,12n +≤,将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分。

2012年广州一模数学(理科)试卷(word版,含答案)

2012年广州一模数学(理科)试卷(word版,含答案)

数学(理科)试题A 第 1 页 共 4 页试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R ,函数11y x =+的定义域为集合A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定数学(理科)试题A 第 2 页 共 4 页5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 22正(主)视图2 2 2 侧(左)视图222数学(理科)试题A 第 3 页 共 4 页(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,6AB BC ==,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,3PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5BPACD P OABCD图3数学(理科)试题A 第 4 页 共 4 页19.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离心率为5的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TA B ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 1 2 3 4 5 6 7 8 答案DBCABDCA二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9.433 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14.62 15.2 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分 tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分 312313+==---.………………………………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分()tan α=+π……………………………………………………………………6分tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ②由①、②解得21cos 5α=.………………………………………………………………………………9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以5cos 5α=-,25sin 5α=-.…………………………………………10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分 52252310525210⎛⎫=-⨯+-⨯=- ⎪ ⎪⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分 解得3a =.…………………………………………………………………………………………………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分这两名同学成绩之差的绝对值X 的所有情况如下表:87 89 96 96 87 0 2 9 9 93 6 4 3 3 93 6 4 3 3 958611所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分 由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 的分布列为:X 01 2 3 4 6 89P116 216 116 416 216 316 116 216随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分 6817164==.…………………………………………………………………………………………12分 ……………………10分甲乙X18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥. 因为6AB BC ==,4=AC ,所以()2222622BE BC CE =-=-=.………………3分因为PD ⊥AC ,所以△PCD 为直角三角形. 因为3PD =,3CD =, 所以()22223323PC PD CD =+=+=.………4分连接BD ,在Rt △BDE 中,因为2BE =,1DE =, 所以()2222213BD BE DE =+=+=.…………5分因为PD ⊥平面ABC ,BD ⊂平面ABC ,所以PD ⊥BD . 在Rt △PBD 中,因为3PD =,3BD =, 所以()()2222336PB PD BD =+=+=.…………………………………………………6分在PBC ∆中,因为6BC =,6PB =,23PC =,所以222BC PB PC +=.所以PBC ∆为直角三角形.………………………………………………………………………………7分 证明2:因为平面⊥PAC 平面ABC ,平面PAC I 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥, 所以PD ⊥平面ABC .…………………………………………………………………………………1分 记AC 边上的中点为E ,在△ABC 中,因为AB BC =,所以AC BE ⊥. 因为6AB BC ==,4=AC ,所以()2222622BE BC CE =-=-=.………………3分连接BD ,在Rt △BDE 中,因为90BED ∠=o,2BE =,1DE =,所以()2222213BD BE DE =+=+=.………………………………………………………4分在△BCD 中,因为3CD =,6BC =,3BD =,所以222BC BD CD +=,所以BC BD ⊥.……………………………………………………………5分因为PD ⊥平面ABC ,BC ⊂平面ABC ,所以BC PD ⊥.…………………………………………………………………………………………6分 因为BD PD D = ,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,BPACD E则APH ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分 由(1)知,△ABC 的面积1222ABC S AC BE ∆=⨯⨯=.…………………………………………9分 因为3PD =,所以13P ABC ABC V S PD -∆=⨯⨯12622333=⨯⨯=.…………………………10分 由(1)知PBC ∆为直角三角形,6BC =,6PB =,所以△PBC 的面积1166322PBC S BC PB ∆=⨯⨯=⨯⨯=.……………………………………11分 因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=, 即126333AH ⨯⨯=,所以263AH =.……………………………………………………………12分 在Rt △PAD 中,因为3PD =,1AD =, 所以()2222312AP PD AD =+=+=.………………………………………………………13分因为2663sin 23AH APH AP ∠===. 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分 解法2:过点D 作DM AP ∥,设DM PC M = ,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,BC PB ⊥,且PD PB P = ,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN ,则DN ⊥平面PBC .所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt △PAD 中,因为3PD =,1AD =, 所以()2222312AP PD AD =+=+=.………………………………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分 由(1)知3BD =,6PB =,且3PD =,所以33626PD BD DN PB ⨯⨯===.……………………………………………………………13分 BP A CDM N因为662sin 332DN DMN DE ∠===, 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分 解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG 中,6PB BG BC ===, 所以90CPG ∠=o,即CP PG ⊥.在△PAC 中,因为23PC =,2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,所以CP ⊥平面PAG .…………………………………………………………………………………9分 过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分 由(1)知,BC PB ⊥, 所以23PG PC ==.在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以222AG BE ==.………………………………………………………………………………12分 在△PAG 中,2PA =,22AG =,23PG =,所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分因为226sin 323AG APK PG ∠===. 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分 解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分则()0,2,0A -,()2,0,0B,()0,2,0C ,()0,1,3P -.PzBPACD EGK于是()0,1,3AP = ,()2,1,3PB =- ,()0,3,3PC =-.设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n 即230,330.x y z y z ⎧+-=⎪⎨-=⎪⎩ 取1y =,则3z =,2x =.所以平面PBC 的一个法向量为()2,1,3=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则46sin cos 326AP AP AP θ⋅=<>===⋅⋅n ,n n . 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………1分则()2,0,0B,()0,2,0C ,()0,1,3P -.于是()2,1,3BP =-- ,()2,2,0BC =-.因为()()2,1,32,2,00BP BC =---=,所以BP BC ⊥ .所以BP BC ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分 (2)由(1)可得,()0,2,0A -.于是()0,1,3AP = ,()2,1,3PB =- ,()0,3,3PC =-.设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n 即230,330.x y z y z ⎧+-=⎪⎨-=⎪⎩ B PACD Exyz取1y =,则3z =,2x =.所以平面PBC 的一个法向量为()2,1,3=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则46sin cos 326AP AP AP θ⋅=<>===⋅⋅n ,n n . 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分 所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分 所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,因为双曲线的离心率为5,所以2151b +=,即2b =.所以双曲线C 的方程为2214y x -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.…………………………………………………………6分 同理可得,21244k x k+=-.…………………………………………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦,解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分 将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤ ,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t t f t =--,则()()()222241t t f t t t-+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即12x =时,()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力) (1)证明:设11()()()1x x f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.………………………………………………………………………………………3分 (2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:(资料来源:中国高考吧 )①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分 令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*): 方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C 2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分 所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分方法2(基本不等式法): 因为112n n +⋅≤,……………………………………………………………………………………11分 ()1122n n +-⋅≤, ……,112n n +⋅≤, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分。

2012广州一模试题及答案(理综)WORD版-推荐下载

2012广州一模试题及答案(理综)WORD版-推荐下载

C.姬小蜂引进本地后其种群增长曲线呈“J”型 D.引进本地的姬小蜂会与椰心叶甲共同进化 6.以下说法不正确的是 A.用含蛋白酶和脂肪酶的洗衣粉去除奶渍效果更好 B.用以纤维素为唯一碳源的培养基来分离纤维素分解菌 C.在植物组织培养过程中改变培养条件容易获得突变体 D.基因工程和蛋白质工程只能生产自然界已存在的蛋白质 7.下列说法正确的是
A.甲烷和乙醇均能发生取代反应 B.苯酚和甲苯遇 FeCl3 均显紫色 C.溴乙烷与 NaOH 水溶液共热生成乙烯 D.油脂和淀粉都是高分子化合物 8.下列说法正确的是 A.Fe 在一定条件下与水反应生成 H2 和 Fe(OH)3 B.Fe3O4 溶于盐酸后加入几滴 KSCN 溶液,溶液显红色 C.FeCl2 溶液蒸干灼烧后得到 FeCl2 固体 D.FeCl3 饱和溶液滴入 NaOH 溶液中可制备 Fe(OH)3 胶体 9.能在水溶液中大量共存的一组离子是 A.H+、Fe3+、I-、SO42- B.Al3+、Mg2+、CO32-、Cl- C.K+、Ag+、Ca2+、NO3- D.NH4+、Na+、OH-、MnO4- 10.设 nA 为阿伏加德罗常数的数值,下列说法正确的是(相对原子质量:C 12 O 16) A.常温下,22g CO2 含有 nA 个氧原子 B.2mol Na 与足量水反应,转移 nA 个电子 C.1L0.1mol·L-1CH3COOH 溶液中含有 0.1nA 个 H+ D.常温常压下,22.4LCH4 中含有 nA 个 CH4 分子 11.对于 0.1 mol·L-1 NH4Cl 溶液,正确的是 A.升高温度,溶液 pH 升高 B.通入少量 HCl,c(NH4+)和 c(Cl-)均增大
D.若 a 为粗铜,b 为纯铜,通电后 b 电极质量增加

2012年物理一模试题(广州地区)

2012年物理一模试题(广州地区)

2011白云区一模试题一.选择题(每小题3分,共36分)1. 有一种专门存放贵重物品的“银行”,当人们存放了自己的贵重物品后,要用仪器记录下自己的“手纹”、“眼纹”、“声纹”等,以便今后用这些自己独有的特征才能亲自取走东西,防止被别人盗领走,这里的“声纹”主要记录的是人说话的()A. 音调B. 响度C. 音色D. 三者都有2. 据美联社报道,从05年4月26日起,“机遇号”火星探测器由于车轮陷人到细沙中而被困在火星表面的一个沙丘上,一直动弹不得,这与沙丘能够承受的压强较小有关。

如果你是火星探测器的设计者,为了减小探测器对沙丘的压强,可行的改进方法是()A. 增大探测器的质量B. 增大车轮与沙丘的接触面积C. 减小车轮表面的粗糙程度D. 减少车轮的个数3. 为杜绝操作工手指损伤事故的发生,某厂家设计制造的切纸机,必需将两只手同时分别按住左、右开关,切纸机才能正常工作。

下列电路设计如图中符合要求的是()4. 某块砖在一对平衡力作用下运动,则该砖()A. 势能可能改变,动能可能改变B. 势能一定不变,动能一定不变C. 势能可能改变,动能一定不变D. 势能一定不变,动能可能改变5.丰田汽车因为“油门踏板在个别情况下会出现复位缓慢或完全卡住的现象,从而导致意外加速”,所以将全球近550万辆车大规模召回。

如图中根据售后服务店中漫画—《现场投诉》,下列说法正确的是()A. 油门踏板踩下再松开,却卡住不能复位,说明其发生了弹性形变B. 汽车失控导致加速撞向墙体,说明速度越大,惯性越大C. 汽车撞击墙体的瞬间,墙体对车没有力的作用D. 撞击墙体造成汽车的前盖凹陷,说明力能改变物体的形状6. 如图所示,在探究凸透镜成像规律的实验中,若保持蜡烛和光屏的位置不变,只移动透镜。

发现透镜在A、B两处,光屏上都能得到清晰的像,则两次所成的像()A. 都是倒立的,且透镜在A处时像较大B. 都是倒立的,且透镜在B处时像较大C. 在A处正立、B处倒立,且透镜在A处时像较大D. 在A处倒立、B处正立,且透镜在B处时像较大7. 你有到过卡拉OK厅唱歌且做过“咪霸”的经历吗?“咪”实质是动圈式话筒。

2012年广州一模 试题及答案

2012年广州一模 试题及答案

2012年广州市普通高中毕业班综合测试(一)理科综合本试卷共12页.36小题,满分3OO 分。

考试用时150分钟.一、单项选择题:本题包括16小题,每小题4分,共64分。

在每小题给出的四个选项中只有一个选项符合题目要求,选对的得4分,选错或不答的得0分o13. 油滴在水面上形成如图所示的单分于油膜,可估測分子大小.用该方法估测油酸分子大小,需要测量油酸的A.质量和密度B.体积和密度 C .质量和体积 D.体积和油膜面积14. 交变电流50sin100()u t V π=的 A.周期为1OOs B.频率为50HzC.电压峰值为VD.电压有效值为50V15. 如图a,甲车自西向东做匀加速运动,乙车由南向北做匀速运动,到达O 位置之前,乙车上的人看到甲车运动轨迹大致是图B 中的16. 静电场中,可以根据A.场强的强弱判断电势的高低B.电势的高低判断场强的强弱C.电场线方向判断电势的高低D.电场线方向判断场强的强弱二、双项选择题:本大题共9小题,每小题 6分,共在毎小题给出的四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得O 分。

17. 用中子轰击铝27,其核反应方程:(1)27124241301111;Al n Na X Na +→+具有放射性,其核反应方程为:(2)24241112Na Mg Y →+.则A. X 是42HeB. Y 是10nC. (1)是a 衰变D. (2)是β衰变18. 充足气的自行车内胎在阳光下曝晒吋容易爆裂.与曝晒前相比,爆裂前车胎内气体A.内能增加B.密度增大C.压强增大D.分子间引力增大19. 如图,在竖直方向上,两根完全相同的轻质弹簧a 、b, 一端与质世为M 的物体相连接,另一端分别固定.当物体平衡时,如果 A. a 被拉长,则b 一定被拉长 B. a 被压缩,则b —定被压缩 C. b 被拉长,则a 一定被拉长D . b 被压缩,则a —定被拉长20 如图,节水灌溉中的喷嘴距地髙0.8m ,假定水从喷嘴水平喷出,喷灌半径为4m,不计空气阻力,取G = 1O m/s 2.则A. 水下落的加速度为8m/s 2B. 水从喷嘴落到地面的吋间为0.4sC. 水从喷嘴喷出后动能不变D. 水从喷嘴喷出的速率为10m/s21. 薄铝板将同一匀强磁场分成I 、II 两个区域,髙速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图,半径12R R .假定穿过铝板前后粒子电世保持不变,则该粒子A. 带正电B. 在I 、II 区域的运动速度相同C. 在I 、II 区域的运动时间相同D. 从I 区域穿过铝板运动到II 区域三、非选择题:本大题共11小题,共182分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以 .……………………………………13分
因为 ,
所以直线 与平面 所成角的正弦值为 .…………………………………………………14分
解法3:延长 至点 ,使得 ,连接 、 ,……………………………………8分
在△ 中, ,
所以 ,即 .
在△ 中,因为 , , ,
所以 ,
所以 .
因为 ,
所以 平面 .…………………………………………………………………………………9分
所以 .………………………………4分
在△ 中,因为 , , ,
所以 ,所以 .………………………………………5分
因为 平面 , 平面 ,
所以 .…………………………………………………………6分
因为 ,所以 平面 .
因为 平面 ,所以 .
所以 为直角三角形.……………………………………………………7分
18.(本小题满分14分)
(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)
(1)证明1:因为平面 平面 ,平面 平面 , 平面 , ,
所以 平面 .…………………………………………………………………………………1分
(3)证明: ( ).
2012年广州市普通高中毕业班综合测试(一)
数学(பைடு நூலகம்科)试题参考答案及评分标准
说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.
2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
则 , , .
于是 , .
因为 ,
所以 .
所以 .
所以 为直角三角形.…………………………………………………………7分
(2)由(1)可得, .
于是 , , .
设平面 的法向量为 ,
则 即
取 ,则 , .
所以平面 的一个法向量为 .…………………………………12分
设直线 与平面 所成的角为 ,
则 .
所以直线 与平面 所成角的正弦值为 .……………………………14分
解得 .……………………………………………………………………2分
(2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为 .……………………………3分
所以乙组四名同学数学成绩的方差为 .
…………5分
(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有 种可能的结果.……………6分
这两名同学成绩之差的绝对值 的所有情况如下表:
19.(本小题满分14分)
(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)
(1)解:设等比数列 的公比为 ,依题意,有
即 ……………………………………………2分
所以 …………………………………………………………3分
由于 , ,解之得 或 ………………………………5分
………………………………………………3分
.…………………………………………………4分
(2)解:因为 …………………………………………5分
……………………………………………………6分
.…………………………………………………7分
所以 ,即 .①
因为 ,②
由①、②解得 .……………………………………………………9分
A.252B.216C.72D.42
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.
(一)必做题(9~13题)
9.如图1是一个空间几何体的三视图,则该几何体的体积为.
10.已知 ,则实数 的取值范围为.
11.已知幂函数 在区间 上单调递增,
则实数 的值为.
12.已知集合 , ,若 ,
87
89
96
96
87
0
2
9
9
93
6
4
3
3
93
6
4
3
3
95
8
6
1
1
所以 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分
由表可得 , , , ,
, , , .
所以随机变量 的分布列为:
0
1
2
3
4
6
8
……………………10分
9
随机变量 的数学期望为
………11分
.……………………………………………………………12分
由(1)知 , ,且 ,
所以 平面 .
因为 平面 ,
所以平面 平面 .
过点 作 于点 ,连接 ,
则 平面 .
所以 为直线 与平面 所成的角.……10分
在 △ 中,因为 , ,
所以 .……………………………………11分因为 ,所以 ,即 ,所以 .………………………………12分
由(1)知 , ,且 ,
因为 .
所以直线 与平面 所成角的正弦值为 .…………………………………………………14分
解法4:以点 为坐标原点,以 , 所在的直线分别为 轴, 轴建立如图的空间直角坐标系 ,……………………………………………………………………8分
则 , , , .
于是 , , .
设平面 的法向量为 ,


取 ,则 , .
所以 .
所以 为直角三角形.……………………………………………………7分
证明2:因为平面 平面 ,平面 平面 , 平面 , ,
所以 平面 .……………………………………………………1分
记 边上的中点为 ,在△ 中,因为 ,所以 .
因为 , ,所以 .………………3分
连接 ,在 △ 中,因为 , , ,
2012年广州市普通高中毕业班综合测试数学(理科)
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数 (其中 , 是虚数单位),则 的值为
A. B. C.0D.2
2.已知全集 ,函数 的定义域为集合 ,函数 的定义域为集合 ,则集合
A. B. C. D.
(1)求曲线 的方程;
(2)设 、 两点的横坐标分别为 、 ,证明: ;
(3)设三角形TAB与三角形POB的面积分别为S1,S2,向量PA乘向量PB小于等于15,求S1平方-S2平方的范围
21.(本小题满分14分)设函数 ( 为自然对数的底数), ( ).(1)证明: ;
(2)当 时,比较 与 的大小,并说明理由;
(2)解法1:过点 作平面 的垂线,垂足为 ,连 ,
则 为直线 与平面 所成的角.…………………………………8分
由(1)知,△ 的面积 .…………………9分
因为 ,所以 .…………………………10分
由(1)知 为直角三角形, , ,
所以△ 的面积 .…………………11分
因为三棱锥 与三棱锥 的体积相等,即 ,
过点 作 于点 ,
因为 平面 ,
所以 .
因为 ,
所以 平面 .
所以 为直线 与平面 所成的角.……………………………………………………11分
由(1)知, ,
所以 .
在△ 中,点 、 分别为边 、 的中点,
所以 .………………………………………………………12分
在△ 中, , , ,
所以 ,即 .……………………………………………………………13分
6.已知两个非零向量 与 ,定义 ,其中 为 与 的夹角.若 , ,则 的值为
A. B. C.8D.6
7.在△ 中, , , ,在 上任取一点 ,使△ 为钝角三角形的概率为
A. B. C. D.
8.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标 ,若 是3的倍数,则满足条件的点的个数为
(二)选做题(14~15题,考生只能从中选做一题)
14.(几何证明选讲选做题)如图3,圆 的半径为 ,点 是弦 的中点,
,弦 过点 ,且 ,则 的长为 .
15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线 与曲线 的
参数方程分别为 : ( 为参数)和 : ( 为参数),
若 与 相交于 、 两点,则 .
即 ,所以 .……………………………………12分
在 △ 中,因为 , ,
所以 .………………………………13分
因为 .
所以直线 与平面 所成角的正弦值为 .…………………………………………………14分
解法2:过点 作 ,设 ,
则 与平面 所成的角等于 与平面 所成的角.……………………………………8分
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,选择题和填空题不给中间分.
一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.
题号
1
2
3
4
5
6
7
8
答案
D
B
C
A
B
D
C
A
二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.
9. 10. 11.312. 13.35,1014. 15.
相关文档
最新文档