2017年成人高考数学(专升本)试题及答案(三套试卷)

合集下载

2017年成人高考数学(专升本)试题及答案(三套试卷)

2017年成人高考数学(专升本)试题及答案(三套试卷)

2017年成人高考专升本高等数学模拟试题一一. 选择题(1-10小题,每题4分,共40分) 1. 设0lim→x sinaxx =7,则a 的值是( ) A 17B 1C 5D 7 2. 已知函数f(x)在点x 0处可等,且f ′(x 0)=3,则0lim→h f(x 0+2h )-f(x 0)h 等于( ) A 3 B 0 C 2 D 63. 当x 0时,sin(x 2+5x 3)与x 2比较是( )A 较高阶无穷小量B 较低阶的无穷小量C 等价无穷小量D 同阶但不等价无穷小量 4. 设y=x -5+sinx ,则y ′等于( )A -5x -6+cosxB -5x -4+cosxC -5x -4-cosxD -5x -6-cosx 5. 设y=4-3x 2 ,则f ′(1)等于( ) A 0 B -1 C -3 D 36. ⎠⎛(2e x-3sinx)dx 等于( )A 2e x +3cosx+cB 2e x +3cosxC 2e x -3cosxD 1 7. ⎠⎛01dx1-x 2 dx 等于( )A 0B 1 C2πD π 8. 设函数 z=arctan yx ,则x z ∂∂等于( )yx z ∂∂∂2A-y x 2+y 2 B y x 2+y 2 C x x 2+y 2 D -xx 2+y 29. 设y=e2x+y则yx z∂∂∂2=( )A 2ye 2x+yB 2e 2x+yC e 2x+yD –e 2x+y10. 若事件A 与B 互斥,且P (A )=0.5 P (AUB )=0.8,则P (B )等于( ) A 0.3 B 0.4 C 0.2 D 0.1二、填空题(11-20小题,每小题4分,共40分) 11. ∞→x lim (1-1x )2x =12. 设函数f(x)= 在x=0处连续,则 k =13. 函数-e -x 是f(x)的一个原函数,则f(x)= 14. 函数y=x-e x 的极值点x= 15. 设函数y=cos2x , 求y ″=16.曲线y=3x 2-x+1在点(0,1)处的切线方程y=Ke 2x x<0Hcosx x ≥017. ⎠⎛1x-1dx =18. ⎠⎛(2e x-3sinx)dx =19.xdx x sin cos 23⎰π=20. 设z=e xy ,则全微分dz= 三、计算题(21-28小题,共70分) 1. 1lim →x x 2-12x 2-x-12. 设函数 y=x 3e 2x , 求dy3. 计算 ⎠⎛xsin(x 2+1)dx4. 计算⎰+1)12ln(dx x5. 设随机变量x 的分布列为 (1) 求a 的值,并求P(x<1) (2) 求D(x)6. 求函数y=e x1+x的单调区间和极值7. 设函数z=(x,y)是由方程x 2+y 2+2x-2yz=e z 所确定的隐函数,求dz8. 求曲线y=e x ,y=e -x 与直线x=1所围成的平面图形面积x y-2 0.1a-1 0 0.20.11 2 0.32017年成人高考专升本高等数学模拟试题一 答案一、(1-10小题,每题4分,共40分)1. D2. D3. C4. A5. C6. A7. C8.A9. B 10. A 二、(11-20小题,每小题4分,共40分)11. e -2 12. 2 13. e -x 14. 0 15.-4cos2x 16. y=-x+1 17. 1ln -x +c 18. 2e x +3cosx+c 19. 14 20. dz=e xy (ydx+xdy)三、(21-28小题,共70分)1. 1lim →x x 2-12x 2-x-1=(x-1)(x-1)(x-1)(2x+1) =232. y ′=(x 3)′e 2x +(e 2x )′x 3=3x 2e 2x +2e 2x x 3 =x 2e 2x (3+2x) dy=x 2e 2x dx3. ⎠⎛xsin(x 2+1)dx =12 ⎠⎛sin(x 2+1)d(x 2+1) =12 cos(x 2+1)+c 4. ⎠⎛01ln(2x+1)dx =xln(2x+1) 1-⎠⎛012x (2x+1)dx =ln3-{x-12 ln(2x+1)}10=-1+32ln35. (1) 0.1+a+0.2+0.1+0.3=1 得出a=0.3P(x<1),就是将x<1各点的概率相加即可,即:0.1+0.3+0.2=0.6 (2) E(x)=0.1×(-2)+0.3×(-1)+0.2×0+0.1×1+0.3×2=0.2D(x)=E{xi-E(x)}2=(-2-0.2)2×0.1+(-1-0.2)2×0.3+(0-0.2)2×0.2+(1-0.2)2×0.1+(2-0.2)2×0.3=1.966. 1) 定义域 x ≠-12) y ′=e x(1+x)-e x(1+x)2 =xex(1+x)23)令y ′=0,得出x=0(注意x=1这一点也应该作为我们考虑单调区间的点)↓ ↓ ↑函数在(-∞,1)U (-1,0)区间内单调递减 x y y ′(-∞,1)--+-1 (-1,0)0 (0,+∞)无意义 无意义F(0)=1为小极小值在(0,+∞)内单调递增该函数在x=0处取得极小值,极小值为1 7.x f ∂∂ =2x+2, yf ∂∂ =2y-2z z f ∂∂ =-2y-e z x z ∂∂=-xf ∂∂ ÷z f ∂∂ =2(x+1)2y+e z azay ==-y f ∂∂÷zf ∂∂=2y-2z -(2y+e z ) =2y-2z 2y+e z dz=2(x+1)2y+e z dx+2y-2z2y+e zdy 8.如下图:曲线y=e x,y=e -x,与直线x=1的交点分别为A(1,e),B(1,e -1)则S=dx e e x x )(1--⎰= (e x +e -x ) 10=e+e -1-22017年成人高考专升本高等数学模拟试题二答案必须答在答题卡上指定的位置,答在试卷上无效.......。

2017年成人高考高起专《数学》真题及答案

2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x4的最小正周期是()A.8πB.4πC.2πD.2π3.函数y=√x(x−1)的定义城为( )A.{x|x≥0}B.{x|x≥1}C.{x|0≤x≤1}D.{x|x≤0或x≥1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.a2>b2D.ac>bc5.若π2<θ<π,且sinθ=13,则cosθ=( )A.2√23B.− 2√23C. − √23D.√236.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x2+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=1x是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16) B.(-3,18) C.(-3,16) D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为()A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。

(完整版)2017年成人高考高起专《数学》真题及答案

(完整版)2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是( )A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a -c>b -cB.|a|>|b|C.a 2>b 2D.ac>bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D. √236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x -y+1=0B.x+y -5=0C.x -y -1=0D.x -2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x -y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。

山东省2017年普通高等教育专升本统一考试高等数学真题+答案

山东省2017年普通高等教育专升本统一考试高等数学真题+答案

山东省 2017 年专升本真题试卷高等数学(一)一、单项选择题(本大题共五小题,每小题3分共15分。

在每小题列出的四个备选项中只有一个符合题目要求) 1. 函数y =√2−x 2+arcsinx−23的定义域是A. (−1,√2)B.[−1,√2]C.(−1,√2]D. [−1,√2) 2.已知y {−2 x <−1x 2+ax −1 −1≤x ≤1 2 x >1在(−∞,+∞)内连续,则a =A.0B.12 C.1 D.23.曲线y =(x +6)e 1x的单调递减区间的个数为 A.0 B.1 C.3 D.24.若连续函数f(x)满足∫f (t )dt =x x 3−1,则f(7)=A.1B.2C. 112D. 125.微分方程xy ′+y =11+x2满足y |x=√3=√39π的解在x =1处的值为A.π4B.π3C.π2D.π 二、填空题(本大题共5小题,每小题3分,共15分) 6.函数f(x)=ln sin (cos 2x )的图像关于_______________对称. 7.lim n→∞(n−2n+1)n=_______________________. 8.f(x)=1x −1x+11x−1−1x的第一类间断点__________________.9.设a ⃗ ={1,2,3}, b ⃗ ={0,1,−2},则a ⃗ ×b ⃗ =_____________________. 10.直线{x +2y −3z −4=0−2x +6y −3=0与平面2x −y −3z +7=0的位置关系为__________.三、解答题(本大题共7小题,每小题6分,共42分)11.设f(x)={tanaxxx<0x+2 x≥0,limx→0f(x)存在,求a的值12.已知当x→0时,(√1+ax2−1)与sin2x是等价无穷小,求a的值13.求由方程arctan yx=ln √x 2+y 2确定的隐函数y =y(x)的导数14.设f(x)=∫te −t2xdt ,求f(x)的极值15.设z =z(x,y)是由x 2z +2y 2z 2+y =0确定的函数,求ðzðy16.改变积分∫dx 10∫f (x,y )dy +∫dx 41∫f (x,y )dy √xx−2√x−√x 的积分次序17.求幂级数∑(−1)n n √n∞n=0的收敛域18.求介于y =x 2,y =x 22,y =2x 之间的图形面积19.求∬√x 22DD :x 2+y 2=1,x 2+y 2=2x ,y =0所围区域在第一象限部分且x ≥1220.证明方程x=asins+b(a>0,b>0)至少有一个不超过(a+b)的正根21.设0<a≤b,证明不等式b−ab ≤ln ba≤b−aa。

2017年成人高考高起专《数学》真题及答案

2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是()A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.a 2>b 2D.ac>bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D.√236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为()A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。

2017成考数学试题答案

2017成考数学试题答案

2017成考数学试题答案一、选择题1. 问题:若a、b、c为等差数列,且a+b+c=6,b-c=2,求a的值。

答案:首先,设等差数列的公差为d。

根据题意,我们可以得到两个方程:2b=a+c,以及b-c=2。

将第二个方程改写为c=b-2,代入第一个方程,得到2b=a+(b-2),解得a=b-2。

再结合a+b+c=6,代入a和c的表达式,得到b-2+b+b-2=6,解得b=2,进而得到a=0。

二、填空题1. 问题:已知函数f(x)=ax^2+bx+c在点x=1取得极小值,且f(0)=1,f(2)=5,求a、b、c的值。

答案:由于f(x)在x=1处取得极小值,所以f'(1)=0。

首先求导数f'(x)=2ax+b,代入x=1得到2a+b=0。

又因为f(0)=c=1,f(2)=4a+2b+c=5,联立以上三个方程,解得a=1,b=-2,c=1。

三、解答题1. 问题:解方程组:\begin{cases}x+y=3 \\2x-y=1\end{cases}答案:我们可以使用加减消元法来解这个方程组。

将两个方程相加,得到3x=4,解得x=4/3。

然后将x的值代入第一个方程,得到y=3-4/3=5/3。

所以,方程组的解为x=4/3,y=5/3。

2. 问题:计算定积分∫(0 to 2) (2x+1)dx。

答案:首先,我们需要找到被积函数(2x+1)的原函数。

通过对x进行积分,我们得到原函数为x^2+x。

然后,我们将积分区间的上下限代入原函数,计算定积分的值。

所以,定积分的值为(x^2+x)|0 to 2 =(2^2+2) - (0^2+0) = 8。

3. 问题:已知函数g(x)=x^3-3x^2+2x,在区间[-1,2]上的最大值为M,在区间[-1,2]上的最小值为m,求M和m的值。

答案:为了找到函数g(x)在区间[-1,2]上的最大值和最小值,我们首先需要求出函数的导数g'(x)=3x^2-6x+2。

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。

2017年全国成人高考专升本高等数学(二)试题

2017年全国成人高考专升本高等数学(二)试题

2017年成人高等学校招生全国统一考试高等数学(二)一、选择题:本大题共1~10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项的字母填题后的括号内。

1.20x x →当时,下列各无穷小量中与等价的是()A .2sin x xB .2cos x xC .sin x xD .cos x x 2.下列函数中,在0x =处不可导的是()A .y =B .y =C .sin y x =D .2y x = 3.函数()()2ln 22f x x x =++的单调递减区间是()A .(),1-∞-B .()1,0-C .()01,D .()1,+∞ 4.曲线3231y x x =--的凸区间是()A .(),1-∞B .(),2-∞C .()1,+∞D .()2,+∞ 5.曲线24x y e x =-在点(0,1)处的切线方程是()A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 6.=()A CB .CC CD .C 7.102x dx =⎰()A .ln 2B .2ln 2C .1ln 2D .2ln 2 8.设二元函数2x y z e +=,则下列各式中正确的是()A .22x zxe x ∂=∂B .y z e y ∂=∂C .2x y ze x +∂=∂ D .2x yz e y +∂=∂9.二元函数2232z x y x y =+--的驻点坐标是()A .3,12⎛⎫-- ⎪⎝⎭B .3,12⎛⎫- ⎪⎝⎭C .3,12⎛⎫- ⎪⎝⎭D .3,12⎛⎫ ⎪⎝⎭10.甲、乙两人各自独立射击1次,甲射中目标的概率为0.8,乙射中目标的概率为0.9,则至少有一人射中目标的概率为()A .0.98B .0.9C .0.8D .0.72二、填空题:11~20小题,每小题4分,共40分。

将答案填在题中横线上。

11.422132lim 458x x x x x →+-=+-_____. 12.()0lim ln 31x x x →=+_____. 13.曲线()211x y x +=-的铅直渐近线方程是_____.14.设函数()()()sin 1,''1f x x f =-=则_____.15.20cos3xdx π=⎰_____. 16.211dx x +∞=⎰_____. 17.若()()tan x f x f x dx =⎰是的一个原函数,则_____.18.由曲线3,1,y x x x ==直线轴围成的平面有界区域的面积为_____.19.设二元函数41,4sin ,z x y dz π⎛⎫ ⎪⎝⎭==则_____.20.()y dy y y x e x y dx==+=设是由方程所确定的隐函数,则_____. 三、解答题:21~28题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年成人高考数学(专升本)试题及答案(三套试卷)2017年成人高考专升本高等数学模拟试题一一. 选择题(1-10小题,每题4分,共40分) 1. 设0lim →x sinaxx=7,则a 的值是( )A 17B 1C 5D 7 2. 已知函数f(x)在点x 0处可等,且 f ′(x 0)=3,则0lim→h f(x 0+2h )-f(x 0)h等于( ) A 3 B 0 C 2 D 63. 当x 0时,sin(x 2+5x 3)与x 2比较是( ) A 较高阶无穷小量 B 较低阶的无穷小量 C 等价无穷小量 D 同阶但不等价无穷小量4. 设y=x -5+sinx ,则y ′等于( )A -5x -6+cosx B -5x -4+cosx C -5x -4-cosx D -5x -6-cosx 5. 设y=4-3x 2 ,则f ′(1)等于( ) A 0 B -1 C -3 D 36. ⎠⎛(2e x-3sinx)dx 等于( )A 2e x +3cosx+cB 2e x +3cosxC 2e x -3cosxD 17. ⎠⎜⎛01dx 1-x 2dx 等于( )8. 设函数 z=arctan y x,则x z∂∂等于( )y x z ∂∂∂2A -y x 2+y 2B y x 2+y 2C x x 2+y 2D -x x 2+y 2 9. 设y=e2x+y则yx z∂∂∂2=( )A 2ye 2x+yB 2e 2x+yC e 2x+yD –e 2x+y10. 若事件A 与B 互斥,且P (A )=0.5 P (AUB )=0.8,则P (B )等于( ) A 0.3 B 0.4 C 0.2 D 0.1二、填空题(11-20小题,每小题4分,共40分) 11. ∞→x lim (1-1x)2x=12. 设函数f(x)= 在x=0处连续,则 k =13. 函数-e -x 是f(x)的一个原函数,则f(x)= 14. 函数y=x-e x 的极值点x= 15. 设函数y=cos2x , 求y ″= 16. 曲线y=3x 2-x+1在点(0,1)处的切线方程y= 17. ⎜⎜⎛1dx =Ke 2xHcosx18. ⎠⎛(2e x-3sinx)dx =19. xdx x sin cos 203⎰π=20. 设z=e xy ,则全微分dz=三、计算题(21-28小题,共70分) 1. 1lim →x x 2-12x 2-x-12. 设函数 y=x 3e 2x , 求dy3. 计算 ⎠⎛xsin(x 2+1)dx4. 计算 ⎰+10)12ln(dx x5. 设随机变量x 的分布列为 (1) 求a 的值,并求P(x<1)(2) 求D(x)6. 求函数y=e x1+x 的单调区间和极值x y -0.a -0 0.0.1 20.7.设函数z=(x,y)是由方程x2+y2+2x-2yz=e z所确定的隐函数,求dz8.求曲线y=e x,y=e-x与直线x=1所围成的平面图形面积2017年成人高考专升本高等数学模拟试题一 答案一、(1-10小题,每题4分,共40分)1. D2. D3. C4. A5. C6. A7. C8.A9. B 10. A 二、(11-20小题,每小题4分,共40分)11. e -2 12. 2 13. e -x 14. 0 15.-4cos2x 16. y=-x+1 17.1ln -x +c 18. 2e x+3cosx+c 19. 14 20. dz=e xy (ydx+xdy)三、(21-28小题,共70分)1. 1lim →x x 2-12x 2-x-1 =(x-1)(x-1)(x-1)(2x+1) =232. y ′=(x 3)′e 2x +(e 2x )′x 3=3x 2e 2x +2e 2x x 3 =x 2e 2x (3+2x) dy=x 2e 2x dx2122124. ⎠⎛01ln(2x+1)dx =xln(2x+1)10-⎠⎜⎜⎛012x (2x+1) dx =ln3-{x-12 ln(2x+1)} 10=-1+32ln35. (1) 0.1+a+0.2+0.1+0.3=1 得出a=0.3P(x<1),就是将x<1各点的概率相加即可,即:0.1+0.3+0.2=0.6(2) E(x)=0.1×(-2)+0.3×(-1)+0.2×0+0.1×1+0.3×2=0.2D(x)=E{xi-E(x)}2=(-2-0.2)2×0.1+(-1-0.2)2×0.3+(0-0.2)2×0.2+(1-0.2)2×0.1+(2-0.2)2×0.3=1.966. 1) 定义域 x ≠-12) y ′=e x(1+x)-e x(1+x)2 =xe x(1+x)2 3)令y ′=0,得出x=0(注意x=1这一点也应该作为我们考虑单调区间的点) x y(-∞- - +-(-10 (0,无意0↓↓↑函数在(-∞,1)U (-1,0)区间内单调递减 在(0,+∞)内单调递增该函数在x=0处取得极小值,极小值为17.xf ∂∂ =2x+2, yf∂∂ =2y-2zzf ∂∂ =-2y-e zxz ∂∂=-x f ∂∂÷zf ∂∂ =2(x+1)2y+ez az ay==-y f∂∂÷zf ∂∂=2y-2z -(2y+e z ) =2y-2z 2y+ez dz=2(x+1)2y+e z dx+2y-2z 2y+ez dy 8.如下图:曲线y=e x ,y=e -x,与直线x=1的交点分别为A(1,e),B(1,e -1)则S=dx e e xx)(1--⎰= (e x +e -x ) 1=e+e -1-21 B y=ey=e x2017年成人高考专升本高等数学模拟试题二答案必须答在答题卡上指定的位置,答在试卷上无效.......。

一、选择题:1~10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息..........点上..。

(C) 1.2lim(1)x x→+=A .3B .2C .1D .0 (D) 2.设sin y x x =+,则'y =A .sin xB .xC .cos x x +D .1cos x + (B) 3.设2xy e =,则dy =A .2xe dxB .22xedxC .212x e dxD .2xe dx(C) 4.1(1)xdx -=⎰A .21x C x -+ B .21x C x ++ C .ln ||x x C -+ D .ln ||x x C ++ (C) 5.设5xy =,则'y =A .15x - B .5xC .5ln 5xD .15x +(C) 6.00lim x t x e dt x →=⎰A .x eB .2eC .eD .1(A) 7.设22z x y xy =+,则z x ∂=∂ A .22xy y + B .22x xy+ C .4xy D .22xy + (A) 8.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为 A .1x y z ++= B .21x y z ++=C .21x y z ++=D .21x y z ++=(B) 9.幂级数1n n x n ∞=∑的收敛半径R =A .0B .1C .2D .+∞(B) 10.微分方程''2'3()()sin 0y y x ++=的阶数为A .1B .2C .3D .4二、填空题:11~20小题,每小题4分,共40分。

将答案填写在答题卡相应题号后........。

11.3lim(1)___.x x x →∞-=(1)12.曲线xy e -=在点(0,1)处的切线斜率___.k =(-1/e) 13.设2x y x e =,则'___.y =2xe^x+x^2e^x 14.设cos y x =,则'___.y =-sinx 15.3(1)___.xdx +=⎰x^4/4+x+C16.1___.x e dx ∞-=⎰2/e17.设22z x y =+,则___.dz =2+2y 18.设z xy =,则2___.z x y ∂=∂∂119.01___.3n n ∞==∑1 20.微分方程0dy xdx +=的通解为___.y =y=-(x^2/2)三、解答题:21~28小题,共70分。

解答应写出推理、演算步骤,并将其写在答题卡相应题号后........。

21.(本题满分8分)(1/4)设函数22()sin 2x a f x x x ⎧+⎪=⎨⎪⎩,0,0x x ≤>,在0x =处连续,求常数a 的值.22.(本题满分8分) 计算0lim .sin x xx e e x -→-23.(本题满分8分) 设23x t t t ⎧=⎪⎨=⎪⎩,(t 为参数),求1t dy dx =.(根号下t-1) 24.(本题满分8分) 设函数32()39f x x x x =--,求()f x 的极大值.(-9)25.(本题满分8分) 求1(1)dx x x +⎰.26.(本题满分10分) 计算2Dx ydxdy ⎰⎰,其中积分区域D 由2y x =,1x =,0y =围成. 27.(本题满分10分) 求微分方程2''3'26y y y e ++=的通解.28.(本题满分10分)证明:当0x>时,(1)ln(1)++>.x x x。

相关文档
最新文档