高三数学第一轮复习讲义(49)

合集下载

第49讲 直线与圆的位置关系(解析版)2021届新课改地区高三数学一轮专题复习

第49讲 直线与圆的位置关系(解析版)2021届新课改地区高三数学一轮专题复习

Δ<0 d>r
Δ=0 d=r
Δ>0 d<r
(2)圆的切线方程的常用结论
①过圆 x2+y2=r2 上一点 P(x0,y0)的圆的切线方程为 x0x+y0y=r2;
②过圆(x-a)2+(y-b)2=r2 上一点 P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;
③过圆 x2+y2=r2 外一点 M(x0,y0)作圆的两条切线,则两切点所在直线方程为 x0x+y0y=r2.
12+(-1)2 选 C.
4、过点(2,3)与圆(x-1)2+y2=1 相切的直线的方程为________________.
【答案】 x=2 或 4x-3y+1=0
【解析】 ①若切线的斜率存在时,设圆的切线方程为 y=k(x-2)+3,由圆心(1,0)到切线的距离为半径 1, 得 k=4,所以切线方程为 4x-3y+1=0;②若切线的斜率不存在,则切线方程为 x=2,符合题意,所以直
【解析】(2) 由 ax-y+2-a=0 得直线 l 恒过点 M(1,2).又因为点 M(1,2)在圆 C 的内部,当 MC 与 l
垂直时,弦长最短,所以 kMC·kl=-1,所以2-1×a=-1,解得 a=2 . 1-3
(3)由题意,得圆心 C(3,1),半径 r=3 且∠ACB=90°,则圆心 C 到直线 l:ax-y+2-a=0 的距离为
3 线方程为 4x-3y+1=0 或 x=2.
5、直线 l:3x-y-6=0 与圆 x2+y2-2x-4y=0 相交于 A,B 两点,则 AB=________.
【答案】 10
【解析】 由 x2+y2-2x-4y=0,得(x-1)2+(y-2)2=5,所以该圆的圆心坐标为(1,2),半径 r= 5,又圆

高考复习课件第49讲数学归纳法

高考复习课件第49讲数学归纳法

答案:C
复习目标
课前预习
高频考点
课时小结
3.已知 n 是正偶数,用数学归纳法证明 1-12+31-14+…+n-1 1=2(n+1 2+n+1 4+…+21n)
时,若已假设 n=k(k≥2,k 为偶数)时命题为真,则还 需要证明( )
A.n=k+1 时命题成立 B.n=k+2 时命题成立 C.n=2k+2 时命题成立 D.n=2(k+2)时命题成立
解得
Sk+1=
k+2


k+1+1
这表明,当 n=k+1 时,猜想也成立.
由①②可知,对所有
n∈N*,均有
2n Sn=n+1.
复习目标
课前预习
高频考点
课时小结
证法 2:(累乘法)
因为 Sn=n2an,所以 Sn=n2(Sn-Sn-1), 即SSn-n 1=n2n-2 1(n>1). 所以 Sn=S1×SS21×SS23×…×SSn-n 1 =222-2 1×323-2 1×…×n2n-2 1 =1×22 3×2×32 4×…×n-1n2n+1
答案:C
复习目标
课前预习
高频考点
课时小结
2.用数学归纳法证明 1+a+a2+…+an+1=1-1-ana+2
(a≠1,n∈N*),在验证 n=1 成立时,左边计算所得的项是
() A.1
B.1+a
C.1+a+a2
D.1+a+a2+a3
解:验证初值时需要考察和式的结构特点.n=1 时,
左边=1+a+a2.
即 2k 项.
答案:D
复习目标
课前预习
高频考点
课时小结
5.用数学归纳法证明:凸多边形的内角和 f(n)=(n-

新教材老高考适用2023高考数学一轮总复习课时规范练49排列与组合北师大版(含答案)

新教材老高考适用2023高考数学一轮总复习课时规范练49排列与组合北师大版(含答案)

高考数学一轮总复习:课时规范练49排列与组合基础巩固组1.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种2.从4名男生和2名女生中选出2名男生和1名女生担任元旦联欢晚会的主持人,则不同的选法共有()A.6种B.12种C.24种D.18种3.(2021广东深圳一模)小明跟父母、爷爷和奶奶一同参加节目,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A.6B.12C.24D.484.(2021河北石家庄第十九中学月考)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85B.86C.91D.905.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个6.下列等式中,不成立的是()A.A n m=n!m!B.C n m -1+C n m=C n+1m C.C n m =C n n -mD.A n m =n A n -1m -17.在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则下列结论不正确的是( )A.抽出的3件产品中恰好有1件是不合格品的抽法有C 21C 982种B.抽出的3件产品中恰好有1件是不合格品的抽法有C 21C 992种C.抽出的3件中至少有1件是不合格品的抽法有(C 21C 982+C 22C 981)种D.抽出的3件中至少有1件是不合格品的抽法有(C 1003−C 983)种8.某校举办优质课比赛,决赛阶段共有6名教师参加.如果甲、乙、丙三人中有一人第一个出场,且最后一个出场的只能是甲或乙,则不同的出场方案共有 种.9.(2021湖南雅礼中学模拟)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)综合提升组10.(2021安徽安庆月考)某市践行“干部村村行”活动,现有3名干部,下乡到5个村蹲点指导工作,每个村必须有1名干部,每个干部至多去3个村,则不同的选派方案共有 ( )A.243种B.210种C.150种D.125种11.有13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往疫区.若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N ,则下列等式能成为N 的算式的是( )①C 135−C 71C 64 ②C 72C 63+C 73C 62+C 74C 61+C 75 ③C 135−C 71C 64−C 65 ④C 72C 113A.①③B.②③C.②④D.①④12.(2021河南部分学校联考)某市疾控中心决定将含A ,B 在内的6名专家平均分配到3所县疾控中心去指导防疫工作,若A ,B 2名专家不能分配在一起,则不同的分配方法有 种.13.(2021浙江高三专题练习)在新高考改革中,学生可从物理、历史,化学、生物、政治、地理、技术7科中任选3科参加高考,则学生有 种选法.现有甲、乙两名学生先从物理、历史两科中任选一科,再从化学、生物、政治、地理四门学科中任选两科,则甲、乙二人恰有一门学科相同的选法有 种.创新应用组14.从装有n+1个不同小球的口袋中取出m 个小球(0<m ≤n ,m ,n ∈N ),共有C n+1m 种取法.在这C n+1m种取法中,可以视作分为两类:第一类是某指定的小球未被取到,共有C 10·C n m 种取法;第二类是某指定的小球被取到,共有C 11·C n m -1种取法.显然C 10·C n m +C 11·C n m -1=C n+1m ,即等式C n m +C n m -1=C n+1m 成立.试根据上述想法,下面式子C n m +C k 1·C n m -1+C k 2·C n m -2+…+C k k ·C n m -k (其中1≤k<m ≤n ,k ,m ,n ∈N )应等于( )A.C n+k mB.C n+k+1mC.C n+k m+1D.C n+m k15.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有 种.课时规范练49 排列与组合1.B 解析:因为同学甲只能在周一值日,所以除同学甲外的4名同学将在周二至周五值日,所以5名同学值日顺序的编排方案共有A 44=24(种). 故选B .2.B 解析:由题意,从4名男生和2名女生中选出2名男生和1名女生担任元旦联欢晚会的主持人,可分两步:第一步,先从4名男生中选出2人,有C 42=6种选法; 第二步,从2名女生中选出1人,有C 21=2种选法.由分步乘法计数原理可得,共有C 42×C 21=12种不同的选法.故选B .3.B 解析:将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,则有A 22种坐法,再与爷爷和奶奶进行排序,则不同坐法有A 22A 33=12(种).故选B .4.B 解析:由题意,可分三类:第1类,男生甲入选,女生乙不入选,则方法种数为C 31C 42+C 32C 41+C 33=31; 第2类,男生甲不入选,女生乙入选,则方法种数为C 41C 32+C 42C 31+C 43=34; 第3类,男生甲入选,女生乙入选,则方法种数为C 32+C 41C 31+C 42=21.由分类加法计数原理,男生甲与女生乙至少有1人入选的方法种数为31+34+21=86. 故选B .5.B 解析:由题意可知,4开头的满足题意的偶数的个数为C 21A 43,5开头的满足题意的偶数的个数为C 31A 43,根据分类加法计数原理可得,比40000大的偶数共有C 21A 43+C 31A 43=120个.故选B .6.A 解析:A n m =n (n-1)…(n-m+1)=n!(n -m)!,故A 错误;根据组合数性质知B,C 正确;A n m =n!(n -m)!=n ·(n -1)![(n -1)-(m -1)]!=n A n -1m -1,故D 正确.故选A .7.B 解析:根据题意,若抽出的3件产品中恰好有1件是不合格品,即抽出的3件产品中有2件合格品,1件不合格品,则合格品的取法有C 982种,不合格品的取法有C 21种,恰好有1件是不合格品的取法有C 21C 982种取法,故A 正确,B 错误.若抽出的3件中至少有1件是不合格品,有2种情况,①抽出的3件产品中有2件合格品,1件不合格品,有C 21C 982种取法;②抽出的3件产品中有1件合格品,2件不合格品,有C 22C 981种取法.则抽出的3件中至少有1件是不合格品的抽法有(C 21C 982+C 22C 981)种,故C 正确.也可以使用间接法,在100件产品中任选3件,有C 1003种取法,其中全部为合格品的取法有C 983种,则抽出的3件中至少有1件是不合格品的抽法有(C 1003−C 983)种取法,故D 正确.故选B . 8.96 解析:若第一场比赛从甲或乙开始,则最后一场从甲或乙产生,故不同的出场方案有A 22A 44=48种;若第一场比赛从丙开始,最后一场从甲或乙产生,故不同的出场方案有A 21A 44=48种.根据分类加法计数原理,不同的出场方案共有48+48=96(种).9.660 解析:第一类,从8名学生中选1女3男,有C 63C 21=40种选法,从4人中选2人作为队长和副队长有A 42=12种选法,故共有40×12=480种选法;第二类,从8名学生中选2女2男,有C 62C 22=15种选法,从4人中选2人作为队长和副队长有A 42=12种选法,故共有15×12=180种选法,根据分类加法计数原理,共有480+180=660种不同的选法.10.C 解析:3名干部可供选派,下乡到5个村蹲点指导工作,每个村都需要1名干部,每个干部至多去3个村,于是可以把5个村分为(1,1,3)和(1,2,2)两组,当为(1,1,3)时,有C 53A 33=60(种);当为(1,2,2)时,有C 52C 32A 22·A 33=90(种).根据分类加法计数原理,可得不同的选派方案共60+90=150(种). 故选C .11.B 解析:13名医生,其中女医生6人,则男医生7人.(方法1 直接法)若选派2男3女,则不同的选派方法有C 72C 63;若选派3男2女,则不同的选派方法有C 73C 62;若选派4男1女,则不同的选派方法有C 74C 61;若选派5男,则不同的选派方法有C 75.由分类加法计数原理,不同的选派方法种数为N=C 72C 63+C 73C 62+C 74C 61+C 75.(方法2 间接法)13名医生,任取5人,减去抽调4名女医生和5名女医生的情况,即N=C 135−C 71C 64−C 65.故选B .12.72 解析:将6名专家平均分配到3所县疾控中心的方法种数为C 62C 42C 22A 33·A 33=C 62C 42C 22=90,其中A ,B 2名专家分配在一起的方法种数为C 42C 22A 22·A 33=3C 42C 22=18,故A ,B 2名专家不能分配在一起的不同的分配方法有90-18=72(种).13.35 60 解析:由题意,7科中任选3科,则学生有C 73=7×6×53×2×1=35种选法. 分为两类,第一类:物理、历史两科中有相同学科,则选法有C 21C 42C 22=12(种); 第二类:物理、历史两科中没有相同学科,则选法有A 22C 41A 32=48(种),由分类加法计数原理,甲、乙二人恰有一门学科相同的选法有12+48=60(种).14.A 解析:在C n m +C k 1·C n m -1+C k 2·C n m -2+…+C k k ·C n m -k 中,从第一项到最后一项表示从装有n 个白球,k 个黑球的袋子里,取出m 个球的所有情况取法总数的和,故式子表示的意思为从装有n+k 个球中取出m 个球的不同取法数C n+k m .故选A .15.26 解析:①当甲、丙、丁顾客都不选微信时,则甲有2种选择,当甲选择现金时,其余2人有A 22=2(种)选择;当甲选择支付宝时,丙、丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,有1+C21C21=5(种)选择.故有2+5=7(种)选择.②当甲、丙、丁顾客都不选支付宝时,则甲有2种选择,当甲选择现金时,其余2人有A22=2(种)选择;当甲选择微信时,丙、丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有1+C21C21=5(种)选择.故有2+5=7(种)选择.③当甲、丙、丁顾客都不选银联卡时,若有人使用现金,则有C31A22=6(种)选择,若没有人使用现金,则有C32A22=6(种)选择.故有6+6=12(种)选择.根据分类加法计数原理可得共有7+7+6+6=26(种)选择.。

高三数学(文)一轮复习方案课件 第49讲 抛物线

高三数学(文)一轮复习方案课件 第49讲 抛物线

=4x.
(2)证明:设 P(x1,y1)、Q(x2,y2)、M(x1,-y1),∵F→1P=λF→1Q,
所以xy11+=1λy=2,λx2+1, ∴y21=λ2y22,
又 y21=4x1,y22=4x2,∴x1=λ2x2,
由xx11+=1λ2=x2λ,x2+1, λ≠1,
_x_≥__0_,__y_∈__R__
x轴 O(0,0) e=1 向右
_|_P_F_|_=__p2_+__x_1_
y2=-2px(p>0) F-p2,0 x=p2
_x_≤__0_,__y_∈__R__
向左
_|_P_F_|_=__p2_-__x_1_
第49讲 │ 知识梳理
标准方程
x2=2py(p>0)
第49讲 │ 要点探究
► 探究点4 抛物线的综合应用
例 4 已知 F1、F2 分别是椭圆x42+y32=1 的左、右焦点,曲线 C 是以坐 标原点为顶点,以 F2 为焦点的抛物线,自点 F1 引直线交曲线 C 于 P、Q 两个不同的交点,点 P 关于 x 轴的对称点记为 M.设F→1P=λF→1Q.
第49讲 │ 抛物线
第49讲 抛物线
第49讲 │ 编读互动
编读互动
本讲的知识内容重点为抛物线的定义、标准方程和几何性质, 并能运用它们解决有关综合问题.要求特别透彻掌握抛物线焦点弦 的有关性质.
第49讲 │ 知识梳理
知识梳理
1.抛物线的定义
平面内与一定点 F 和一条定直线 l 的_相__等___的点的轨迹叫做抛
线 l2 的距离之和最小,最小值为 F(1,0)到直线 l1:4x-3y+6=0 的距离,如下图所示即 dmin=|4-50+6|=2,故选择 A.

1mxt-高三数学第一轮复习讲义

1mxt-高三数学第一轮复习讲义

0,
2
上的最大
值和最小值;
(2)若f(x0)=
6 5
,
x0∈
4
,
2
,求cos2x0的值.
【分析】化为一角一函的形式再求周期和最值.
【解析】 (1)由f(x)=2 3sinxcosx+2cos2x-1,得
f(x)= 3 (2sinxcosx)+(2cos2x-1)=
=2sin(2x+ ),
cos20 sin20
cos10
3sin10tan70 - 2cos40
【分析】用诱导公式及逆用两角和差的正、余弦公 式,将70°,10°,40°化成与20°有关的角,约分求解.
【解析】
cos20 s in20
cos10
3sin10tan70 - 2cos40
cos20cos10 s in20
2sin2 cos2
- cos2 2 2cos2 1 cos2
2sin2 cos2
sin2
2sin2 sin tan 2sincos cos
考点2 三角函数式求值
考点3 三角函数式的变换及应用
已知函数f(x)=2 3sinxcosx+2cos2x-1(x∈R).
(1)求函数f(x)的最小正周期及在区间
(2)f(x)=sin2x+sinxcosx- mcos2x
2
= 1 cos 2x + 1 sin2x- m cos2x
= 1[2sin2x-(12+m)cos22x]+ 1 .
2
2
由tanα=2得
sin
2
2sin cos sin2 cos2
2tan 1 tan2

第49讲 直线与圆的位置关系(解析版)2021届新课改地区高三数学一轮专题复习

第49讲 直线与圆的位置关系(解析版)2021届新课改地区高三数学一轮专题复习

第49讲直线与圆的位置关系一、课程标准1、能根据给定直线、圆的方程,判断直线与圆的位置关系2、能用直线和圆的方程解决一些简单的数学问题与实际问题.二、基础知识回顾1、直线与圆的位置关系(1)三种位置关系:相交、相切、相离.(2)圆的切线方程的常用结论①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2;②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.三、自主热身、归纳总结1、若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置关系为()A. 在圆内B. 在圆上C. 在圆外D. 位置不确定【答案】C【解析】∵圆心(0,0)到直线ax+by=1的距离d=1a2+b2<1,∴a2+b2>1,即点P(a,b)在圆外.故选C.2、直线kx-y-4k+3=0与圆x2+y2-6x-8y+21=0的交点个数为()A. 0B. 1C. 2D. 1或2【答案】C【解析】∵直线kx-y-4k+3=0过定点(4,3),且点(4,3)在圆x2+y2-6x-8y+21=0内,∴交点个数为2个.故选C .3、若直线x -y +1=0与圆(x -a)2+y 2=2有公共点,则实数a 的取值范围是( )A . [-3,-1]B . [-1,3]C . [-3,1]D . (-∞,-3]∪[1,+∞) 【答案】C【解析】由题意可得,圆的圆心为(a ,0),半径为2,∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a≤1.故选C .4、过点(2,3)与圆(x -1)2+y 2=1相切的直线的方程为________________. 【答案】 x =2或4x -3y +1=0【解析】 ①若切线的斜率存在时,设圆的切线方程为y =k(x -2)+3,由圆心(1,0)到切线的距离为半径1,得k =43,所以切线方程为4x -3y +1=0;②若切线的斜率不存在,则切线方程为x =2,符合题意,所以直线方程为4x -3y +1=0或x =2.5、直线l :3x -y -6=0与圆x 2+y 2-2x -4y =0相交于A ,B 两点,则AB =________. 【答案】 10【解析】 由x 2+y 2-2x -4y =0,得(x -1)2+(y -2)2=5,所以该圆的圆心坐标为(1,2),半径r =5,又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|32+(-1)2=102,由⎝⎛⎭⎫AB 22=r 2-d 2,得AB 2=4×⎝⎛⎭⎫5-52=10,即AB =10.6、(多选)已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( )A. 6B.5 C .- 6 D .-5【答案】BD【解析】因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =±5,故选B 、D.7、(多选)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2B .4C .6D .10【答案】AD【解析】圆C :(x -3)2+(y -3)2=72的圆心C 的坐标为(3,3),半径r =62,因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点, 所以圆心到直线的距离为22, 则有d =|6-m |1+1=22, 解得m =2或10,故选A 、D.8、(2019·湖南长沙月考)设直线l :(m -1)x +(2m +1)y +3m =0(m ∈R )与圆(x -1)2+y 2=8相交于A ,B 两点,C 为圆心,且△ABC 的面积等于4,则实数m =________. 【答案】-12或-72【解析】设CA ,CB 的夹角为θ,圆的半径为r .所以S △ABC =12r 2sin θ=4sin θ=4,得θ=π2.易知圆心C 到直线l 的距离为2,所以|4m -1|m -12+2m +12=2,解得m =-12或-72.四、例题选讲考点一、直线与圆的位置关系例1、(1)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定(2)已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( )A .m ∥l ,且l 与圆相交B .m ⊥l ,且l 与圆相切C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离 【答案】(1)A (2)C【解析】 (1)由题意知圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. (2)因点P 在圆内,故有a 2+b 2<r 2,直线m 是以P 为中点的弦所在的直线,所以m ⊥OP ,所以直线m的斜率k m =-a b ,因此m ∥l .又直线l 到圆心(0,0)的距离d =r 2a 2+b 2>r 2r =r ,故直线l 与圆相离.故选C.变式1、(1)(2020·杭州模拟)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)(2)若圆x 2+y 2=r 2(r >0)上恒有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围是( ) A .(2+1,+∞) B .(2-1,2+1) C .(0,2-1) D .(0,2+1)【答案】(1) C (2)A【解析】(1)∵x 2+y 2-2x -2y +b =0表示圆,∴8-4b >0,即b <2.∵直线ax +y +a +1=0过定点(-1,-1),∴点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,∴6+b <0,解得b <-6,∴b 的取值范围是(-∞,-6).故选C.(2)计算得圆心到直线l 的距离为22=2>1,如图,直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离2+1.变式2、已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)直线l 能否将圆C 分割成弧长之比为1∶3的两段弧?若能,求出直线l 的方程;若不能,请说明理由.【解析】(1)(方法1)将y =kx 代入圆C 的方程x 2+(y -4)2=4,得(1+k 2)x 2-8kx +12=0.∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k)2-4×12(1+k 2)>0,得k 2>3,(*)∴k 的取值范围是(-∞,-3)∪(3,+∞).(方法2)求圆心到直线的距离d =41+k 2<2解得k >3或k <- 3. (2)假设直线l 将圆C 分割成弧长的比为1∶3的两段弧,则劣弧MN 所对的圆心角∠MCN =90°,由圆C :x 2+(y -4)2=4知圆心C(0,4),半径r =2.在Rt △MCN 中,可求弦心距d =r·sin 45°=2,故圆心C(0,4)到直线kx -y =0的距离||0-41+k2=2,∴1+k 2=8,k =±7,经验证k =±7满足不等式(*),故l 的方程为y =±7x.方法总结:判断直线与圆的位置关系的常见方法(1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 考点二 圆的弦长问题例2、已知直线ax -y +2-a =0与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,若弦AB 的长为32,求实数a 的值.【解析】 因为圆心到直线ax -y +2-a =0的距离为||2a +1a 2+1,所以⎝ ⎛⎭⎪⎫||2a +1a 2+12+⎝⎛⎭⎫3222=9,解得a =1或a =7.变式1、(1)在平面直角坐标系xOy 中,直线3x -y +1-3=0被圆x 2+y 2-6x -2y +1=0截得的弦长为________.(2)当直线l :ax -y +2-a =0被圆C :(x -3)2+(y -1)2=9截得的弦长最短时,实数a 的值为________. (3)若直线l :ax -y +2-a =0与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,且∠ACB =90°,则实数a 的值为________.【答案】(1) 2 6 (2)2 (3)1或7【解析】(1) 圆x 2+y 2-6x -2y +1=0的圆心为C(3,1),半径r =3,点C 到直线3x -y +1-3=0的距离d =3,所求弦长为l =2r 2-d 2=2 6.【解析】(2) 由ax -y +2-a =0得直线l 恒过点M(1,2).又因为点M(1,2)在圆C 的内部,当MC 与l 垂直时,弦长最短,所以k MC ·k l =-1,所以2-11-3×a =-1,解得a =2 .(3)由题意,得圆心C(3,1),半径r =3且∠ACB =90°,则圆心C 到直线l :ax -y +2-a =0的距离为22r ,即||2a +1a 2+1=322,解得a =1或a =7.变式2、(1) 过点M(1,2)的直线l 与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,若弦AB 的长为25,则直线l 的方程为 _(2)已知圆C :(x -1)2+(y -2)2=2截y 轴所得线段与截直线y =2x +b 所得线段的长度相等,则b =________. 【答案】(1) x =1或3x -4y +5=0(2)±5【解析】 (1)当直线l 的斜率不存在时,x =1,符合条件;当直线l 的斜率存在时,设直线l 的方程为y-2=k(x -1),所以圆心到直线kx -y +2-k =0的距离为||2k +1k 2+1,由⎝ ⎛⎭⎪⎫||2k +1k 2+12+⎝⎛⎭⎫2522=9,解得k =34,即直线l 的方程为3x -4y +5=0.综上所述,所求直线l 的方程为x =1或3x -4y +5=0.(2)记圆C 与y 轴的两个交点分别是A ,B ,由圆心C 到y 轴的距离为1,|CA |=|CB |=2可知,圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是|2×1-2+b |5=1,解得b =± 5.方法总结:弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2. 考点三 圆的切线问题例3、(徐州一中2019届模拟)已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4.(1)求过点P 的圆C 的切线方程; (2)求过点M 的圆C 的切线方程.【解析】 由题意得圆心C (1,2),半径r =2.(1)因为(2+1-1)2+(2-2-2)2=4,所以点P 在圆C 上. 又k PC =2-2-22+1-1=-1,所以切线的斜率k =-1k PC =1.所以过点P 的圆C 的切线方程是y -(2-2)=1×[x -(2+1)],即x -y +1-22=0. (2)因为(3-1)2+(1-2)2=5>4,所以点M 在圆C 外部. 当过点M 的直线斜率不存在时,直线方程为x =3, 即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,即此时满足题意,所以直线x =3是圆的切线. 当切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d=|k -2+1-3k |k 2+1=r =2,解得k =34.所以切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.变式1、已知点P(2+1,2-2),点M(3,1),圆C :(x -1)2+(y -2)2=4.(1) 求过点P 的圆C 的切线方程;(2) 求过点M 的圆C 的切线方程,并求出切线长. 【解析】 (1) 由题意得圆心C(1,2),半径r =2.因为(2+1-1)2+(2-2-2)2=4, 所以点P 在圆C 上. 又k PC =2-2-22+1-1=-1,所以切线的斜率k =-1k PC=1,所以过点P 的圆C 的切线方程是y -(2-2)=x -(2+1),即x -y +1-22=0. (2) 因为(3-1)2+(1-2)2=5>4, 所以点M 在圆C 外部.当过点M 的直线斜率不存在时,直线方程为x =3,即x -3=0,满足题意; 当切线的斜率存在时,设切线方程为y -1=k(x -3),即kx -y +1-3k =0, 则圆心C 到切线的距离d =|k -2+1-3k|k 2+1=2,解得k =34,所以切线方程为y -1=34(x -3),即3x -4y -5=0.综上所述,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0. 因为MC =(3-1)2+(1-2)2= 5,所以过点M 的圆C 的切线长为MC 2-r 2=5-4=1.变式2、已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A(4,-1).【解析】(1)设切线方程为x +y +b =0,则|1-2+b|2=10,∴b =1±25,∴切线方程为x +y +1±25=0.(2)设切线方程为2x +y +m =0,则|2-2+m|5=10,∴m =±52,∴切线方程为2x +y±52=0. (3)∵k AC =-2+11-4=13,∴过切点A(4,-1)的切线斜率为-3, ∴过切点A(4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.方法总结:求圆的切线方程应注意的问题求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.五、优化提升与真题演练1、【2020年天津卷】知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r的值为_________. 【答案】5【解析】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =可得6==5r . 故答案为:5.2、【2020年浙江卷】.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).(2). 3- 【解析】由题意,12,C C 1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.3、【2020年全国2卷】.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.5D.5【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为12113255d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=. 故选:B.4、【2020年全国3卷】若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12C. y =12x +1 D. y =12x +12【答案】D【解析】设直线l 在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.5、(2020届清华大学附属中学高三第一学期12月月考)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( ) A.2 B.2CD- 【答案】D【解析】 由题意得,圆22:1O x y +=的圆心坐标为(0,0),半径1r =. 因为OAB ∆为正三角形,则圆心O 到直线0x y m -+==即2d ==,解得2=m或2m =-,故选D. 6、(2020届山东省枣庄、滕州市高三上期末)已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A.B.C.5+D.3+【答案】C 【解析】由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=),所以A 在以(1,1)C 为半径的圆上,又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,5CD ==,∴AB 的最大值为5CD =+故选:C.7、【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===8、 (2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.【解析】 (1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22.由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2.联立⎩⎨⎧ x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎨⎧ x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92.故过A ,B ,C 三点的圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。

高考数学一轮复习49圆与方程学案理

高考数学一轮复习49圆与方程学案理

第四十九课时 圆与方程课前预习案考纲要求1.掌握圆的定义及性质,圆的标准方程与一般方程,2.能用直线和圆的方程解决一些简单的问题,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题。

基础知识梳理1.圆的方程(1) 圆的定义:平面内 的点的集合(轨迹)叫做圆。

(2)圆的标准方程:圆心在),(b a c 、半径为r 的圆的标准方程是 (3)圆的一般方程:当0422>-+F E D 时,方程 ①叫做圆的一般方程.它表示圆心为 ,半径为 的圆;当2240D E F +-=时,①表示点 ;当2240D E F +-<时,①不表示任何图形。

(4)求圆的方程的方法:待定系数法.....,先定式,后定量。

如果与圆心和半径有关,一般选标准式,否则用一般式。

2.直线与圆的位置关系(1)设直线:0l Ax By C ++=圆222:()()C x a y b r -+-=,圆心到直线的距离为 (2)判断直线与圆的位置关系的方法方法一(几何法):比较圆心到直线的距离d 与圆的半径r 的大小关系①⇔直线与圆相交 ;②⇔直线与圆相切 ;③⇔直线与圆相离 方法二(代数法):通过判别式判断直线与圆的方程组的实数解的情况,确定直线和圆的位置。

(3)过圆上一点的圆的切线方程设圆的标准方程222x y r +=,点M(x 0,y 0)为圆上一点,则过M 的圆的切线方程为: ;设圆的标准方程为222:()()C x a y b r -+-=,点M(x 0,y 0)圆上一点,则过M 的圆的切线方程为:;(4)求圆的切线的方法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k .提醒:在利用点斜式求切线方程时,不要漏掉垂直于x 轴的切线,即斜率不存在时的情况. (5)求直线和圆相交的弦长方法一:解半径、半弦、弦心距组成的直角三角形(注意解直角三角形算出的是弦长的一半)。

2023届高三数学一轮复习专题 利用常见函数的奇偶性解题 讲义 (解析版)

2023届高三数学一轮复习专题  利用常见函数的奇偶性解题  讲义 (解析版)

专题:利用常见函数的奇偶性解题知识梳理:1、掌握高中常见函数的奇偶性,单调性可提高解题速度2、加强知识的归纳整理工作,由知识点构建知识块3、常见的奇,偶函数类型(10≠>a a 且):①指数型奇函数:f(x)=11+-±x x a a ,f(x)=)(x x a a --±, ②对数型奇函数:f(x)=±lgx b xb +-,f(x)=±lg(x x ++12),③幂函数奇函数:f(x)=m x (为奇数m ),f(x)=xb x ±④常见偶函数:f(x)=m x (为偶数m ) f(x)=|x| 典型例题:例1:已知函数f(x)=11+-x x a a (a>1) (1)判断f(x)奇偶性 (2)求函数f(x)的值域变式:已知函数31()231x x f x x -=++,则满足不等式()(32)0f a f a ++>的实数a 的取值范围是 .变式1:【答案】12⎛⎫-+∞ ⎪⎝⎭例2:(2018·全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )变式:已知函数f (x )=e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.例3:判断并证明函数f(x)=lg x x +1-1的奇偶性 (思考f(x)=lg xx-+11的奇偶性?)例4:判断并证明函数f(x)=lg(x x ++12)的奇偶性 (思考f(x)=lg(x x -+12的奇偶性?)变式1:已知函数xxa x f +-=1log )(3为奇函数,则实数a 的值为________.变式2:设函数f(x)=1)1ln(1222+++++x x x x )(的最大值为M ,最小值为N ,试确定M+N 的值变式3:函数())lnf x kx =的图象不可能是( )A. B .C .D .例5:已知,,则( ) A . B . C . D .例6:已知函数2111)(x x x f +-+=,则满足f (x -1)<⎪⎭⎫ ⎝⎛31f 的x 取值范围是( ) A .11(,)33- B .]31,31[- C .24(,)33D .]34,32[课后作业:1、已知函数f(x)=xxa a 22+-是奇函数,则f(a)的值等于( )A.-31B.3C.-31或3D.31或32、(2022年华美月考,多选)已知函数()1212xxf x -=+,())lg g x x =,则( )A .函数()f x 为偶函数B .函数()g x 为奇函数C .函数()()()F x f x g x =+在区间[]1,1-上的最大值与最小值之和为01()1f x x x=+-()2f a =()f a -=4-2-1-3-D .设()()()F x f x g x =+,则()()210F a F a +--<的解集为()1,+∞ 3、(2019·金版创新)已知函数f (x )是奇函数,g (x )=f (x )+21+2x ,x ∈(-1,1),则g ⎪⎭⎫⎝⎛21+g ⎪⎭⎫⎝⎛21-的值为________. 4、(2019·海淀联考)已知函数f (x )=2x-12x +1.(1)判断函数f (x )的奇偶性;(2)判断并证明f (x )在其定义域上的单调性;(3)若f (k ·3x)+f (3x-9x+2)<0对任意x ≥1恒成立,求实数k 的取值范围.专题:利用常见函数的奇偶性解题典型例题: 例1:【答案】(1)奇函数(2)(-1,1) 【解析】(1)()f x 的定义域为R .又()()11111111xxx x xxa a a f x f x a aa ------====-+++,所以()f x 为奇函数. (2)11211,2120<+-<-∴<+<x x a a ,即值域为(-1,1) 变式:【答案】(∞+-,21) 【解析】0313113132131321313)()(=+-++-=-+-+++-=-+--xxx x x x x x x x x f x f 所以x x f x x 21313)(++-=为奇函数,因为1313)(+-=x x x f 在定义域上单调递增,又f(x)=2x 在定义域上单调递增,所以x x f xx 21313)(++-=在定义域上是增函数 2123)23()(->⇒-->⇒-->∴a a a a f a f例2:【答案】B 【解析】依题意,注意到函数的定义域是}0|{≠∈x R x ,且)()()(22x f xe e x e e xf x x x x -=--=--=---,因此)(x f 是奇函数,其图象关于原点成中心对称,选项A 不正确,且当x>0时,)(x f >0,选项D 不正确,又+∞→+∞→)(,x f x ,结合选项知B 正确,故选B变式:【答案】]21,1[-【解析】函数f (x )=e x-1e x 是常见的奇函数,且在定义域内是单调递增的,因为f (a -1)+f (2a 2)≤0a a a f a f a f -≤⇒-=--≤∴12)1()1()2(22解得:211≤≤-a例3:【答案】奇函数【解析】由条件知:函数的定义域为11<<-x 关于原点对称 所以f(x)+f(-x)=lgx x +1-1+lg x x -+11=0,即函数f(x)是奇函数,同理f(x)=lg xx-+11也是奇函数 例4:【答案】奇函数【解析】由条件知:函数的定义域为R 关于原点对称 所以f(x)+f(-x)=lg(x x ++12)+lg(x x -+12)=lg1=0即函数f(x)是奇函数,同理f(x)=lg()x x -+12也是奇函数变式1:【答案】1【解析】由条件知:奇函数的定义域要关于原点对称,所以分母1-≠x ,为了对称,分子a=1变式2:【答案】2【解析】由已知得1)1ln(21)(22+++++=x x x x x f 因为)1ln())(1)(ln(22x x x x ++-=-++-,所以)1ln(2x x y ++=是奇函数,进而可判定,函数1)1ln(2)(22++++=x x x x x g 为奇函数,则)(x g 的最大值1M 和最小值1N ,满足1M+1N =0,因为1,111+=+=N N M M ,所以M+N=2变式3:【答案】C 【解析】因为A,B 选项中,图像关于原点对称,所以f(x)为奇函数,f(x)+f(-x)=0 1010)1ln()1ln(2222±=⇒=-⇒=+++-+k x k kx x kx x )(即当K=1时,f(x)的图像为选项A,当K=-1时,f(x)的图像为选项B 而C,D 选项中,图像关于Y 轴对称,所以f(x)为偶函数,f(x)=f(-x)00)1ln()1ln(22=⇒=⇒++=-+k kx kx x kx x 即当K=0时,0)(≥x f 故f(x)的图像为选项D ,故f(x)的图像不可能为C例5:【答案】A 【解析】设xx x f x g 11)()(+=+=则)(1)()(x g x f x g -=+-=-,所以)(x g 是奇函数,31)()(=+=a f a g 因为)(x g 是奇函数,所以31)()(-=+-=-a f a g 所以4)(-=-a f ,故选A例6:【答案】C 【解析】函数2111)(xx x f +-+=在[)∞+,0上为增函数,所以不等式f (x -1)<⎪⎭⎫ ⎝⎛31f 等价为 f (|x -1|)<⎪⎭⎫ ⎝⎛31f 所以|x -1|)<31⇒3432<<x课后作业:1、【答案】C 【解析】因为函数f(x)=x xa a 22+-是奇函数,所以f(-x)=-f(x)整理得:02,02)22(2122>=-=+-x x x x a a a 因为))((,所以1±=a 代入选C2、【答案】BCD 【解析】函数xx x f 2121)(+-=是奇函数,所以A 错,函数g(x)=lg )x x -+12是奇函数,所以B 正确,.函数()()()F x f x g x =+在区间[]1,1-上是奇函数,在对称区间上,最大值最小值之和为0,C 正确;是减函数xx f 2121)(++-=,010ln 11)()1lg()(2'2<+-=⇒-+=x x g x x x g 故F (x )=f(x)+g(x)是减函数,a a a F a F a F a F +>⇒+<⇒<--+12)1()2(0)1()2(所以1>a ,D 正确3、【答案】2【解析】函数)(x f 是奇函数,所以0)21()21(=+-f f ,令xx h 212)(+=,则22112212)21()21(=+++=-+h h ,所以g ⎪⎭⎫ ⎝⎛21+g ⎪⎭⎫ ⎝⎛21-=2 4、【答案】(1)奇函数(2)在R 上单调递增函数(3)),(34∞-【解析】略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第一轮复习讲义(49)
直线与圆的位置关系
一.复习目标:
1.掌握圆的标准方程及一般式方程,理解圆的参数方程及参数θ的意义,能根据圆的方程熟练地求出圆的圆心和半径;能熟练地对圆的方程的各种形式进行相互转化。

2.掌握直线与圆的位置关系,会求圆的切线方程,公共弦方程及等有关直线与圆的问题。

3.渗透数形结合的数学思想方法,充分利用圆的几何性质优化解题过程。

二.主要知识:
1.圆的标准方程: ;
圆的一般方程: ;
圆的参数方程: 。

2.直线与圆的位置关系判断的两种方法:
代数方法: ;几何方法: ;
3.弦长的计算方法:代数方法: ;几何方法: ;
三.基础训练:
1.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 ( )
()A 2a <- ()B 203a -<< ()C 20a -<< ()D 223
a -<< 2.直线y x m =-+与圆221x y +=在第一象限内有两个不同交点,则m 的取值范围是 ( )
()A 0m << ()B 1m < ()C 1m ≤≤ ()D m <<3.圆22
2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) ()A 22(7)(1)1x y +++= ()B 22(7)(2)1x y +++=
()C 22(6)(2)1x y +++= ()D 22(6)(2)1x y ++-=
4.设M 是圆22
(5)(3)9x y -+-=上的点,则M 点到直线3420x y +-=的最短距离是 。

5.若曲线1y =(22)x -≤≤与直线(2)4y k x =-+有两个交点时,则实数k 的取值范围是____ __。

四.例题分析:
例1.求满足下列各条件圆的方程:
(1)以)9,4(A ,)3,6(B 为直径的圆; (2)与,x y 轴均相切且过点(1,8)的圆;
(3)求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程。

例2.已知直线:2830L mx y m ---=和圆22:612200C x y x y +-++=;
(1)m R ∈时,证明L 与C 总相交。

(2)m 取何值时,L 被C 截得弦长最短,求此弦长。

例3.已知圆221:2280C x y x y +++-= 与222:210240C x y x y +-+-= 相交于
,A B 两点,
(1)求公共弦AB 所在的直线方程; (2)求圆心在直线y x =-上,且经过,A B 两点的圆的方程;
(3)求经过,A B 两点且面积最小的圆的方程。

五.课后作业: 班级 学号 姓名
1.已知曲线22220(40)x y Dx Ey F D E F +-+-=++>关于直线0x y +=对称,则( )
()A 0D E -= ()B 0D E += ()C 0D F += ()D 0D E F ++=
2.两圆为:2222(2)16;(1)(4)1x y x y -+=++-=,
则 ( ) ()A 两圆的公共弦所在的直线方程为34140x y -+=
()B 两圆的内公切线方程为34140x y -+=
()C 两圆的外公切线方程为34140x y -+=
()D 以上都不对
3.已知点(,)(0)M a b ab ≠是圆222:C x y r +=内一点,直线l 是以M 为中点的弦所在的直线,直线m 的方程是2ax by r +=,那么 ( )
()A //l m 且m 与圆C 相切 ()B l m ⊥且m 与圆C 相切
()C //l m 且m 与圆C 相离 ()D l m ⊥且m 与圆C 相离
4.若半径为1的动圆与圆22
4x y +=相切,则动圆圆心的轨迹方程是 。

5.圆222430x y x y +++-=上到直线10x y ++=的点共有 个。

6.已知曲线22:2(410)10200C x y kx k y k ++++++=,其中1k ≠-;
(1)求证:曲线C 都是圆,并且圆心在同一条直线上;
(2)证明:曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值;
7.设圆上的点(2,3)A 关于直线20x y +=的对称点仍在圆上,且与直线0x y y -+=相
交的弦长为
8.过点(2,3)P --作圆22:(4)(2)9C x y -+-=的两条切线,切点分别为,A B ;求:
(1)经过圆心C ,切点,A B 这三点圆的方程;(2)直线AB 的方程;(3)线段AB 的长。

相关文档
最新文档